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Abstract 

 
In this paper, we propose a functional linear regression model in the space of probability density functions. We 
treat a cross-sectional distribution of individual earnings as an infinite dimensional random variable. By an 
isometric transformation of density functions, the constrained nature of density functions is explicitly taken into 
account. Then, we introduce a regression model where the income distribution is a dependent variable. 
Asymptotic results for the significance test statistics of the coefficients are obtained. Applying this method to 
Japanese data, we figure out a functional relationship of the income distribution with economic growth. It is 
found that the change in income distribution associated with economic growth is characterized by a 
disproportional increase in the lower income class, reduction of the middle income earners, and irresponsiveness 
of the higher income earners. Since the information that the income distribution offers is preserved as a density 
function, this method enables us to obtain implications ignored by the usual statistical ones. 
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1 Introduction

How does the shape of the distribution of income change when an economy falls into recession?

Does economic growth contribute to reduce inequality? These questions have been one of the oldest

subjects of economic inquiry, which are relevant for economists as well as policy makers. In fact,

since at least the seminal paper by Kuznets (1955), there have been a huge volume of studies

examining the relationship between the income distribution and economic growth. (e.g., Ahluwalia

(1976), Alesina and Rodrik (1994), Barro (2000), and Galor and Moav (2004), just to name a few).

The empirical methodology used in this line of research is regression-based models whose dependent

variable is an inequality index (e.g., the Gini coefficient or the top 1% income share) or parameters

characterizing a parametric distribution, though the choice varies from author to author. However,

the use of a particular index may yield misleading results because it captures only one of the

aspects of the income distribution and, therefore, the implications of the analysis may depend

on the choice of the index. Inequality indexes do not necessarily display the same behavior and

the interdependence among them is not clear, making the interpretation difficult and ambiguous.1

Likewise, the parametric approach of assuming a functional form has similar problems because the

choice of a parametric model is equivalent to imposing restrictions on the behavior of the income

distribution. In other words, the effects of macroeconomic variables on the income distribution

estimated in this approach are, at least partially, the consequence of the assumed functional form.

To overcome these deficiencies, we propose a functional linear regression model whose dependent

variable is the income distribution. By treating the income distribution as an infinite-dimensional

random variable, we figure out its functional relationship with economic growth. It enables us to

extract the influence of economic growth on the income distribution without assuming a parametric

distribution. This approach is advantageous because the information that the distribution has is

not reduced to a small number of indexes or parameters but fully used in estimation.

The idea of dealing with probability density functions as random variables is not new in the

existing literature. For example, Kneip and Utikal (2001) apply functional data analysis (FDA,

see Section 2) to income and age distributions, and decompose them into principle components.

1For example, Acemoglu and Robinson (2015) shows that the top 1% share of income behaves quite differently
from other measures of inequality in the cases of the South Africa and Sweden. They write, “the share of national
income going to the top 0.1 percent or top 1 percent can give a distorted view of what is actually happening to
inequality more broadly” (p.16).
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Park and Qian (2012) propose a linear regression model where both dependent and explanatory

variables are density functions. Chang et al. (2016) also develop functional principal component

analysis (FPCA) and an unit roots test to analyze the nonstationarity in the time series of density

functions. These studies assume that the space of probability density functions, denoted by F , is

a proper subset of the space of square integrable functions, denoted by L2, and treat a density

function as an element of the L2 space. However, recent studies, e.g., Delicado (2011), show

that this approach is problematic. This is because elements in F have additional constraints, i.e.,∫
f(x)dx = 1 and ∀x, f(x) ≥ 0 for f ∈ F . The behavior of density functions is constrained in

F rather than in the L2 space, which is ignored in this approach. It means that we seek the true

value in the much larger space L2 and, therefore, the accuracy of the estimation is substantially

reduced. In fact, using artificial data, Delicado (2011) shows that this approach leads to results

qualitatively different from the true model. In this paper, we take a different approach in that the

space F is transformed based on the results given by Egozcue et al. (2006) and van den Boogaart

et al. (2010, 2014). By this transformation, the two constraints are incorporated and the Hilbert

structure is introduced into F . Based on this structure, we introduce a functional linear regression

model and develop a statistical method to deal with a random variable in F .

We then apply this method to Japanese data and figure out the statistically significant relation-

ship between the income distribution and economic growth, showing how the shape of the income

distribution changes according to economic growth. In particular, since we can explicitly reveal the

behavior of the density function, we can find the underlying behavior of the income distribution

behind the variation in inequality indexes. Indeed, our analysis of Japanese income data shows

that an increase in the Gini coefficient associated with economic growth is caused by the variation

of the left half of the income distribution corresponding to the low and middle-income earners. In-

terestingly, the right half of the probability distribution is stable with respect to economic growth.

A similar pattern can be observed when we decompose our data by industry. This striking feature

of the income distribution, which has not been addressed in the literature, can be revealed only

by our method. Put differently, our method and findings can be seen as a new test for theoretical

models explaining inequality and economic growth because the true model must approximate not

only the behavior of a few indexes but also that of the income distribution. In this sense, our

method gives a hint as to what characteristics future works should aim to explain.
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The remainder of this paper is organized as follows. Section 2 discusses the structure of the

space of density functions and introduces the Bayes space. Section 3 introduces a functional linear

regression model in the Bayes space and gives our asymptotic results. Section 4 conducts simulation

studies. Section 5 provides results of our implementation. Section 6 concludes. Mathematical

concepts and a proof are collected in the Appendix.

2 Bayes Space

Over the last decades, a new statistical methodology called FDA has established itself as an

emerging area of statistics. It offers new effective tools to deal with samples of random functions,

developing functional versions for a wide range of standard statistical models.2 Previous studies

such as Kneip and Utikal (2001), Park and Qian (2012), and Chang et al. (2016) can be seen

as attempts to apply FDA to probability density functions. In these studies, density functions

are treated as elements of the L2 space and the statistical methods developed for L2 functions

are applied to density functions. However, this approach has serious problems. While functions

are assumed to be L2 functions in FDA, density functions f have two additional constraints:∫
f(x)dx = 1 and f(x) ≥ 0, for all x. The direct application of FDA to probability density

functions ignores this constrained nature.3 There is no guarantee that the estimation of a density

function becomes a density function; an estimated density function may take negative values, i.e.,

f̂(x) < 0 for some x. In fact, using artificial data, Delicado (2011) compares the prediction by

FPCA used in Kneip and Utikal (2001) and a true model from which the artificial data are drawn

in order to examine the accuracy of FPCA. They show that the prediction by FPCA is not only

quantitatively but also qualitatively different from the true model. Thus, the two constraints must

be incorporated in estimation to overcome these difficulties.

In the finite-dimensional case, the statistical method known as compositional data analysis has

2For review, see Ramsay and Silverman (2005), Ferraty and Vieu (2006), and Horváth and Kokoszka (2012).
3In the previous studies above, a centered density function is defined as deviation from the mean: wt ≡ ft −Eft.

Then, wt is treated as a random variable taking value in the space Hw:

Hw ≡
{
w
∣∣ ∫

K

w(x)dx = 0,

∫
K

w2(x)dx < ∞
}

where K is a compact support. However, due to the nonnegativeness of density functions ft, only random functions
wt in Hw such that ft(x) = wt(x) + Eft(x) ≥ 0 for all x are allowed. Thus, the space in which the random function
wt takes values is much smaller than Hw.
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been developed to deal with these constraints, where the Aitchison geometry is introduced into the

space of compositional data.4 Since the seminal paper by Egozcue et al. (2006), subsequent papers

(e.g., van den Boogaart et al. (2010, 2014)) generalize this geometry to the space of probability

density functions called the Bayes space, incorporating the constraints of density functions. Based

on their results, Hron et al. (2016) reformulate FPCA for density functions. In line with these

works, we consider a functional linear regression model in the Bayes space in this paper. Before

introducing the regression model, we review the Bayes space and its properties used in later sections.

Let λ be the Lebesgue measure on a measurable space (I, B(I)), where I ≡ [a, b] ⊂ R and

B(I) is σ-algebra of I. We define the Bayes space B as the set of measures µ equivalent to λ,

i.e., λ(A) = 0 ⇔ µ(A) = 0, ∀A ∈ B(I). By the Radon-Nikodým theorem, an element of B is

represented by its density fµ = dµ/dλ. We introduce an equivalence relation called B -equivalence

denoted by =B : for fµ, fν ∈ B , fµ =B fν iff ∃c > 0 such that fµ(x) = c · fν(x), a.e. Here, we use

the convention c · (+∞) = +∞. Then, we define the perturbation and powering, denoted by ⊕ and

⊙, respectively, as follows:

(f ⊕ g)(x) =B f(x)g(x), (α⊙ f)(x) =B (f(x))α, a.e.

As we will discuss later, these operations play a role of the addition of two elements and the

multiplication by α ∈ R, respectively.

Next, we define a subset of B :

Definition 1 (B2 space of measures)

B2 ≡
{
f ∈ B |

∫
I
| ln f(x)|2dx < +∞

}
.

An inner product in B2 is defined as follows:

Definition 2 (Inner product in B2)

⟨f, g⟩B2 =
[ 1

2η

∫
I

∫
I
ln
f(x)

f(y)
ln
g(x)

g(y)
dxdy

]

4For compositional data analysis, see, e.g., Aitchison (1986).
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where η = b− a.

The next definition is a transformation of density functions.

Definition 3 (Centered log-ratio (clr) transformation) For f ∈ B2,

clr(f)(x) ≡ fc(x) ≡ ln f(x)− 1

η

∫
I
ln f(z)dz.

With these setups, Egozcue et al. (2006) and van den Boogaart et al. (2014) show that B2 is a

separable Hilbert space with ⊕, ⊙ and the inner product ⟨·, ·⟩B2 . The important point is that B2

is isometric to the Hilbert space L2
0 ≡ {f ∈ L2 :

∫
I f(x)dx = 0} by the clr transformation:

⟨f, g⟩B2 = ⟨fc, gc⟩2 ≡
∫
I
fc(z)gc(z)dz (1)

In other words, elements in B2 are transformed into a more tractable space L2
0 with the structure

preserved. Note that the clr transformation preserves the linearity:

clr((α⊙ f)⊕ g) = αclr(f) + clr(g)

Thus, the perturbation and powering defined in the B2 space correspond to the usual addition

and multiplication in the L2
0 space, respectively. Moreover, if {ψi}i=0,1,... with ψ0(x) = const. is

an orthonormal basis in L2, then {φi ≡ exp(ψi)}i=1,2,... is an orthonormal basis in B2. Namely, a

density function f whose logarithm is expressed by log f =
∑∞

k=0 αkψk with
∑∞

k=0 |αk|2 < +∞,

has the following representation:5

f =B ⊕∞
k=1αk ⊙ φk, αk = ⟨f, φk⟩B2

Note that
∫
I ψi(x)dx = 0 for i ≥ 1 because ψ0 is a constant function. Since the clr transformation

is an one-to-one mapping, clr has its inverse, i.e., clr−1(h) =B exp(h) for h ∈ L2
0. Using these

5⊕k
j=1zj is the summation of zj , that is,

⊕k
j=1zj = z1 ⊕ z2 ⊕ ...⊕ zk︸ ︷︷ ︸

k

6



structure of B2, we build a functional linear regression model in this space.

Remark. From equation (1), the induced distance dB2(f, g) in B2 can be explicitly written as

follows:

dB2(f, g) ≡
√

⟨f ⊖ g⟩B2 =
√

⟨fc − gc⟩2 =
[ 1

2η

∫
I

∫
I

(
ln
f(x)

f(y)
− ln

g(x)

g(y)

)2
dxdy

]1/2
. (2)

This distance has an important connection with parametric estimation. As a family of parametric

distributions, consider the exponential family (denoted by ExpI ). Delicado (2011) shows that the

distance for two elements in ExpI is equivalent to the Euclidean distance between parameter values:6

if f, g ∈ ExpI ,

dB2(f, g) = ∥θf − θg∥p,

where ∥ · ∥p is the usual Euclidean norm and θf and θg are parameters of f and g, respectively.

Thus, the distance dB2(·, ·) can be seen as a natural generalization of ∥·∥p defined in the parametric

space.

3 A Functional linear model in B2

Based on the structure discussed above, we introduce a linear regression model in the B2 space.

In what follows, we consider the following functional linear regression model with a functional

response f in B2:

f = β0 ⊕⊕k
j=1(xj ⊙ βj)⊕ ϵ, (4)

where we assume that x ∈ Rk, βj , ϵ ∈ B2, E[ϵ] = λ, and {ϵ} and {x} are two i.i.d. sequences and

independent of each other. The full rank of ΣX = E[xTx] are assumed. Note that the Lebesgue

6Density functions of the exponential family ExpI are given by the following form:

f(x;γ) = c(γ)g(x) exp(γTT(x)), γ,T ∈ Rp. (3)

where γ is a parameter and c(γ) is a normalization constant. Many of the commonly used distributions such as
the normal, log-normal, gamma, and beta are included in ExpI . Delicado (2011) shows that there exists a linear
transformation matrix M such that θ = γM1/2 and dB2(f, g) = ∥θf − θg∥p.
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measure λ is the neutral element in B2, i.e., g ⊕ λ = g for g ∈ B2. The meaning of equation (4)

is essentially the same as the usual regression model; the dependent variable f is regressed on the

explanatory variables x and the constant. For the convenience, set y ≡ clr(f), e ≡ clr(ϵ), and

bj ≡ clr(βj).

An important point in our estimation is the isometry from B2 to L2
0. Namely, an estimate

β̂ minimizing the distance dB2(f, β0 ⊕ ⊕k
j=1(xj ⊙ βj)) is equivalent to the least square estimate

minimizing d2(yi, b0 +
∑k

j=1 xijbj), where d2 is the usual L2-distance. Because of this property,

we can deal with the regression model (4) in B2 as if it were defined in L2
0, which is easier to

handle. Thus, in what follows, we consider a separable Hilbert space L2
0, instead of B2. By the clr

transformation, equation (4) can be written in matrix form:

y(t) = Xb(t) + e(t) = X1b1(t) +X2b2(t) + e(t)

where y = {yi}i=1,...,N and N is sample size. For later purpose, X is decomposed into two part,

X1 and X2, and X2 has L columns. Note that the least square estimate b̂ ≡ (XTX)−1XTy ∈ L2
0

because the estimate is a linear combination of elements of L2
0. Since the clr transformation is

invertible, coefficients of interest in B2 are recovered by clr−1.

In the remainder of this section, we present our method to test the significance of the coefficients.

We begin with the definitions of the covariance operator Ce : L
2
0 → L2

0 and the covariant function

c : [a, b]2 → R as follows:

Ce ≡ E[⟨ei, ·⟩ei], c(t, s) ≡ E[ei(t)ei(s)].

It should be noted that Ce(z) can be written as

Ce(z)(t) =

∫
c(t, s)z(s)ds.

The operator Ce is determined by c. The Mercer lemma (see, e.g., p.24 in Bosq (2000)) shows that
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if c(t, s) is continuous over [a, b]2, then c(t, s) can be expressed in the following form:7

c(t, s) =
∞∑
n=1

λnφn(t)φn(s), (5)

where {λn} is a decreasing sequence of positive values and {φn} is a sequence of continuous functions

such that

∫
φn(s)φm(s)ds = δn,m, n,m ∈ N.

Note that
∫
φn(s)ds = 0 for positive λn.

8 Thus ,the {φn} can be extended to form an orthonormal

basis in L2
0 by adding an orthonormal basis in the subspace complement to the subspace spanned

by the original {φn}.

With these setups, we have the following proposition:

Proposition 4 Set Λ ≡
∑N

i=1 ∥yi(t) − x1,ib̂1∥22 −
∑N

i=1 ∥yi(t) − xib̂∥22. Under the null hypothesis

that b2 = 0, Λ
d−→

∑∞
n=1 λnχ

2
n(L), where χ

2
n(L) is an i.i.d. chi-squared random variable with L

degrees of freedom.

Proof. See the Appendix.

Using this proposition, we can test the significance of our coefficients. We also use the bootstrap

method to numerically calculate the distribution of Λ under the null hypothesis.9 We carry out the

so-called residual resampling method here. The first step is to calculate the coefficient b̂1 under

the null hypothesis: the regression of y on x1. We obtain the estimates ŷ = x1b̂1 and the residuals

e0 from this fit. Next, data are simulated N times by

y∗ = x1b̂1 + e∗,

7For simplicity, the continuity of c(t, s) is assumed here. Since the discontinuity of probability density functions
is not our focus, this assumption is innocent.

8Now assume conversely, that is, that ∃n, λn > 0 and
∫
φn(s)ds ̸= 0. Since

∫
c(t, s)ds =

∫
E[ei(t)ei(s)]ds = 0,

the Mercer lemma implies that 0 =
∑∞

m=1 amφm, where am ≡ λm

∫
φm(s)ds. Since an ̸= 0, we have

φn =

∑∞
m=1,m ̸=n amφm

an
.

This means that {vn} are not orthogonal, leading to contradiction.
9Although a full understanding of the bootstrap application to functional models has not been reached yet, this

subject has been discussed in the statistical literature. For example, see Cuevas et al. (2006).
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where the N errors are sampled from the residuals e0. Finally, we calculate Λ in Proposition 4 from

bootstrap samples (y∗1,x1), (y
∗
2,x2), ..., (y

∗
N ,xN ). From these replicates of Λ, the one-sided p-value

can be obtained.

4 Simulations

In this section, we explore the properties of our functional linear regression model developed

above through a simulation study using the exponential family ExpI .

4.1 Functional linear regression in the exponential family

In this subsection, we perform the regression analysis of simulated densities and compare the

results with those of the usual FDA. The usual FDA means the direct application of functional

linear regression analysis in L2 to density functions, that is, density functions are assumed to be

in L2 and a functional linear model in L2 is considered (the least squares estimate in L2 is used).

To this end, we use the exponential family ExpI . As noted in Section 2, the Bayes space has an

important relation with the exponential family.10 Moreover, the density function (3) in ExpI can

be written as follows:

f(x;γ) =B g(x)⊕⊕k
j=1

[
γj ⊙ exp(Tj(x))

]

Based on this structure, we generate pseudo samples following a linear model. That is, by viewing

γ and T as random variables and coefficients, respectively, we generate n pseudo samples following

a model f = β0 ⊕⊕k
j=1(xj ⊙ βj)⊕ ϵ, where xj = γj and βj = exp(Tj). {ei}i=1,...,n are i.i.d. random

variables generated from an infinite-dimensional Gaussian distribution.11 By regressing the density

functions on the random parameters, we estimate the coefficients by each method.

Here, we consider the following two cases:

10For further information, see, e.g., van den Boogaart et al. (2010).
11An infinite-dimensional Gaussian random variable Z admits the following expansion:

Z
d
=

∞∑
n=1

√
λnNnφn, (6)

where Nn is an independent standard Gaussian random variable. See the proof in the Appendix. Here, we fix
√
λn

to be 4/3 ∗ 10−2 and use trigonometric series without the constant function as φn, and the sum is truncated up to
its first 20 terms.
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- Set 1: Lognormal distribution, fLognormal
i (x) = 1√

2πσx
exp(− ln2(x)

2σ2
i
). For simplicity, we set si =

1/σ2i . We note that the lognormal distribution corresponds to a 1-parametric exponential family

with γ1 = s, and T1(x) = − ln2(x). We first generate ri from an uniform distribution over [−1, 4]

and put si = exp(ri).

- Set 2: Gamma distribution, fGamma
i,j (x) =

θ
κi
j xκi−1 exp(−xθj)

Γ(κi)
. The gamma distribution corresponds

to a 2-parametric exponential family with γ1 = κ, γ2 = θ, T1(x) = ln(x) and T2(x) = −x. We

let the explanatory variables κi and θj drawn from uniform distributions over the domain [1.7, 4.5]

and [2.2, 5.0], respectively.

Adding infinite-dimensional Gaussian random variables to these densities, simulated densities to

be used as the dependent variable f in the models are obtained.

Figure 1 shows the results on Set 1. As shown in Figure 1 (b), estimated densities by our

method reproduce the original densities shown in Figure 1(a). On the other hand, FDA method

reports very different results, as shown in Figure 1(c). Moreover, estimated densities in Figure 1(c)

exhibit negative values for some x. This is caused by the fact that the sample space considered

in FDA is the L2 space and much larger than the Bayes space, even though the behavior of the

density function is restricted within the space of density functions by definition. Namely, functions

unnecessary for estimation are included in the sample space considered in FDA. Because of this,

FDA is not guaranteed to yield proper density funcions and shows poor accuracy.

Figure 2 reports the results on Set 2, and the implications are essentially same as in Figure 1.

As expected, while estimated densities by our method exactly reproduce the original ones, densities

estimated by FDA show a very different picture and exhibit negative values. Especially when the

income distribution is discussed as in the next section, the values of the density function are close to

0 for lower and higher incomes, and therefore, this problem is inevitable. In contrast, this problem

can be avoided in our method because density functions are dealt within the space of the density

functions.

4.2 Finite sample properties

In this subsection, we examine the finite sample properties of Proposition 4. Here, we use

the lognormal distribution as a true model: We generate n pseudo samples following f = β0 ⊕

11



0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

z

D
en

si
ty

(a) Original densities.
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(b) Estimated densities by our method.
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(c) Estimated densities by FDA.

Figure 1: Lognormal distribution. In panel (a), densities of the lognormal distribution fi(x) =
1√

2πσx
exp(− ln2(x)

2σ2
i
) with 1/σ2i = exp(−1.2+0.2i) for i = 1, ..., 26 are shown. Estimated densities in

(b) and (c) means f̂ based on the estimated coefficients by each method.
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(b) Estimated densities by our method.
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(c) Estimated densities by FDA.

Figure 2: Gamma distribution. In panel (a), densities of the gamma distribution fGamma
i,j (x) =

θ
κi
j xκi−1 exp(−xθj)

Γ(κi)
with κi = 1.5 + 0.3i, θj = 2 + 0.3j, i, j = 1, ..., 10 are shown.
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(x1 ⊙ β1) ⊕ ϵ, where x1 = 1/σ2 and βj = exp(− ln2(x)). We set x1,i = exp(ri), where ri is drawn

from an uniform distribution over [0, 2]. {ei}i=1,...,n are i.i.d. random variables generated from an

infinite-dimensional Gaussian distribution.12 Under these settings, we work on the null hypothesis

H1
0 : β1 = λ, which is equivalent to b1 = 0 if the regression model is expressed in the L2

0 space, i.e.,

y = b0 + b1x + e. This procedure is repeated 1000 times and we count the number of rejection.

Thus, the percentage of rejections under H1
0 gives empirical power of our test.

For empirical size of our test, we generate n pseudo samples with β1 = λ. x and ϵ are the same

as before and the same procedure is repeated. The null hypothesis under these settings is denoted

by H2
0 . The percentage of rejections gives empirical size of our test.

Both results are summarized in Table 1. We can see that almost all empirical sizes are close to

the nominal values and approaches to them as N increases. It also suggests that even small sample

sizes, e.g., N = 25, 50, show good power for our test in our settings.

Table 1: Empirical power and size. α is nominal size. All figures are in percentage of rejections.
n = 25 n = 50 n = 100 n = 500

α 1 5 10 1 5 10 1 5 10 1 5 10
H1

0 : 47.6 74.8 86.1 96.5 99.2 99.7 100 100 100 100 100 100
H2

0 : 0.0 2.8 8.1 .3 2.9 8.9 .7 4.4 8.8 .8 4.5 10.4

5 Implementation

We apply our statistical method to find a functional relationship between the income distribution

and economic growth. Here, we use GDP growth rate as an indicator of economic growth. Since

the information that the income distribution is not reduced to a few variables but preserved as a

density function, our analysis is expected to reveal the relationship in more detail than by the usual

regression analysis. Indeed, as we will see in the following, there is a striking feature of the behavior

of the income distribution associated with economic growth, which has not been addressed in the

economic literature.

12Infinite-dimensional Gaussian random variables are generated in the same manner as in the previous section,
except

√
λn = 2/3 in equation (6).
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5.1 Data Set

The data set used in our analysis is micro data from the Basic Survey on Wage Structure

(BSWS) in Japan. The BSWS is a business establishment survey conducted annually by the

Japanese government. Although the survey started in 1948, the data used in our analysis cover the

period 1989–2014 due to data accessibility. The survey is conducted as of June of each year and

includes monthly income before tax of individual workers including/excluding overtime payment.

Regarding the bonus payment, the total bonus payment between 1 January and 31 December in

the previous year is included in this survey. In addition to income, this survey provides us detailed

information on individual workers such as age, sex, type of workers, working days/hours as well as

on the establishment’s attributes such as industry. In our analysis, we focus on ordinary workers’

incomes including overtime and bonus payment. In BSWS, ordinary workers are defined as workers

“to whom general scheduled working hours are applied,” which exclude part-time workers whose

“scheduled working hours a day or a week are less than those of general workers.” Samples are

drawn from almost all regions and industries except agriculture. A unique feature of this survey

is its size: the number of samples is approximately 1.3 million workers (0.9 million of ordinary

workers) per year. This is useful to our analysis because we have to estimate density functions

from the micro data before carrying out our method. The huge size of data makes the estimation

error negligible.

Since monthly income in June and annual bonus payment are recorded, income used in our

analysis is defined as monthly income+(1/12)∗bonus payment.13 Relative income denoted by z is

defined as income divided by average income, i.e., z = income
avg. income , which enables us to ignore price

fluctuations and to focus on the change of the shape of the income distribution.14 Fig 3 is a plot of

estimated density functions of relative income z for 1989–2014, where the domain of z is restricted

to 0.2 ≤ z ≤ 2.8.15 Here, kernel density estimation with the Gaussian kernel and Silverman’s rule of

thumb for the choice of the bandwidth is employed. Since density functions are treated as random

variables taking values in the space of probability density functions, each density function shown

in Figure 3 is a random sample fi in equation (4).

13Exclusion of bonus payment makes no substantial change.
14Relative income is also used in the existing literature, e.g., Kneip and Utikal (2001).
15This excludes the top 1% and the bottom 2% of ordinary workers. This is done because the accuracy of the

kernel density estimation is reduced by the scares of samples in the regions.
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Figure 3: Density functions in 1989–2014.

5.2 Aggregate income distribution

First, treating the income distributions of all ordinary workers as a dependent variable, we

estimate the effect of economic growth on the income distribution. Our regression model is as

follows:

f = β0 ⊕ (x1 ⊙ β1)⊕ (x2 ⊙ β2)⊕ ϵ, (7)

where x1 is the annual real GDP growth rate. x2 is a dummy variable; 0 for the years 1989-2004, 1

for others, which is included to control the redesign of the survey in 2005.16 Taking into account a

time-lag in wage adjustments and the fact that this survey is conducted as of June of each year, we

choose the GDP growth rate in the previous fiscal year.17 Summary statistics of the GDP growth

rates are given in Table 2.

We then estimate the coefficient b̂1 = clr(β̂1), which is plotted in Figure 4(a). Using this

estimate, we calculate ȳ = b̂0 + x̄1 · b̂1 and ŷ± = ȳ ± 2σ1 · b̂1, where x̄1 and σ1 are the mean

16For the purpose of getting more detailed information on non-regular workers, some appellations and questions
asked in the survey were changed in 2005. Although the definition of ordinary workers remains the same, several
studies have pointed out that this change causes a discontinuity between 2004 and 2005. See e.g., Lise et al. (2014).

17The time series of GDP are obtained from OECD data.
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Table 2: Summary statistics of the GDP growth rate (%).
♯ of Obs. Mean Std. Dev. Min Max

26 1.54 2.54 -5.53 7.15

and the standard deviation of x1, respectively. ȳ and ŷ± are shown in Figure 4(b). The inverse

transformation clr−1 of ȳ and ŷ±, i.e., probability density functions, are shown in Figure 4(c).

Next, we carry out the test for the significance of β1 presented in Proposition 4. Our test

statistics Λ is calculated to be .0447. We also calculate values of Λ under the null hypothesis:

ΛChi,95 = .0271, ΛChi,97 = .0322, and ΛChi,99 = .0435, where ΛChi,p is the pth percentile value of

Λ under the null hypothesis. Although the number of samples is small, this result suggests that

the coefficient β1 is statistically significant with p-value less than .01. In addition, the bootstrap

result is presented in Figure 5(a). . From the histogram, we calculate the percentile values of Λ:

ΛB,95 = .0315, ΛB,97 = .0372, and ΛB,99 = .0541. This shows that the coefficient is statistically

significant with p-value < .03.

Finally, in order to find the relationship between the Gini coefficient and the GDP growth rate,

we calculate the Gini coefficient from the estimate ŷa = b̂0+(x̄+a ·σ1) · b̂1, where a varies from −3

to 3. They are plotted in Figure 5, showing a positive relationship.18 For economic interpretation

of these results, see Section 5.4.

5.3 Income distributions by industry

Next, taking into account the differences across industries, we decompose ordinary workers by

industry and obtain income distributions of 8 industries each year.19 As an illustration, density

functions in manufacturing and service industries are shown in Figure 6.

We assume that there is unobserved heterogeneity across industries, which is constant over time,

18Although the relationship in Figure 5(b) appears to be a linear function at a first glance, it is, strictly speaking,
a convex function. While it inherits the linearity defined in the Bayes space, there is no reason to believe that the
property yields a linear relationship between aggregated indexes and explanatory variables.

19Along with the Japan Standard Industrial Classification (the 10th revised edition, JSIC), the following 8 sectors
are considered: construction, manufacturing, wholesaler & retailer, finance, real estate, transportation & information,
utility, and service. The revision of JSIC was intermittently carried out (the 11th rev. in March 2002, the 12th rev.
in November 2007, and the 13th rev. in October 2013. The 11th rev. JSIC has been employed in BSWS since 2005).
The 11th and 12th revisions involve the changes of the definition of classification, increasing the number of major
divisions. There is no straightforward way to connect the data before/after the revision in an consistent manner, we
focus on the period 1989-2004, in which there was no change regarding major divisions.
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Figure 4: Estimation results. In panel (b) and (c), the solid line is ȳ and the dashed (dash-dot)
line is ŷ+(ŷ−).
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Figure 5: Estimation results. In panel(a), the number of bootstrap samples is 1000. In panel(b),
the relationship between the GDP growth and the Gini coefficient is shown.
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Figure 6: Density functions in 1989–2003.

but the response of the density function to growth in the industry is the same. Namely, including

industry and year dummy variables, our regression model becomes as follows:

f = β0 ⊕ x1 ⊙ β1 ⊕⊕7
j=1(x

Ind
j ⊙ βIndj )⊕⊕14

j=1(x
Y ear
j ⊙ βY ear

j )⊕ ϵ, (8)

where xIndj and xY ear
j are industry and year dummy variables, respectively. Here, construction

in the year 1989 is the reference state. x1 is the GDP growth rate for the industry and β1 is

common to all the industries. While xY ear
j is included in the model to control for changes of

economic environment such as natural disasters, an economy-wide shock may also be captured by

βY ear
j .20 However, if the relationship between the income distribution and growth rates shown in

the previous section is robust and not caused by some omitted variables such as policy changes, a

similar relationship must be found due to variation of growth rates across industries. In fact, this

is found as we will see in the following.

As in the previous section, we estimate the coefficient of the GDP growth rate, b̂1, which is

shown in Figure 7(a). Using this estimate, we calculate ȳ = b̂0 + x̄1 · b̂1 + b̂Ind1 (i.e., manufacturing

20Here, we use the nominal GDP growth rate as x1 by considering that the effect of inflation on the income
distribution, if any, is removed of by including the year dummy. The data are obtained from Annual Report on
National Accounts.
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Table 3: Summary statistics of the annual GDP growth rate by industry(%). The total number of
observations is 120.

Mean Std. Dev. Min Max

Construction 1.1 6.78 -7.3 14.4
Manufacturing .52 4.64 -6.6 7.9

Wholesaler & Retailer 2.56 4.77 -4.0 13.0
Finance 2.77 5.32 -7.7 15.7

Real estate 3.49 2.35 -0.1 7.5
Transportation & Information 2.53 3.36 -2.1 9.0

Utility 1.22 2.62 -3.5 6.6
Service 3.99 2.82 -0.2 8.7

in 1989) and ŷ± = ȳ ± 2σ1 · b̂1, which are shown in Figure 7(b). clr−1(ȳ) and clr−1(ŷ±), i.e.,

probability density functions, are shown in Figure 7(c). The coefficient b̂1 shown in Figure 7(a) has

characteristics similar to the one given in the previous section.

The test statistics Λ in Proposition 4 is .0586. Percentile values of Λ under the null hypothesis

are as follows: ΛChi,95 = .0464, ΛChi,97 = .0540, and ΛChi,99 = .0706, where the definition of

ΛChi,p is the same as before. The bootstrap result is also presented in Figure 8(a), which suggests

that ΛB,95 = .0449, ΛB,97 = .0506, and ΛB,99 = .0645. Both tests show that the coefficient

is statistically significant with p-value < .03. As before, the Gini coefficient is calculated from

ŷa = b̂0 + (x̄+ a · σ1) · b̂1 + b̂Ind1 . They are plotted in Figure 8(b), showing a positive relationship.

The estimation result is essentially the same as the one in the previous section.

5.4 Discussion

Figures 5(b) and 8(b) describe the positive relationship between the Gini coefficient and the

GDP growth rate. This implies that the economic growth does not contribute to eliminating

inequality measured by the Gini coefficient, at least in the sample period that we study. If we focus

only on finding this relationship, we do not need to use our method; the usual time series analysis

is sufficient. However, the question we aim to address in this paper is what happens behind this

positive linkage. Is an increase in the Gini coefficient caused by an increase in poverty or by the

emergence of a group of rich workers? Even if we are facing an increase in the Gini coefficient,

economic implications as well as policy measures needed depend on these questions. The answer is

explicitly given by Figures 4(a) and 7(a).
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Figure 7: Estimation results. In panel (b) and (c), the solid line is ȳ and the dashed (dash-dot)
line is ŷ+(ŷ−).
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Figure 8: Estimation results. In panel(a), the number of bootstrap samples is 1000. In panel(b),
the relationship between the GDP growth and the Gini coefficient is shown.
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As shown in these Figures, the coefficient function b̂1 has distinctive features. b̂1 takes large

values in the region of lower z (z < .5) and sharply drops to its minimum value around z = 1 or

less. This means that an increase in the GDP growth rate is associated with a relative increase in

lower income workers and decrease in the middle class. On the other hand, in the region of higher

values of z (around z = 1.5 or more), it stays around 0. This means that there is no substantial

change in this higher region.21 Thus, most of the changes generating the variation of inequality

measured by the Gini coefficient take place in the lower and middle regions.

So far, we have not discussed the causality: Is the change of the income distribution caused by

economic growth or does the change of the income distribution lead to economic growth? In the

literature, both causalities have been considered, though the results have been mixed (see reference

in the Introduction). What we have done in this paper is to find a functional relationship and,

therefore, we cannot give the definitive answer to the causality. However, it should be noted that the

results of our analysis are used as a new test because the true model must approximate not only the

behavior of a few indexes but also that of the income distribution. In the existing literature, several

theoretical models explaining inequality and economic growth have been proposed, e.g., Galor and

Tsiddon (1997), Galor and Moav (2000), Barlevy and Tsiddon (2006). For example, Barlevy and

Tsiddon (2006) focus on technological changes and workers’ optimal responses, showing that income

inequality representing the disparity of skills is related to economic growth.22 They also examine

whether their model is consistent with empirical data by using inequality indexes such as top income

shares and the Gini coefficient. However, the model has further implications: it also predicts the

change of the income distribution behind that of inequality. According to their model, the change

of income is monotone, i.e., the rich grow richer and the poor grow poorer when inequality rises,

which implies that the income distribution becomes flatter when inequality is high. Namely, the

functional coefficient b1 takes a U or V-shaped form in this model. However, this conclusion is

inconsistent, at least, with our results. As shown in Figures 4(a) and 7(a), the estimated coefficient

b̂1 is quite different from a simple U or V-shaped form, especially in the region of large z. This

suggests that the mechanism driving the change of inequality is different from what is envisaged in

21In addition, Figure 4(a) shows that there seems to be the second hollow around z = 2 rather than positive values.
22They argue that, in times of recessions, more able workers have more incentives to spend their time to master

the new technology, and the disparity of skills among workers would grow at a faster rate. Economic growth matters
because the return of their investments(i.e., their time) depends on it.
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their model. In this way, our analysis can be used to further analyze the model prediction and to

explore whether theoretical models are actually supported by empirical data.

6 Conclusions

In this paper, density functions have been consistently dealt with in the Bayes space rather than

in the L2 space as in FDA. Density functions are transformed by the clr transformation and the

constrained nature of density functions are properly incorporated in estimation. Since this space

has favorable properties such as linearity, we introduce a functional linear regression model in this

space based on this structure. Since functions other than probability density functions are excluded

from our consideration in the first place, our regression analysis necessarily yields density functions

and shows good accuracy. Indeed, this point has been confirmed by simulation studies based on

the exponential family.

We then apply this statistical method to cross-sectional distributions of individual earnings and

the GDP growth rates to examine the relationship between inequality and economic growth. As

the long-term controversy suggests, the relationship is integral to macroeconomic theory as well

as policy-making, and in fact, previous studies have developed many indexes of inequality and

analyzed the interdependence between the indexes and macroeconomic variables. However, since

using the indexes is equivalent to dimension reduction, it is inevitable that a considerable part

of information that an original income distribution has is lost. Rather than seeking appropriate

indexes, we have treated an income distribution as an infinite-dimensional random variable in this

paper. From this point of view, the indexes are regarded as only one of the aspects of the random

variable. Our analysis can reveal a detailed relationship represented by a functional coefficient

and shows that the changes of the income distribution take place in the lower and middle income

regions. A disproportional increase in the lower class, a relative reduction of the middle class, and

irresponsiveness of the higher class to economic growth are a striking feature of the behavior of

the income distribution. These findings shed a new light on issues about inequality and economic

growth. Moreover, the functional coefficient obtained can also be used as a new test in that the

criteria are a probability density function itself rather than a few indexes.

In economics, there are many distributions other than the income distribution that has received
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increasing attention recently, e.g., the wealth distribution, the firm size distribution, the distribution

of growth rates of firms, and the distribution of stock returns. The increasing availability of big

data enables us to directly observe the probability density functions. However, as in the case of the

income distribution, most of the analysis in this field still relies on a few indexes. Like our analysis,

statistical methods that directly analyze density functions can fully utilize the power of big data

and have great potential for discovering new economic dynamics ignored in previous studies.

A Proof of Proposition 4

Proof. Our proof is a generalization of the standard approach in the finite-dimensional case (see,

e.g., Seber and Lee (2003)) and closely related to the one in Reimherr and Nicolae (2014) for FDA.

Following Reimherr and Nicolae (2014), we show that the test statistics Λ converges to the weighted

sum of i.i.d. χ2 random variables. The key is the fact that the L2
0 space is a separable Hilbert

space.

Set the two least squares estimators:

b̂ ≡ (XTX)−1XTy, b̂1 ≡ (XT
1 X1)

−1XT
1 y.

Our test statistics Λ is the reduction in the sum of squared residuals by including X2. Straight

calculations yield that Λ can be written as follows:

Λ =

∫
I
e(t)T [X(XTX)−1XT −X1(X

T
1 X1)

−1XT
1 ]e(t)dt

Since the L2
0 space is a separable Hilbert space, we can use the central limit theorem in the

Hilbert space:

N−1/2XTe(t)
d−→ Z(t)

where
d−→ represents the convergence in distribution and Z(t) is a Gaussian random variable.23

23A H-random variable X is called Gaussian if the characteristic function φX can be written as

φX(x) ≡ E[exp i⟨x,X⟩] = exp(i⟨x,EX⟩ − 1

2
⟨CX(x), x⟩), x ∈ H,
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Since a Gaussian random variable is determined by the expectation (= 0 in our case) and the

covariance operator, Z can be written as Z(t) = Σ
1/2
X N(t), whereN ≡ {Nl}l=1,...,k is a vector of i.i.d.

Gaussian random variables in L2
0; that is, Nl ∼ N (0, Ce). Therefore, by the linear transformation

property of Gaussian random variables,

Λ
d−→

∫
I
N(t)TAN(t)dt

d
=

∫
I

L∑
k=1

Nk(t)
2dt.

where A is a projection matrix with rank L.24 By the Karhunen-Loéve expansion, (see, e.g.,

Theorem 1.5 in Bosq (2000)) we have

Nl
d
=

∞∑
n=1

√
λnNnφn,

where the sequence (λn, φn) is defined in the Mercer lemma, i.e., the eigenfunctions and eigen-

values of Ce, and Nn is an independent standard Gaussian random variable. Therefore, Λ
d−→∑∞

n=1 λnχ
2
n(L).

B Family Income and Expenditure Survey (FIES)

For another implementation of our method, we examine the relationship between the wealth

distribution and macroeconomic variables, which has received increasing attention recently, e.g.,

Piketty and Goldhammer (2014). Here, the wealth distribution are obtained from Family Income

and Expenditure Survey in the period 2002-2015. As a dependent variable, the change of the wealth

distribution, i.e., ft+1 ⊖ ft is taken, where the duration of time intervals is 3 months. Explanatory

variables are the difference between the interest rate and growth rate, rt − gt, and stock returns,

returnt. Namely, we consider the following model:

ft+1 ⊖ ft = β0 ⊕ β1 ⊙ (rt − gt)⊕ β2 ⊙ returnt ⊕ ϵ, (9)

where EX is the expectation and CX is the covariance operator.
24

A ≡ I− Σ
1/2
X

(
Σ−1

X,11 0

0 0

)
Σ

1/2
X
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rt is long-term interest rates, i.e., government bonds maturing in ten years. gt is the GDP growth

rate which is seasonally adjusted and measured in percentage change from previous quarter. returnt

is percentage change of share prices. All these data are obtained from OECD data. More detailed

information is available from the author upon request.

As before, we calculate the functional coefficients, which are shown in Figure 9, and carry

out our asymptotic test. For the coefficients b1 and b2, p-values are .0458 and .102, respectively.
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Figure 9: Estimations.

Although the p-value is strictly speaking larger than 10%, the shape of b̂2 shown in the right panel

of Figure 9 is informative. In contrast to the distribution of labor income discussed in Section

5, the function b̂2 takes large values in the region of high z, meaning that the right tail of the

wealth distribution is much affected by stock returns. This is consistent with our intuition because

the change of individual wealth, i.e., income considered here includes capital income. In other

words, this clearly indicates unequally distribution of benefits from an increase in the stock price

to households.

The interpretation of the coefficient b̂1 is much difficult. This shape presented in the left panel

of Figure 9 suggests that an increase in rt−gt promotes inequality, but is different from a U-shaped

form. It might indicate the existence of another economic mechanism generating inequality different
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from what is envisaged in Piketty and Goldhammer (2014).
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