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Abstract 

Aggregate productivity growth and the role of input reallocation have been hotly debated. Yet, it has 

received little attention as to how the measurement of reallocation relies on the commonly-made 

assumption that a production technology is uniform within an industry. To quantify the effects of 

unobserved heterogeneity in production technology, we estimate a random-coefficient Cobb-Douglas 

production function. We identify plant type from the distribution of the intermediate inputs to sales 

ratio using the first order condition without permanent distortions in intermediate input markets. The 

empirical analysis uses plant-level data from the Census of Manufacture. We find that accounting for 

unobserved heterogeneity lowers the volatility of technical efficiency and reallocation contributions. 

For knitted garments industry that features large dispersion in the intermediate input share, the average 

growth rate of the reallocation component over the 5-year period after the bubble burst in Japan is -

0.5% with heterogeneity, while it is 0.4% without heterogeneity. 
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1 Introduction

Improvement in productivity is key for economic growth in the long run. Recently,

economists have been trying to understand sources of aggregate productivity growth

(APG) through within-plant increases in technical efficiency and between-plant real-

location of inputs (e.g., Hsieh and Klenow (2009)). One important limitation in the

previous empirical analysis is that plants are assumed to have the same production

function within narrowly defined industries. However, for example, because of dif-

ferent degrees of automation and outsourcing or the presence of different products

within the same industry codes, production technologies can be heterogenous across

plants beyond Hicks neutral technical efficiency. Ignoring such heterogeneity can lead

to mismeasurement of technical efficiency and reallocation growths, which could bias

policy evaluations. To quantify the potential biases, we estimate a random-coefficient

Cobb-Douglas production function and apply the production function estimates to a

decomposition of APG.

We consider a random-coefficient Cobb-Douglas production function with a fi-

nite number of unobservable technology types and estimate it by the classification

estimator proposed by Kasahara et al. (2017). The classification estimator builds

on the two-step estimation method that Gandhi et al. (2013) propose to address a

nonparametric identification problem of the widely used Levinsohn-Petrin estimator.

Assuming that intermediate inputs are flexible, consider the optimal intermediate

input choice that maximizes the (short-run) profit. With the Cobb-Douglas specifi-

cation, the first order condition (FOC) implies that the persistent dispersion in the

ratio of the intermediate input cost to sales is explained by the distribution of the

coefficient on intermediate inputs adjusted by the variance of the ex post residuals.
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The classification estimator exploits this FOC relation to identify the type-specific

coefficient on the intermediate input and plant’s type probability distribution. One

important identifying assumption is that there is no permanent distortion in the in-

termediate input markets, which cannot be separately identified from the coefficient

on intermediate inputs without additional data.

We leverage a decomposition method by Petrin and Levinsohn (2012) (henceforth

PL). PL define aggregate productivity growth by the change in aggregate final demand

minus the change in aggregate expenditures on primary inputs and show that the

APG can be decomposed into the contributions of technical efficiency and factor

reallocation across production units such as plants. The estimation of the technical

efficiency and reallocation components requires reliable estimates of the production

function at the micro level, because those components are determined by aggregating

plant-level Hicks neutral technical efficiency growth and the plant-level gap between

the elasticity of output with respect to a given input factor and its expenditure to

sales ratio.

Using data from the Japanese Census of Manufacture, we first document the dis-

persion of the intermediate input share within 4 digit industry codes. The 90th-10th

percentile ratio of the intermediate input share is large, ranging from 3 to 9, for many

industries such as knitted garments, auxiliary equipment for internal combustion

engines, home comfort, clothes treatment and cleaner, miscellaneous household elec-

tric appliances, video recording and duplicating equipment, electric audio equipment,

resistorscapacitors transformers and composite parts and motor vehicles parts and

accessories. Furthermore, the histogram of the intermediate input share is bimodal

for several industries including knitted garments, electric audio equipment and video

recording and duplicating equipment. In contrast, bread and corrugated board boxes

have low dispersion in the intermediate input share with the 90th-10th percentile

ratios of 1.9 and 1.7, respectively.
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To examine the role of unobserved heterogeneity for the measurement of technical

efficiency and reallocation components, we focus on knitted garments, motor vehicles

parts and accessories and corrugated boxes. The knitted garments industry has a

bimodal distribution of intermediate input share with the 90th-10th percentile ratio

of 8.2. The motor vehicles parts and accessories has the largest number of observations

among all industries and relatively large dispersion in intermediate input share with

the 90th-10th percentile ratio of 3.0. The corrugated boxes has the smallest 90th-

10th percentile ratio in the intermediate input share among the 30 largest industries

in terms of the sample size.

The empirical results show that taking into account unobserved heterogeneity

lowers the volatility of the technical efficiency and reallocation contributions. For

example, for the knitted garments industry, the standard deviation of the technical

efficiency growth rate and that of the reallocation growth rate are 2.3 % and 1.0%

with heterogeneity (3 unobserved types), while they are 3.3 % and 1.9% without

heterogeneity. Furthermore, for the knitted garments industry, the average growth

rate of the reallocation component over the 1992-1996 period, the period after the

bubble burst in Japan in 1991, is -0.5% with heterogeneity, while it is 0.4% without

heterogeneity. For the motor vehicles parts and accessaries industry, the average

growth rate of the reallocation component over the 1987-1992 period is 0.7 % with

heterogeneity, while it is -1.8% without heterogeneity. On the other hand, for the

corrugated board boxes industry, taking into account unobserved heterogeneity does

not affect the APG decomposition substantially.

The rest of this paper is organized as follows. Section 2 describes the PL decom-

position of APG. Section 3 explains the empirical specification of production function

and the estimation procedure by classification. Section 4 explains the data and de-

scriptive statistics. Section 4 presents empirical results. Section 5 concludes.
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2 APG and Its Decomposition

We fist describe the decomposition of aggregate productivity growth (APG) proposed

by Petrin and Levinsohn (2012) (henceforth PL) in a general case. There are #Nt

plants. Let Qit denote plant i’s output at t. The production technology is given by

Qit = Qit(Xit,Mit)ωit where Xit = (Xi1t, . . . , Xi#Kt) is the vector of #K primary

inputs used by plant i at t, Mit = (Mi1t, . . . ,Mi#Jt) denotes the vector of plant

j = 1, . . . ,#J ’s output used as an intermediate input by plant i and ωit represents

Hicks neutral technical efficiency at plant i at t. Let Yit denote the amount of output

from plant i that goes to final demand. Then Yit = Qit −
∑

jMjit. Following PL, we

define APGt by

APGt ≡
#Nt∑
i=1

PitdYit −
#Nt∑
i=1

#K∑
k=1

WiktdXikt,

where Pit denotes the price of plant i’s output at t and Wikt is the price of the kth

primary input used by plant i at t. Let V Ait denote plant i’s value added at t, defined

by V Ait ≡ PitQit −
∑

j PjtMjit. Then,
∑

i PitYit =
∑

i V Ait. Also, define dV Ait by

dV Ait ≡ PitdQit −
∑

j PjtdMjit. Then,

APGt =

#Nt∑
i=1

dV Ait −
#Nt∑
i=1

#K∑
k=1

WiktdXikt.

PL show that APGt can be decomposed into technical efficiency and factor realloca-

tion terms as follows.

APGt =
∑
i

∑
k

(
Pit
∂Qit

∂Xk

−Wikt

)
dXikt +

∑
i

∑
j

(
Pit
∂Qit

∂Mj

− Pjt
)
dMijt︸ ︷︷ ︸

Reallocation

+
∑
i

Pit
∂Qit

∂ω
dωit︸ ︷︷ ︸

Technical efficiency

Now consider the growth rate formulation. DefineAPGGt byAPGGt ≡ APGt/
∑

i PitYit =

APGt/
∑

i V Ait. Then,

APGGt =
∑
i

Dv
itd lnV Ait −

∑
i

Dv
it

∑
k

sviktd lnXikt,
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where Dv
it ≡ V Ait/

∑
i V Ait and svikt ≡ WiktXikt/V Ait. The growth-rate version of

the PL decomposition reads

APGGt =
∑
i

∑
k

Dit(gikt−sikt)d lnXikt+
∑
i

∑
j

Dit(gijt−sijt)d lnMijt+
∑
i

Ditd lnωit,

where gikt is the elasticity of plant i’s output with respect to the kth primary input,

i.e. gikt = (∂Qit/∂Xk)(Xikt/Qit), gijt is the elasticity of plant i’s output with respect

to the jth intermediate input, sikt = WiktXikt/(PitQit), sijt = PijtMijt/(PitQit) and

Dit is the Domar weight defined by Dit = PitQit/
∑

i V Ait.

3 Production Function

This section explains the empirical specification of production function we employ in

our analysis. Denote the log values of (Qit, Lit, Kit,Mit) by (qit, `it, kit,mit). There are

J different technology types and each plant belongs to one of J types. In what follows,

the superscript j denotes plant’s technology type. Let πj denote the probability of

belonging to type j. Plant’s production technology is represented by the following

(industry-specific) random-coefficient Cobb-Douglas production function.1 For each

type j = 1, . . . , J ,

qit = βjt + βjmmit + βj` `it + βjkkit + ωit + εit, (1)

where ωit and εit represent Hicks neutral technical efficiency terms. The term ωit

follows a first order autoregressive process.

ωit = ρjωit−1 + ηit, (2)

where E[ηit|ωit−1] = 0. Lit and Kit are predetermined while Mit is flexible, chosen

after ηit is observed. The term εit represents an i.i.d. ex-post shock that is not known

1The coefficients are industry specific. For simplicity, we suppress the industry subscript.
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when Mit is chosen. Specifically, εit|xit, i ∈ Ij
iid∼ N(0, (σjε )

2) for j = 1, ..., J where

Ij := {i : j∗(i) = j} and j∗(i) is the true type of plant i.

Kasahara et al. (2017) prove nonparametric identifiability of a finite mixture model

in a more general setting. Following Gandhi et al. (2013), their identification argu-

ment exploits the first order condition with respect to flexible intermediate input.

With the above Cobb-Douglas specification, the first order condition (in log) reads

sit = ln βjm + 0.5(σjε )
2 − εit, (3)

where smit = ln
PM
it Mit

PitQit
with PM

it representing the intermediate good price.2 Without

additional data, we cannot separately identify heterogeneity in production technology

and permanent distortion. Therefore, we assume no permanent distortion in the

intermediate input markets and attribute persistent dispersion in the intermediate

input share to production technology heterogeneity.

We estimate the random-coefficient Cobb-Douglas production function by the clas-

sification method proposed by Kasahara et al. (2017). Briefly, the estimation proceeds

as follows: 1. Estimate θ1 := (πj, βjm, σ
j
ε )
J
j=1 using the FOC with respect to interme-

diate input by MLE; 2. Classify plants into J different technology types by posterior

type probabilities; 3. Given θ̂1, estimate θ2 := (βjt , β
j
` , β

j
k)
J
j=1, separately for each

type, by GMM. In what follows, we treat J as known and report results for various

values of J . Appendix A explains how to compute APG and its components with

discrete time data and production function estimates.

2This first order condition also assumes perfect competition in the input and output goods mar-
kets. We can alternatively consider a case where each producer produces differentiated products
facing a demand function with constant price elasticity. In that case, however, we cannot separately
identify the (type-specific) price elasticity of demand and the coefficient βj

m.
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4 Data Description

We use the Japanese Census of Manufacture that collects plant-level production in-

put/output data for the manufacturing industry in Japan. The survey uses different

questionnaires for small and large plants: 1. Plants with 30 or more employees (Kou

file); 2. 4-29 employees (Otsu file); 3. 1-3 employees (Otsu file, surveyed every 5

years). The questionnaire for large plants of 30+ employees is more detailed. For

example, detailed inventory data (finished products, material, fuel) are available for

large plants but not for small plants. All plants with 4+ employees report their book

values of fixed assets every year up to 2000. However, from 2000, small plants have

to report the fixed asset data every 5 years only.

Flow data on shipments and various production costs refer to calendar year (from

January 1st to December 31st each year). The number of employees refers to the

value in the end of the year, while the stock of fixed asset refers to the beginning

of the period. Both the beginning and end of the period values are reported for

inventory. Appendix B explains the detailed construction of the variables we use in

the empirical analysis.

Our data set covers 1986-2010.3 Although the Ministry of Economy, Trade and

Industry (METI) provides data from 1980 in the electric format, we can construct

panel data only from 1986 because the METI does not provide converter files, which

are necessary to construct panel data, prior to 1986.4

3See Shimpo and Omori (2005), Abe et al. (2012) and Yukimoto (2015) for the construction of
the panel data.

4Shimpo and Omori (2005) construct converter files for 1981-1985 on their own.
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4.1 Heterogeneity in the Intermediate Input Share

Table 1 reports the 90th-10th percentile ratios for intermediate and labor expendi-

ture shares for the 30 largest industries in terms of the number of observations. The

columns designated by PMit

PQit
, WLit

PQit
and PMit

(PMit+WLit)
report the 90th-10th percentile

ratios of the intermediate input expenditure to sales ratio, the labor cost to sales

ratio and the ratio of the intermediate input to the sum of intermediate input and

labor costs in the pooled sample, respectively. The columns designated by
(
PMit

PQit

)
i
,(

WLit

PQit

)
i

and
(

PMit

(PMit+WLit)

)
i

report the 90th-10th percentile ratios of the correspond-

ing variables replacing the individual observations with the plant-specific averages

over time.

The 90th-10th percentile ratio of the intermediate input share varies across in-

dustries ranging from 1.7 for corrugated board box to 9.5 for textile business, work,

sport clothing and school uniforms including, bonded fabrics and lace products. The

column on
(
PMit

PYit

)
i

shows that the variation in the plan-specific averages accounts for

around 80 percent of the variation in the pooled raw data for most of the selected

industries. This suggests that the dispersion in the intermediate input share is per-

sistent. The variation in the intermediate input share may come from heterogeneity

in markup rates rather than heterogeneity in production technology. To control for

the markup rates, we also report the ratio of the intermediate input expenditure to

the sum of the intermediate input and labor expenditure ( PMit

PMit+WLit
). The dispersion

of the intermediate input to cost ratio ( PMit

PMit+WLit
) tends to be large in the industries

with large dispersion in the the intermediate input share (PMit

PQit
). The exception is

the medical product preparations industry in which the markup heterogeneity across

plants could be substantial.

To examine the importance of unobserved heterogeneity in production technology,

we pick the following three industries for the empirical analysis: 1. Knitted garments;
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2. Motor vehicles parts and accessories; 3. Corrugated board boxes. The knitted

garments industry features large dispersion in the intermediate input share with the

90th-10th percentile ratio of 8.2. Furthermore, Figure 1 shows that the distribution

of the intermediate input share is bimodal. The motor vehicles parts and accessories

industry has a modest 90th-10th percentile ratio of the intermediate input share of

3.0. However, this industry has the largest number of observations and consequently

industry-level sales is one of the largest. The corrugated board boxes industry has

the smallest 90th-10th percentile ratio of the intermediate input share in Table 1.

Figures 2 and 3 show the distribution of the intermediate input share for the motor

vehicles parts and accessories and corrugated board boxes industries.

4.2 Sample Selection

We exclude observations if at least one of the following criteria applies: 1. the input,

output or cost data are missing; 2. the plant has less than 30 employees; 3. the input

or output data are outliers (top and bottom 0.5%). We impose the second criterion

because capital stock data (in book value) are not available in a continuous manner

for small plants from 2000.

5 Results

This section reports results of the APG decomposition analysis for knitted garments,

motor vehicles parts and accessories and corrugated board boxes. Our main focus

is to examine how the measurement of technical efficiency and reallocation contri-

butions change when we take into account unobserved heterogeneity in production

technologies beyond Hick neutral productivity term.
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5.1 Estimation of Production Function

5.1.1 Knitted Garments

Table 2 reports the production function estimates for J = 1, 3 and 5. With J > 1, the

coefficients β̂jm, β̂j` and β̂jk are substantially different across types. When J = 3, β̂jm are

estimated at 0.08, 0.29 and 0.58. The type with β̂jm = 0.08 features the lowest capital

intensity β̂jk/β
j
` of 0.071 among the three types. The type with β̂jm = 0.29 features

the highest capital intensity of 0.29. The type with β̂jm = 0.58 has the largest size

πj = 0.41.

With J = 1, β̂jm = 0.2. This value is substantially lower than the weighted

averages of β̂jm’s over types with J > 1. As Table 4 shows, the standard deviation of

ε̂it is larger with J = 1 than J > 1. In the estimation of the intermediate input share

equation (3), the larger σ̂jε tends to push β̂jm downward, partially accounting for the

low estimate of βm with J = 1.

Table 3 reports the mean and standard deviation of selected variables by type

for J = 3. The mean of log gross output, intermediate input, labor input and capi-

tal stock monotonically increase from Type 1 to Type 3. However, the type-specific

distributions of those variables tend to have larger overlaps than those of the inter-

mediate input share simt, suggesting that the observable characteristics do not fully

explain the type classification.

5.1.2 Motor Vehicles Parts and Accessories

Table 5 reports the results of the production function estimation for J = 1, 3 and 5.

Overall, the returns to scale is a little above one and higher than that for the knitted

garments industry. But it decreases with the number of unobserved components.

Similar to knitted garments, the estimated value of β̂jm for J = 1 is lower than the
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weighted averages of β̂jm’s across types for J > 1. With J = 3, the capital intensity

β̂jk/β̂
j
` is the highest for the type with the lowest β̂jm.

As in the knitted garments industry, Table 6 shows that the plant size tends

to increase from Type 1 to Type 3 as βjm increases. However, the overlaps in the

distribution of gross output and input variables across types are large relative to that

in the distribution of the intermediate input share, suggesting that the classification

is not fully explained by the selected observable characteristics.

5.1.3 Corrugated Board Boxes

Table 7 reports the production function estimates for the corrugated board boxes

industry for J = 1, 3 and 5. For J > 1, the variation in β̂jm is small relative to the

other industries examined above. In addition, the estimates for J = 1 are close to

the corresponding weighted averages over different types for J > 1. For example,

βjm = 0.544 with J = 1, while the corresponding weighted average of βjm is 0.573 with

J = 3.

5.2 Decomposition of APG

5.2.1 Knitted Garments

Figures 4 and 5 show the overall patterns of the growth of the knitted garments indus-

try. Figure 4 reports that the number of plants, including small ones, declines from

about 4000 in 1990 to about 1500 in 2010. The number of large plants also declines

from over 1000 to around 200. Figure 5 reports that gross output and employment

decline over time. The large plants account for around 60 percent of gross output

and employment and the fraction is stable over time.

Figure 6 reports the changes in APG and its components over time. The left
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panel shows that APG is negative from 1991 for the knitted garments industry. As it

is expected from the declining trend in the number of plants, the net entry effect is

negative. Within the operating plants, the changes in APG are driven by the changes

in the value added growth, while being partially offset by the negative labor growth.

Table 8 shows that the average APG over the 1987-2008 period is -2.2% in which the

average APG for operating plants is -0.8% and the average net entry contribution is

-1.5%.

Figure 7 reports the technical efficiency and reallocation contributions to APG

for J = 1 and 3. Both technical efficiency and reallocation contributions become

less volatile with J = 3 than J = 1. Table 9 reports the average growth rates of the

technical efficiency and reallocation components for 1987-1991, 1992-1996, 1997-2001,

2002-2008 and 1987-2008 and the standard deviation of the growth rates of the two

components over the 1987-2008 period. The absolute values of the average growth

rates over the subperiods are smaller with J = 3 than J = 1. The standard deviation

of the growth rates of the technical efficiency component over the 1987-2008 period is

3.3% with J = 1 while it is 2.3% with J = 3. The standard deviation of the growth

rate of the reallocation component is 1.9% with J = 1, while it is 1.0% with J = 3.

Furthermore, the reallocation contribution tends to be negative with J = 3 in the

1990s, while it tends to be positive with J = 1 over the same period. Table 9 shows

that the reallocation contribution is -0.5% with J = 3 over the 1992-1996 period,

while it is 0.4% with J = 1.

Figure 8 decompose the reallocation contribution by input factors. The reallo-

cation contribution of intermediate input is negative in the 1980s and positive 2-5

percent for most of the 1990s and 2000s with J = 1, while it is mostly negative or

negligible with J = 3. It is likely because β̂jm with J = 1 is lower than the weighted

average over types with J = 3, which makes the weighted average of the difference

between β̂jm and s̄imt negative, and the intermediate input growth is negative over the
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1990s. In contrast to the intermediate input, the reallocation contribution of capital

stock is positive up to 1992 and negative for the rest of the period with J = 1. With

J = 3, the reallocation contribution, while having the same sign with J = 1 for most

of the periods, is much smaller in absolute value. The labor reallocation effects are

similar for J = 1 and 3, taking negative values for most of the periods.

5.2.2 Motor Vehicles Parts and Accessories

Motor Vehicles Parts and Accessories has the largest number of observations at the

4 digit level. This industry is likely to include a variety of products but cannot

decompose further. Figures 9 shows that the number of plants is relatively stable

over time with the number of small plants with less than 30 employees declining from

1992 and that of large plants stable or slightly increasing from 2000. Figure 10 reports

the changes in log real output and the number of employees. The growth rate of real

output is positive from 1986 to 1991, the bubble period in Japan, turns negative or

close zero from 1992 to 1997, becomes positive from 2000 to 2007, sharply drop in

2008 and 2009 because of the global financial crisis and recovers in 2010. The growth

rate of the number of employees in this industry changes in a similar manner with

real output. The large plants with more than 30 employees account for around 90

percent of real output and employment, with the fraction slightly increasing in the

2000s.

Table 8 shows that the average APG over the 1987-2008 period is 2.8% in which

the average APG for operating plants is 3.5% and the average net entry contribution

is -0.6%. Figure 11 reports annual movements of APG and its components. Over the

sample period, APG is relatively low or negative from 1992 to 1998 after the collapse

of the bubble in Japan. The net entry effects are small but negative in 2000s. Within

the staying plants, the value added growth drives the changes in APG except for that

labor input noticeably increases from 2003 to 2007.
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Figure 12 reports the contributions of technical efficiency and reallocation to APG

for J = 1 and 3. Both technical efficiency and reallocation contributions become less

volatile with J = 3. As shown in Table 9, the standard deviation of the growth rate

of the technical efficiency component over time is 6.0% with J = 1 while it is 4.5%

with J = 3. The standard deviation of the growth rate of the reallocation component

is 3.1% with J = 1, while it is 1.3% with J = 3. For most of the sample years except

for 1987-1991, the signs of the measured contributions are the same with and without

unobserved heterogeneity. For the 1987-1991 period, which is the bubble period in

Japan, Table 9 shows that the average growth rate of the reallocation component is

0.7% with J = 3, while it is -1.8% with J = 1. Figure 13 reports the reallocation

contributions by input factors. The reallocation contributions become less volatile

not only for intermediate inputs but also labor and capital inputs.

5.2.3 Corrugated Board Boxes

As Table 1 shows, the corrugated board boxes industry has the lowest intermediate

input share in the 30 largest industries by sample size. For comparison purpose, we

examine APG of this industry.

Table 8 shows that the average APG over the 1987-2008 period is -0.8% in which

the average APG for operating plants is 0.2% and the average net entry contribution

is -1.0%. Figure 14 reports the annual movements of APG and its components. Figure

15 reports the contributions of technical efficiency and reallocation to APG. Figure

16 decompose the reallocation contribution by factor inputs. Both Figures 15 and

16 show that the decomposition results are similar for J = 1 and J = 3, strikingly

different from the patterns observed for knitted garments and motor vehicles parts

and accessories.
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6 Conclusion

This article examines how unobserved heterogeneity in production technology affects

the measurement of the technical efficiency and reallocation contributions to APG.

To do so, we conduct the PL decomposition of APG with a random-coefficient Cobb-

Douglas production function. Using the Japanese Census of Manufacture, we first

document that many industries defined at the 4 digit level feature large and persistent

heterogeneity in the ratio of intermediate input expenditure to sales. In view of the

first order condition with respect to the flexible intermediate inputs, the persistent

heterogeneity in the intermediate input share implies heterogeneity in production

technology beyond Hicks neutral technical efficiency.

To characterize the importance of unobserved heterogeneity in production technol-

ogy, we analyze knitted garments, motor vehicles parts and accessaries and corrugated

board boxes industries. The first two industries feature a relatively large 90th-10th

percentile ratio in the intermediate input share, while the corrugated board boxes

industry has the smallest 90th-10th percentile ratio among the 30 largest industries

by sample size. The estimation results show that accounting for unobserved hetero-

geneity lowers the volatility of technical efficiency and reallocation contributions for

knitted garments and motor vehicles parts and accessories, while there is almost no

impact for corrugated board boxes. Furthermore, for the knitted garments industry,

the average growth rate of the reallocation component over the 1992-1996 period,

which is the 5-year period after the bubble burst in Japan, is -0.5% with heterogene-

ity, while it is 0.4% without heterogeneity. Similarly, for the motor vehicles parts and

accessaries industry, the average growth rate of the reallocation component over the

1987-1992 period is 0.7 % with heterogeneity, while it is -1.8% without heterogeneity.

There are various issues left for future research. First, production technologies

may be changing over time. For example, energy-efficient technologies have been de-
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veloped over time. Therefore, it is important to extend the production function to

allow for time-varying coefficients. Second, plants with different technology types may

respond to aggregate shocks differently. Therefore, to examine the effects of aggre-

gate shocks, such as the recent global financial crisis, on APG, it will be important to

account for unobserved heterogeneity. Third, we plan to conduct more detailed policy

evaluations using the present analytical framework. Various deregulation policies in

electricity, fuel, labor and financial markets are expected to promote reallocation of

the corresponding input factors to achieve more efficient allocations, while compe-

tition policies may affect individual plant’s productivity more directly. To evaluate

effectiveness of such policies, it is indispensable to have accurate measurement of

technical efficiency and reallocation contributions to APG.

A Appendix: Discrete Time Approximation of APG

APGGt from t− 1 to t is given by APGGt[t− 1, t] =
∫ t
t−1

APGGtdt. Let St, Et and Xt
denote the set of plants operating from period t − 1 to t, the set of plants entering

between t − 1 and t and the set of plants exiting between t − 1 and t, respectively.

We do not consider the cases where plants make multiple entries and exits between

t− 1 and t. Let Nt = St ∪ Et ∪ Xt. Applying Tornquist approximation, we can write

17



APGGt[t− 1, t] as follows.5

APGGt[t− 1, t] '
∑
i∈St

D̄v
it∆ lnV Ait −

∑
i∈St

D̄v
it

∑
k

s̄vikt∆ lnXikt

+
∑
i∈Et

Dit(1−
∑
k

sikt −
∑
j

sijt)−
∑
i∈Xt

Dit−1(1−
∑
k

sikt−1 −
∑
j

sijt−1)

'
∑
i∈St

∑
k

D̄it(gikt − s̄ikt)∆ lnXikt +
∑
i∈St

∑
j

D̄it(gijt − s̄ijt)∆ lnMijt︸ ︷︷ ︸
Reallocation

+
∑
i∈St

D̄it∆ lnωit︸ ︷︷ ︸
Technical efficiency

+
∑
i∈Et

Dit(1−
∑
k

sikt −
∑
j

sijt)︸ ︷︷ ︸
Entry

−
∑
i∈Xt

Dit−1(1−
∑
k

sikt−1 −
∑
j

sijt−1)︸ ︷︷ ︸
Exit

,

where D̄v
it = (Dv

it + Dv
it−1)/2, D̄it = (Dit + Dit−1)/2, s̄vikt = (svikt + svikt−1)/2, s̄ikt =

(sikt + sikt−1)/2 and s̄ijt = (sijt + sijt−1)/2 and ∆ is the first difference operator from

period t− 1 to t, that is, ∆xit = xit − xit−1.

Using the estimates of the production function (1), we compute APGGt[t − 1, t]

and its components as follows.

APGGt[t− 1, t] '
∑
i∈St

D̄v
it∆ lnV Ait −

∑
i∈St

D̄v
it(s̄

v
i`t∆`it + s̄vikt∆kit)

+
∑
i∈Et

Dit(1− sikt − si`t − simt)−
∑
i∈Xt

Dit−1(1− sikt−1 − si`t−1 − simt−1)

'
∑
i∈St

J∑
j=1

D̄it(β̂
j
` − s̄i`t)∆`it +

∑
i∈St

J∑
j=1

D̄it(β̂
j
k − s̄ikt)∆kit

+
∑
i∈St

J∑
j=1

D̄it(β̂
j
m − s̄imt)∆mit +

∑
i∈St

J∑
j=1

D̄it∆(ω̂it + ε̂it) (4)

+
∑
i∈Et

Dit(1− sikt − si`t − simt)−
∑
i∈Xt

Dit−1(1− sikt−1 − si`t−1 − simt−1).

5See Kwon et al. (2015) for the derivation of the formula.

18



B Appendix: Variable Construction

This section explains variable construction.

B.1 Gross Output

Let PQist denote the nominal value of gross output of plant i in sector s in time t.

We define PQist by the sum of shipments, revenues from repairing and fixing services,

and revenues from performing subcontracted work. We deflate PQist by the industry

specific gross output deflator (base year 2000) provided by JIP Database 2011. Let

Qist denote the real value of gross output of plant i in sector s in time t.

B.2 Intermediate Inputs

Let PMist denote the nominal value of intermediate inputs of plant i in sector s in

time t. We define PMist by the sum of raw material, fuel, electricity, and subcon-

tracting expenses for consigned production. We deflate PMist by the industry specific

intermediate input deflator (base year 2000) provided by JIP Database 2011. Let Mist

denote the real intermediate inputs.

B.3 Labor Inputs

We define labor inputs, Lit, by the number of employees.
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B.4 Capital Inputs

We construct the capital stock data for each plant by the perpetual inventory method.

First, we compute nominal investment, PIist, by

PIist = BKist+1 −BKist +Depreciationist,

where BKist and Depreciationist represent the book value of tangible fixed asset

(all tangible fixed asset less land) at the beginning of time t for plant i in sector s

and the depreciation amount of the tangible fixed asset in year t.6 Then, we deflate

PIist by the industry-specific investment deflator (base year 2000) provided by JIP

Database 2015. Let P I
st and Iist denote the industry-specific investment deflator and

real investment, respectively.

Next we construct the real value of capital stock, Kist, by the perpetual inventory

method. As the initial value of the capital stock, in 1986 or in the entry year of a

given plant, we use the book value of tangible fixed asset converted into the constant

price of 2000. Thus, Kist0i = BKist0i/P
I
st0i

, where t0i represent plant i’s entry year and

P I
st0i

is the industry-specific investment deflator. Then, using {Iist}ist, we construct

capital stock data for each plant as follows.

Kist = (1− δst−1)Kist−1 + Iist−1,

where δst−1 is the industry-time specific depreciation rate provided by JIP Database

2015, which is based on the US NIPA. If Kist is missing or negative, we reset Kist to

BKist/P
I
st.

B.5 Labor Cost

We define labor cost by total salaries and denote it by WList.

6Alternatively, we can use flow data on capital acquisition and removal to compute nominal
investment. But there are more missing values in those data.
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B.6 Capital Cost

We compute the capital cost for each plant by multiplying real capital stock by the

industry-specific nominal rental price of capital provided by JIP Database 2015. Let

RKist and PKS
st denote the capital cost and the nominal rental price of capital. Then,

RKist = PKS
st Kist.

B.7 Value Added

We compute value added, V Aist, by V Aist = PQist − PMist.

B.8 Real Value Added

We define the real value added, denoted by RV Aist, by RV Aist = Qist −Mist.

21



C Appendix: Tables

Table 1: Intermediate and Labor Cost Shares

Industry PMit
PQit

(
PMit
PQit

)
i

WLit
PQit

(
WLit
PQit

)
i

PMit
(PMit+WLit)

(
PMit

(PMit+WLit)

)
i

Meat products 2.442 1.963 7.018 5.84 1.621 1.552
Dairy products 2.038 1.873 4.917 4.137 1.326 1.305
Salted products 2.247 1.852 4.735 3.92 1.546 1.449
Bread 1.869 1.625 2.892 2.501 1.696 1.56
Pastries & cakes 2.437 2.137 3.418 2.976 1.719 1.611
Food & related prod. 2.336 2.001 3.568 3.067 1.664 1.546
Men’s & boy’s outer 5.992 4.618 3.591 3.058 5.188 4.334
Ladies & girls outer 8.227 6.206 3.123 2.577 6.821 5.324
Business & sport clothing 9.459 6.897 5.565 4.903 8.472 6.326
Knitted garments 8.167 6.002 5.118 4.373 6.917 5.286
Wooden furniture 2.128 1.822 3.163 2.746 1.558 1.457
Corrugated board boxes 1.692 1.487 2.714 2.351 1.301 1.266
Printing 2.664 2.212 3.285 2.874 1.968 1.831
Medical product prep. 5.419 4.283 9.283 7.9 1.899 1.702
Industrial plastic products 2.366 1.871 3.221 2.547 1.589 1.455
Mechanical rubber products 2.977 2.303 3.546 3.001 2.006 1.782
Concrete products 2.537 2.063 3.145 2.578 1.733 1.567
Construction-use metal prod. 2.792 2.163 5.014 3.911 1.695 1.541
Architectural metal prod. 3.414 2.386 5.361 4.289 2.08 1.865
Plate & sheet metal 2.532 2.017 3.539 2.978 1.916 1.727
Stamped & pressed metal 2.218 1.862 3.141 2.706 1.635 1.52
Semiconductor 2.713 2.07 4.083 2.946 1.93 1.715
Molds & dies 3.21 2.46 2.597 2.107 2.266 1.942
Relay switches etc 2.559 2.091 3.592 2.936 1.984 1.788
Equip. for engines 4.989 3.686 6.556 5.302 4.028 3.341
Home comfort 4.245 3.156 6.631 5.237 3.016 2.614
Video recording equipment 7.378 4.984 9.227 7.048 5.609 4.146
Electric audio equipment 7.951 5.362 7.923 6.091 6.306 4.478
Resistors etc 6.757 4.4 6.081 4.649 5.164 3.727
Motor vehicles parts 3.047 2.458 4.651 3.848 2.148 1.921

Notes. Each entry is the 90th-10th percentile ratio of the corresponding variable. The sample is
restricted to the observations with non-missing (yit, `it, kit, mit, w`it) and 30+ employees.
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Table 2: Estimates of Production Function (1)

Estimation by Classification

GNR Random Coefficients Model

J = 1 J = 3 J = 5

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 4 Type 5

βjm 0.198 0.084 0.287 0.582 0.062 0.142 0.281 0.527 0.697

βj` 0.535 0.786 0.580 0.335 0.873 0.762 0.625 0.387 0.213

βjk 0.318 0.056 0.167 0.039 0.061 0.058 0.147 0.088 0.034

βjm + βj` + βjk 1.050 0.926 1.034 0.956 0.995 0.962 1.053 1.001 0.944

βjk/β
j
` 0.594 0.071 0.287 0.117 0.070 0.076 0.236 0.228 0.158

πj 1.000 0.289 0.304 0.407 0.168 0.136 0.257 0.292 0.147

No. of Obs. 15627

No. of plants 1297

Notes. Knitted Garment. The sample is restricted to the observations with 1. non-missing (yit,
`it, kit, mit, w`it); 2. 30+ employees; 3. yit, kit, mit, and PMit/PYit between the 0.5th and the
99.5 percentiles; 4. more than 4 periods in the sample (between the first entry/exit).

Table 3: Descriptive Statistics By Type When J = 3

Type 1 Type 2 Type 3

yit 9.584 10.080 11.099

( 0.555 ) ( 0.706 ) ( 0.706 )

mit 7.279 8.871 10.509

( 0.944 ) ( 0.969 ) ( 0.791 )

`it 3.956 3.996 4.069

( 0.410 ) ( 0.416 ) ( 0.477 )

kit 8.561 9.084 9.740

( 1.171 ) ( 1.058 ) ( 1.090 )

simt 0.135 0.351 0.606

( 0.103 ) ( 0.148 ) ( 0.118 )

si`t 0.637 0.457 0.227

( 0.235 ) ( 0.190 ) ( 0.113 )

sikt 0.069 0.064 0.046

( 0.081 ) ( 0.059 ) ( 0.052 )

Notes. Knitted Garment. Each entry refers to the average of the corresponding variable. The
standard deviation is in parentheses.
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Table 4: Estimates of Production Function (1)

Estimation by Classification

GNR Random Coefficients Model

J = 1 J = 3 J = 5

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 4 Type 5

Std. Dev. ω̂it + α̂jt 1.078 0.767 0.584 0.265 0.897 0.410 0.579 0.257 0.185

Std. Dev. ε̂it 0.831 0.697 0.458 0.204 0.793 0.332 0.468 0.201 0.120

Corr(ε̂it, ε̂it−1) 0.919 0.762 0.683 0.702 0.732 0.654 0.647 0.585 0.587

No. of Obs. 15627

No. of plants 1297

Notes. Knitted Garment. The sample is restricted to the observations with 1. non-missing (yit,
`it, kit, mit, w`it); 2. 30+ employees; 3. yit, kit, mit, and PMit/PYit between the 0.5th and the
99.5 percentiles; 4. more than 4 periods in the sample (between the first entry/exit).

Table 5: Estimates of Production Function (1)

Estimation by Classification

GNR Random Coefficients Model

J = 1 J = 3 J = 5

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 4 Type 5

βjm 0.412 0.198 0.504 0.686 0.108 0.356 0.481 0.616 0.743

βj` 0.429 0.618 0.419 0.226 0.598 0.608 0.413 0.307 0.171

βjk 0.242 0.333 0.130 0.089 0.388 0.131 0.156 0.103 0.076

βjm + βj` + βjk 1.084 1.149 1.053 1.001 1.094 1.094 1.050 1.026 0.990

βjk/β
j
` 0.564 0.539 0.310 0.395 0.649 0.215 0.377 0.335 0.441

πj 1.000 0.226 0.367 0.407 0.088 0.197 0.205 0.303 0.207

No. of Obs. 52404

No. of plants 3449

Notes. Motor vehicles parts and accessories. The sample is restricted to the observations with 1.
non-missing (yit, `it, kit, mit, w`it); 2. 30+ employees; 3. yit, kit, mit, and PMit/PYit between the
0.5th and the 99.5 percentiles; 4. more than 4 periods in the sample (between the first entry/exit).
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Table 6: Descriptive Statistics By Type When J = 3

Type 1 Type 2 Type 3

yit 11.321 12.146 12.833

( 1.279 ) ( 1.123 ) ( 1.166 )

mit 9.977 11.474 12.454

( 1.730 ) ( 1.181 ) ( 1.195 )

`it 4.301 4.553 4.819

( 0.738 ) ( 0.837 ) ( 0.920 )

kit 10.486 11.462 11.776

( 1.702 ) ( 1.356 ) ( 1.457 )

smit 0.336 0.531 0.700

( 0.217 ) ( 0.118 ) ( 0.099 )

s`it 0.363 0.226 0.153

( 0.268 ) ( 0.150 ) ( 0.082 )

skit 0.092 0.085 0.061

( 0.125 ) ( 0.119 ) ( 0.063 )

Notes. Motor vehicles parts and accessories. Each entry refers to the average of the corresponding
variable. The standard deviation is in parentheses.

Table 7: Estimates of Production Function (1)

Estimation by Classification

GNR Random Coefficients Model

J = 1 J = 3 J = 5

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 4 Type 5

βjm 0.544 0.342 0.540 0.658 0.197 0.494 0.551 0.623 0.706

βj` 0.294 0.506 0.297 0.235 0.561 0.334 0.288 0.260 0.204

βjk 0.173 0.330 0.187 0.098 0.363 0.221 0.174 0.124 0.089

βjm + βj` + βjk 1.011 1.178 1.023 0.991 1.121 1.049 1.013 1.008 0.999

βjk/β
j
` 0.588 0.651 0.629 0.418 0.646 0.662 0.603 0.477 0.437

πj 1.000 0.116 0.418 0.467 0.040 0.230 0.228 0.303 0.200

No. of Obs. 11441

No. of plants 744

Notes. Corrugated Board Boxes. The sample is restricted to the observations with 1. non-missing
(yit, `it, kit, mit, w`it); 2. 30+ employees; 3. yit, kit, mit, and PMit/PYit between the 0.5th and
the 99.5 percentiles; 4. more than 4 periods in the sample (between the first entry/exit).
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Table 8: Average APG Over 1987-2008

APG APG (Stayer) Net Entry

Knitted garments -2.2% -0.8% -1.5%

Motor vehicles parts and accessories 2.8% 3.5% -0.6%

Corrugated board boxes -0.8% 0.2% -1.0%

Notes. The sample is restricted to the observations with 1. non-missing (yit, `it, kit, mit, w`it);
2. 30+ employees; 3. yit, kit, mit, and PMit/PYit between the 0.5th and the 99.5 percentiles; 4.
more than 4 periods in the sample (between the first entry/exit).
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D Appendix: Figures

Figure 1: Distribution of Intermediate Input Share
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Figure 2: Distribution of Intermediate Input Share
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Figure 3: Distribution of Intermediate Input Share
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Figure 4: Number of Plants Over Time
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Notes. Knitted Garment. The line labelled ‘All’ uses the sample of all plants (reporting yit at
least) in the Knitted Garment industry, while ‘Large’ restricts the sample to the plants with 30+
employees and non-missing input/output/cost data.

Figure 5: Changes in Industry-level Output and Employment
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Notes. Knitted Garment. The line labelled ‘All’ uses the sample of all plants in the given in-
dustry, while ‘Large’ restricts the sample to the plants with 30+ employees and non-missing in-
put/output/cost data.
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Figure 6: APG and Its Components
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Notes. Knitted Garment. The sample is restricted to the one used in the production function
estimation.

Figure 7: PL Decomposition of APG
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Notes. Knitted Garment. The sample is restricted to the one used in the production function
estimation.
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Figure 8: Reallocation Contribution by Input Factors
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Notes. Knitted Garment. The sample is restricted to the one used in the production function
estimation.
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Figure 9: Number of Plants Over Time
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Notes. Motor vehicles parts and accessories. The line labelled ‘All’ uses the sample of all plants
in the given industry, while ‘Large’ restricts the sample to the plants with 30+ employees and
non-missing input/output/cost data.

Figure 10: Changes in Industry-level Output and Employment
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Notes. Motor vehicles parts and accessories. The line labelled ‘All’ uses the sample of all plants
in the given industry, while ‘Large’ restricts the sample to the plants with 30+ employees and
non-missing input/output/cost data.
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Figure 11: APG and Its Components
-.

0
5

0
.0

5
.1

.1
5

A
P

G

1985 1990 1995 2000 2005 2010
Year

APG APG (stayer) Net Entry

-.
1

0
.1

.2
A

P
G

 (
S

ta
y
e

rs
)

1985 1990 1995 2000 2005 2010
Year

APG (stayer) Value added Labor Capital

Notes. Motor vehicles parts and accessories. The sample is restricted to the one used in the
production function estimation.

Figure 12: PL Decomposition of APG
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Notes. Motor vehicles parts and accessories. The sample is restricted to the one used in the
production function estimation.
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Figure 13: Reallocation Contribution by Input Factors
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Notes. Motor vehicles parts and accessories. The sample is restricted to the one used in the
production function estimation.
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Figure 14: APG and Its Components
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Notes. Corrugated board boxes. The sample is restricted to the one used in the production function
estimation.

Figure 15: PL Decomposition of APG
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Notes. Corrugated board boxes. The sample is restricted to the one used in the production function
estimation.
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Figure 16: Reallocation Contribution by Input Factors
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Notes. Corrugated board boxes. The sample is restricted to the one used in the production function
estimation.
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