
DP
RIETI Discussion Paper Series 17-E-010

Corruption, Market Quality and Entry Deterrence in
Emerging Economies

(Revised)

Krishnendu Ghosh DASTIDAR
Jawaharlal Nehru University

YANO Makoto
RIETI

The Research Institute of Economy, Trade and Industry
https://www.rieti.go.jp/en/

https://www.rieti.go.jp/en/index.html


 

RIETI Discussion Paper Series 17-E-010 

First draft: February 2017 

Revised: December 2018 

 

Corruption, Market Quality and Entry Deterrence in Emerging Economies１ 

 

Krishnendu Ghosh DASTIDAR２

Jawaharlal Nehru University 

 

YANO Makoto３

Research Institute of Economy, Trade and Industry 

  

 

Abstract 

 

In many emerging economies corruption, poor quality of information and poor governance lead 

to restricted entry. In this paper we analyze the determinants of the .height.of entry barrier in a 

developing economy where established .rms often use dubious means to deter entry of other .rms. 

We analyse this scenario in a three-stage game of entry deterrence. The incumbent has incomplete 

information about the entrant.s costs but can increase this cost by resorting to unfair means (for 

example, bribing a politician who harms the entrant). Higher is the bribe, higher will be the entry 

cost and hence lower will be the incentive to enter. In our set-up bribe serves as a proxy 

for .height.of entry barrier. The entrant observes its cost and decides whether or not to enter. We 

completely characterise the optimal bribe and show that this depends on the market size, 

the .di¤erentiation.parameter (whether goods are substitutes or complement) and the extent of 

uncertainty. Uncertainty seems to increase bribe and decrease market quality. We also show that 

zero bribe need not maximise total surplus and market quality. Our results seem to be compatible 

with anecdotal evidences from an emerging economy like India. 
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1 Introduction

How diffi cult it is for a potential entrant to enter a particular market is a very important

factor that determines the ‘quality’of the market. Entry barrier is of particular importance in

an emerging economy in which information is far from complete. Consequently, uncertainty

becomes an important determinant of the ‘height’of the entry barrier. Greater is the height

of the entry barrier, more diffi cult it becomes to gain access into the market. Despite this

fact, most of the papers in the existing literature have treated entry barrier primarily as

an exogenous object and have focused on whether or not a firm chooses to set up an entry

barrier1. That is, entry barrier is typically analyzed as a zero-one choice (either it is chosen

or not chosen). This paper focusses on the extent of entry barriers (i.e. how ‘high’is the

barrier) and demonstrates that incompleteness of information (together with market size and

the differentiation parameter) is an important factor that determines the ‘height’of entry

barrier in the market.

In many emerging economies, corruption and poor governance have led to restricted

entry. Established firms are wary about the technological superiority of potential entrants.

Being uninformed of the technological effi ciency of its potential rivals, many established firms

adopt dubious means to deter entry of more effi cient firms. Apart from spreading corruption

and poor governance this also thwarts competition. The present study deals with such a

phenomenon. A similar phenomenon is observed in developed economies where lobbying

leads to restricted entry. The common perception is that incumbent firms in emerging

economies, out of fear of competition from more effi cient potential entrants, are more likely

to pay bribes to get their desired objective, whereas firms in developed countries are more

prone to lobby the government to change the rules. Note that lobbying is a legal and

regulated activity in many countries, whereas bribery is not. However, all such activities

tend to lower ‘market quality’.2

1See the relevant chapters of Tirole (1988) and Vives (1999).
2Note that in a developed economy, incumbent firms often use lobbying to create entry barriers. An

example which involves Airbnb, illustrating this aspect is as follows. In 2016, under pressure from the hotel

industry and a populace concerned with the surge of foreigners in their neighborhoods, the government in

Japan released guidelines for home sharing - called minpaku in Japanese - that made most Airbnb rentals in
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We analyze this scenario in a three-stage game of entry deterrence. In our set-up the

incumbent has incomplete information about the entrant’s costs but can increase this cost

by resorting to unfair means (for example, bribing a politician who harms the entrant).

Higher is the bribe, higher will be the increase in the entry cost (entrant’s MC) and hence

lower will be the incentive to enter. That is, in our set-up bribe serves as a proxy for the

‘height’of entry barrier. The entrant observes its cost and decides whether or not to enter.

We completely characterize the optimal bribe (‘height’of entry barrier) and show that the

market size, the differentiation parameter and the extent of uncertainty affect the optimal

‘height’and consequently, the entry decision by the potential entrant. Uncertainty plays a

crucial role and we also analyze how it affects total surplus and ‘market quality’. Our results

seem to be compatible with anecdotal evidences from an emerging economy like India.

We now proceed to say a few words on the concept of ‘market quality’and ‘fairness’.

1.1 Effi ciency, fairness and market quality

This study is the first attempt to deal with the endogenous determination of ‘market quality’

as defined by Yano (2009, 2016), who refers to ‘market quality’as a measure of “effi ciency

in allocation”and “fairness in pricing” in a market.3 Effi ciency refers to Pareto effi ciency.

Fairness may be stated as fairness in dealing or in the process in which the terms of trade are

formed. A price formed through fair dealing is a fair price.4 Fair dealing should be measured

against a set of rules and laws imposed so as to maintain the well functioning of a market.

the country illegal. Under these guidelines Airbnb hosts were only allowed to rent to guests who would stay

for a week or longer, a minuscule slice of the market. This is clearly a case where lobbying by the incumbent

industry has successfully created entry barriers for the new entrant, Airbnb (for details see Nakamura, Y.

and M. Takahashi in Bloomberg, February 19, 2016).
3There are a couple of papers that study the endogenous determination of market quality (although in

a much looser sense). Dei (2011) analyses the dynamic development of a high quality labor market where

unskilled and skilled workers are properly distinguished . The paper by Furukawa and Yano (2014) studies

market quality by focusing on fairness in handling intellectual properties.
4“Actions in a particular market are competitively fair if they are conducted in compliance with the set

of “generally accepted”rules. Moreover, a state of that market is competitively fair if it is formed through

competitively fair actions and if there are no profit opportunities left available for competitively fair actions”

(Yano, 2009).
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According to Yano (2008a), one such rule may be the non-discriminatory treatment of actual

and potential trading partners or, in other words, to ensure free entry and exit in the market.

However, such fairness cannot be guaranteed when one party (say one seller) has significant

and unilateral powers (for instance, the power to use violence) enabling it to unilaterally set

the terms and change the rules of the game. This is often observed in emerging economies.

Three primary factors determine market quality. These primary factors are, “quality of

competition”, “quality of information”, and “quality of products”. In this paper we focus on

two of these: (i) “quality of competition”- to what extent entry is restricted and (ii) “quality

of information”- what is the extent of incompleteness of information affect ‘fairness’ and

market quality’. Yano (2009 and 2016) postulate that a decline in the quality of competition

and information often reduce ‘fairness’and market quality. Broad pattern of historical events

seem to support this idea.5

In our context, fairness, φ, is defined to be φ = −b, where b is the bribe paid (= ‘height’

of entry barrier). In other words, fairness is the opposite of the ‘height’of entry barrier.

When b > 0, a cost is inflicted on the entrant through unfair (and illegal) means and the

total fairness is negative. Higher is the bribe (i.e. more is the ‘height’of entry barrier), lower

will be the fairness. Lower is the fairness, higher will be the increase in the entrant’s costs

and hence lower will be the incentive to enter. In our set-up the maximum possible fairness

is zero when no bribe is paid (absolutely no entry barrier). This will be true when the

governance is perfect. Some of the Scandinavian countries (for example, Denmark) possibly

have very high fairness as there is little bribery there. However, when the governance is

5One of the things that support this hypothesis is that a series of industrial revolutions and economic

crises over the past two hundred years, tend to have a cyclical pattern and all such events were probably

triggered by changes in market quality. The First Industrial Revolution gave rise to the exploitation of

industrial workers, a major labor issue. The Second Industrial Revolution was followed by the formation

of industrial monopolies, the Great Depression, and massive unemployment. The exploitation of workers

and the monopolization of industries occurred because competition was imperfect, and the Great Depression

occurred because information was not properly shared. The subprime loan crisis of 2008 was a result of

poor quality information and greed that compelled people to take on debts they could never repay. There

seems to be a common pattern of events. The advent of technological innovation is typically followed by a

decline in the quality of competition and information, and this reduced market quality and this turn led to

the economic crisis.
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relatively poor (which is very likely in emerging economies like India, Pakistan, Bangladesh

etc.), the fairness is likely to be negative. We define market quality to be the sum of ‘total

surplus’and ‘fairness’.6

In many emerging economies the law enforcement agencies are often weak and very

corrupt and this means that big firms can get away by harming others illegally. Such an act

increases the marginal cost of the potential entrant and the incumbent is able to unilaterally

set the terms of the game to its advantage.7

In a country like India, the above scenario is often observed in many industries (for

example, the real estate industry). Such an industry is dominated by a few large firms, who

are, in general, close to powerful politicians and function under their patronage.8

Such firms take recourse to illegal means to discourage entry. Since the owners of such

firms are well connected, they get away with their illegal actions. Even if the entrant (which

may be a relatively small local firm or a new foreign firm, with little contacts with local

politicians) were to lodge a complaint against the big incumbent firm, nothing is likely to

happen. In countries like India, Pakistan, Bangladesh etc. it is almost taken for granted

that the rich and powerful will not be touched even if they are on the wrong side of law. In

fact, ordinary persons and entities are often hounded if they take on powerful organizations

or persons. This fact is quite well known and there are several media reports on this as well.9

This implies that a potential entrant will not waste its time and resources in pursuing a

6‘Total surplus’is ‘consumer surplus’ plus ‘producer surplus’plus ‘bribe’(as bribe is just a mere tranfer

and remains within the system). Essentially, this menas that ‘market quality’is equal to consumer surplus’

plus ‘producer surplus’. In a more general setting, market quality is a function of "total surplus" and

"fairness" and it is increasing in these two components. Here, for simplicity, we take an additive form.
7As noted earlier, the incumbent firm can bribe the local politician to harm the potential entrant. This

can take the form of physical violence or some other forms of harassment. This bribe can also be interpreted

as cost of hiring goons to threaten and even physically harm the entrant and since the law and order enforcing

agencies do not function properly, this strategy is often very successful in countries like India.
8Sometimes politicians themselves or their family members are among the largest shareholders of such

companies. The “Competition Commission of India” in its several annual reports have documented unfair

practises by large Indian firms. All such reports are available on the website <<http://www.cci.gov.in/>>).
9The report by Ernst and Young (2012) provides details on bribery and corruption in the construction

sector.

4



legal case against the big incumbent as this will simply increase its costs further without any

possible benefit. In short, in such economies, if the incumbent harms the entrant through

illegal means and increases the entrant’s operating costs, the entrant just accepts this as

fait acompli and then decides whether to enter or not. By analyzing this aspect, this study

shows how the level of fairness in dealing and of effi ciency in allocation, or in short, market

quality, are determined simultaneously.

We now proceed to provide the following: (i) a brief overview of our framework (ii) a

summary of our main results and (iii) a discussion of the literature related to our framework.

1.2 Overview and some definitions

We consider the following model in a differentiated product market. There is one incumbent

and one potential entrant. The incumbent firm can bribe the local politician to harm the

potential entrant. We capture the effect of such a bribe in the following way. If the incumbent

firm pays bribe b ≥ 0 then this increases the marginal cost of the entrant by b. This b, as

noted before, serves as a proxy for the ‘height’of entry barrier.

As noted before total fairness is defined to be φ = −b. When b > 0, a cost is inflicted

on the entrant through unfair (and illegal) means and the total fairness is negative. The

maximum possible fairness is attained when bribe is zero (free entry is assured).

Market quality (Q) is defined to be a sum of surplus (W ) and fairness (φ). That is, we

have

Q (b) = W (b) + φ = W (b)− b.

It is often the case that in the absence of bribe (zero ‘height’ of entry barrier) such

potential entrants have lower marginal costs than the incumbent. Absence of any bribe

means that total fairness is at its maximum. In other words, in our framework, when the

market is completely fair, the entrant has lower marginal cost than the incumbent. We

capture this in the following way. Let the incumbent firm’s marginal cost be c. In the

absence of any bribe (i.e. when b = 0) the potential entrant’s marginal cost is c− α, where

α is the effi ciency level of the entrant. Higher is the entrant’s effi ciency, lower will be its

marginal cost. The incumbent cannot observe the entrant’s type, α. We assume that α is
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distributed over [0, ᾱ] with distribution function F (.) and density function f (.).

Note that ᾱ captures the extent of uncertainty. When ᾱ = 0, there is no uncertainty

and the players play a game of complete information. When ᾱ > 0, the game is that of

incomplete information.

Some possible reasons behind such asymmetric costs and incomplete information are as

follows. The potential entrant may be a foreign firm with a superior (low cost) technology.

This may also be true in an emerging economy where the potential entrant is a small local

firm. The incumbent firm is typically very large, has a large bureaucracy and it draws labour

from the formal sector, where wages are higher as compared to the informal sector. This

pushes up the per unit cost of the incumbent. On the other hand, the small local firm has

access to the informal labour market and consequently it can pay lower wages. Also, the size

of its bureaucracy is smaller and this means its per unit costs are lower as compared to the

incumbent.10

Often, the incumbent firm does not know the true cost of operation of such an entrant.

That is, α is private information to the entrant. If the potential entrant is a foreign firm with

a superior technology the incumbent may not be aware of the extent of the technological

superiority. When the potential entrant is a small local firm then also the incumbent may

face incomplete information. As noted before the small local firm has access to the informal

labour market. Such a labour market is completely unregulated and wages are often decided

by informal bargaining. Consequently, wages are known only to the small local firm and the

labourer. Moreover a small local firm is more likely to have a better idea of the cultural

aspects like caste/community equations. Consequently, it may be able to get labour (and

even other physical inputs like bricks, sand, cement) cheaply. Since the incumbent is an

established entity, it is required (by law) to purchase inputs and hire labour from the formal

sector where prices and wage rates are typically known. As such, its costs are generally

known to everybody.

Since the entrant’s marginal cost is lower, it means that if no bribe was paid by the

10In a country like India an overwhelming fraction of the labour force (about 90%) is employed in the

informal sector. Often, small local firms have much better access to this labour force than the large established

firms.
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incumbent (i.e. b = 0 ⇔ height = 0), then entry would be certain. In this paper we try

to capture this aspect, derive some results and offer some policy prescriptions to improve

market quality.

1.3 Summary of our findings

We analyze the following three-stage game. In the first-stage the incumbent (firm 1) decides

on a level of bribe, b (‘height’of entry barrier). In the second stage the entrant (firm 2)

observes its own marginal cost and then decides to enter or not to enter. In case it chooses

to enter, 2 incurs an entry cost. If 2 enters, then in the third stage the firms play an

incomplete information Cournot game in a differentiated good market. If 2 does not enter

then 1 produces monopoly output.

We solve the three-stage game by backward induction. We first compute the Bayesian-

Nash equilibrium of the third stage game.

Then we characterize firm 2’s decision in the equilibrium of the second stage. We show

that if the bribe (the ‘height’of entry barrier) which has been chosen by firm 1 in the first

stage is below a threshold (b), then all types of firm 2 enter. That is, probability of entry is

one. If the bribe (the ‘height’of entry barrier) lies in between b and b̄ (where b̄ > b) then

some types of firm 2 enter. We show specifically that 2 will enter iff it’s effi ciency (α) is

higher than a critical type α∗. This α∗ depends on the level of bribe (how high is the entry

barrier). Higher is the level of bribe, higher will be α∗. In this case the probability of entry

is 1 − F (α∗). If the bribe chosen in the first period is greater than or equal to b̄, then no

type of firm 2 will enter (this is a case of blockaded entry). That is, a ‘height’greater than

or equal to b̄ blocks entry completely.

Thereafter, we solve the first stage game when firm 1 chooses the optimal level of bribe.

Note that 1 will choose a bribe to maximize its expected payoff after taking into account the

possible equilibrium outcomes in the second and third stages. Since a bribe b (‘height’of

entry barrier) increases 2’s per unit cost, 2’s profit will be decreasing in b. This means that

for b high enough 2’s expected payoff will be zero and 2 will not enter. However bribing is

also costly for 1 since b is like a sunk cost to firm 1.

We show that when goods are substitutes (i.e. γ > 0) then, if the differentiation pa-
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rameter, γ, and the market size (denoted by A in our model) are small enough then the

optimal bribe, b∗(optimal ‘height’of entry barrier)), is zero. If γ and the market size are

large enough then the optimal bribe (optimal ‘height’of entry barrier) lies in the interval[
b, b̄
]
. Under no circumstances will the optimal bribe lie in the interval (0, b). This means,

if there is a strictly positive bribe in equilibrium, then it must be greater than or equal to b.

When goods are complements (i.e. γ < 0), we show that the optimal bribe (optimal ‘height’

of entry barrier) is always zero (free entry is assured in equilibrium).

Thereafter, we proceed to discuss the case where there is no uncertainty (ᾱ = 0). Here

the firms play a game of complete information. In this case we show that the optimal bribe

(optimal ‘height’of entry barrier) is either zero or some positive amount, b̂ where b̂ < b. The

entrant is either clearly in (bribe paid is zero) or clearly out (blockaded entry with bribe

equal to b̂). Note that with complete information, if γ is small enough then the optimal

bribe (optimal ‘height’of entry barrier) is zero. This is similar to our result with incomplete

information. However, if γ is large enough and market size, A, is above a critical level then

optimal bribe (optimal ‘height’of entry barrier) is b̂ and there is completely blockaded entry.

Note that when there is uncertainty (ᾱ > 0) and there is positive bribe in equilibrium (i.e.

b∗ > 0), it is at least b . With no uncertainty (ᾱ = 0), the amount of equilibrium bribe

(‘height’of entry barrier), when positive, is equal to b̂. That is, equilibrium bribe (‘height’

of entry barrier), when positive, is more with incomplete information than with complete

information (since b̂ < b). This means, uncertainty increases bribe (or ‘height’ of entry

barrier) and hence decreases probability of entry. When goods are complements, with no

uncertainty (ᾱ = 0) the optimal bribe is always zero. This is similar to the case where there

is incomplete information.

Next we proceed to seek an answer to the following question. Does an increase in the

uncertainty lead to a increase in equilibrium bribe (‘height’of entry barrier) and a decrease

in market quality? While a general answer to such a question is intractable, we produce

an example, where 2’s types are uniformly distributed, to demonstrate that an increase in

uncertainty indeed leads to an increase in bribe (‘height’of entry barrier) and a decrease in

market quality. This seems to be a vindication of the idea in Yano (2009 and 2016)

A natural question that arises is the following: Does zero bribe (i.e. zero ‘height’which
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implies certain entry) always maximize total surplus and market quality? When goods are

substitutes, our answer is surprisingly negative. We provide an example to show that while

zero bribe (no entry barrier) always maximizes ‘fairness’ (the maximum possible value of

total fairness, φ = −b is zero), it need not maximize ‘total surplus’or ‘market quality’. This

result is somewhat related to Mankiw and Whinston (1986), who introduced the concept

of ‘business stealing’. “The business-stealing effect exists when the equilibrium strategic

response of existing firms to new entry results in their having a lower volume of sales - that

is, when a new entrant “steals business”from incumbent firms. Put differently, a business-

stealing effect is present if the equilibrium output per firm declines as the number of firms

grows.”(Mankiw and Whinston, 1986). In their paper it is shown that when entrants incur

a fixed set-up cost of entry and when there is “business stealing effect”then free entry is not

welfare maximizing. It may be noted that when γ > 0 (goods are substitutes) we have the

“business stealing effect” in our model. In our model b = 0 implies certain entry but this

need not maximize total surplus (as well as market quality) when goods are substitutes. It

raises intriguing questions as to how bribe affects market quality.

However, when goods are complements, we show that under some parametric restric-

tions, zero bribe (zero ‘height’) maximizes total surplus and market quality. Note that the

incumbent firm always choose zero bribe in the first-stage when goods are complements.

An interesting policy prescription that emerges is as follows: In order to curb bribery (i.e.

increase entry) and improve market quality, the government should foster competition in

goods that are complements to each other. In the real estate sector an example of such com-

plements would be where one firm provides residential housing and the other firm provides

shopping malls in the same locality.

We now proceed to provide some remarks on our results.

Remarks

1. In our model firm 2’s costs are private information (as α is known only to firm 2). With

complete information (ᾱ = 0), when firm 1 takes a decision regarding bribe, b (height

of entry barrier), it knows with certainty whether entry will be deterred or not (that

is, probability of entry is either zero or one). However, when α is private information
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then the equilibrium probability of entry lies between zero and one. In this case firm

1 is not exactly sure whether a bribe b (height of entry barrier) will deter entry or

not (unless b ≥ b̄). There is an uncertainty regarding the impact of bribe on 2’s entry

decisions. This is compatible with evidences from real life. When an incumbent takes

some irrevocable decision to deter entry, the incumbent is often not too sure whether

entry will be successfully deterred or not. It only knows that higher b (greater height)

is more likely to deter entry. We have tried to capture this aspect in our model.

2. It is often the case that although the incumbent knows that it possibly has an inferior

technology (higher marginal cost) than the potential entrant, it does not know the ex-

tent of its own cost disadvantage. That is, the incumbent cannot observe the entrant’s

type (cost). This uncertainty (or incompleteness of information) is highlighted in the

present study. It leads to three different findings:

(a) First, if the differentiation parameter and the market size is low enough, the

optimal bribe (optimal height of entry barrier) is zero regardless of whether there

is incomplete information (ᾱ > 0) or complete information (ᾱ = 0).

(b) If the differentiation parameter and the market size is high enough, the optimal

bribe (optimal height of entry barrier) is positive under both complete and incom-

plete information. However, in this case, the amount of equilibrium bribe (height

of entry barrier) is larger with incomplete information than with complete infor-

mation. That is, incompleteness of information seems to be bribery-promotive

rather than being bribery-preventive. This result stands somewhat in contrast to

Maskin (1999).

(c) Third, we analyze an example where the bribe is positive under incomplete in-

formation. That is, b∗ ∈
[
b, b̄
]
. We demonstrate that an increase in uncertainty

leads to an increase in bribe (increase in height or a reduction in fairness) and a

decrease in market quality.

3. Some of our results seem to be compatible with anecdotal evidences from an emerging

economy like India. For example, in emerging economies like India, bribery is very
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common. Our results also indicate that positive bribe in equilibrium (which in turn

implies restricted entry) is more likely if the market size is large. It may be noted that

the market size will be larger when income levels are higher. Anecdotal evidences sug-

gest that bribes are higher in places that are relatively more prosperous. For example,

the real estate business in the rich neighborhoods of major cities in India are marked by

extreme corruption and bribery. Moreover, in such prosperous pockets the real estate

industry is dominated by big firms. Only in less prosperous places one normally finds

smaller local firms. Our results provide a possible theoretical explanation behind such

evidences (see the report by Ernst and Young, 2012).

1.4 Related Literature

The idea of ‘market quality’is borrowed from Yano (2009, 2016). Dastidar (2017) provides

more details on this aspect.11

There is a huge literature on entry barriers. For a succinct survey on various aspects of

entry deterrence see Tirole (1988), Shepherd (1997), Vives (1999) and Pepall et al (2008).

Salop and Scheffman (1983,1987) point out that imposing higher costs on a rival can tame

or kill it as effectively as predatory pricing, and possibly at a lower cost to the dominant

firm. In many emerging economies, where the law and order machinery is very weak, this

increase in rivals’cost can be achieved through the abuse of government procedures, including

sham litigation and the misuse of licensing and regulatory authorities. There may be many

types of regulatory hurdles for new entrants in a market, including controls by licensing

authorities, health and building inspectors and planning boards and an established firm

often can bribe government offi cials to impose large costs on a potential entrant. In such

economies big influential domestic firms may use sham proceedings under import relief laws,

e.g. an unwarranted claim of dumping, to engage in non-price predation against a foreign

11Market quality economics is a field that was born directly out of Yano’s research. Its basic idea is that,

just as there are high-quality and low-quality products, there are also high-quality and low-quality markets.

High-quality markets are enriching; low-quality markets are impoverishing. Yano (2006, 2008a and 2008b)

provide some major results on several aspects on market quality. The recent paper by Dastidar and Dei

(2014) provides a short introduction to the basic ideas on the concept of market quality.
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rival. In our model the incumbent chooses bribe to inflict harm upon the entrant.12

Our approach is somewhat similar to Dixit (1980). In Dixit (1980) an irrevocable invest-

ment by the incumbent firm allows it to alter its own marginal cost curve and thereby the

post entry equilibrium. The role of such an irrevocable investment in entry deterrence is to

alter the initial conditions of the post-entry game to the advantage of the established firm.

In our paper the incumbent pays some bribe which is similar to an irrevocable investment

(since the bribe is like a sunk cost to the incumbent in the third stage). However, unlike

Dixit (1980), in our model, such a bribe alters the marginal cost of the potential entrant and

not the marginal cost of the incumbent. Moreover, unlike Dixit (1980) the post entry game

in our exercise is an incomplete information game. It may be mentioned here that Dixit

(1980) focusses entirely on the role of investment in impeding entry and his exercise is not

linked to market quality. Our objective is to analyze how bribe (‘height’of entry barrier)

and uncertainty affects overall market quality.

The fact that zero bribe need not always maximize ‘total surplus’is related to the work

of Mankiw and Whinston (1986). Note that a business-stealing effect is present if the equi-

librium output per firm declines as the number of firms grows. The presence of the business-

stealing effect drives a wedge between the marginal entrant’s evaluation of the desirability

of entry and the social planner’s. This means that free entry (which results in zero profit for

all firms) need not be ‘total surplus’maximizing. Similarly, in our model there is ‘business

stealing’when goods are substitutes. The bribe, b = 0 implies certain entry in our model,

but this need not always be ‘total surplus’maximizing (or ‘market quality’maximizing).

Note that if an additional competitor reduces output per firm in a homogenous Cournot

oligopoly (there is business stealing), market entry will be excessive (from a welfare view-

point). Taxes can correct the so-called business stealing externality. Goerke (2017) inves-

tigates how evading a tax on operating profits affects the excessive entry prediction. Tax

evasion raises the number of firms in market equilibrium and can alter their welfare maxi-

12It is interesting to note that even physical violence (bombings and beatings) had been used by incumbent

firms in the past to tame rivals. In pages 253-255 of his book, Martin (2010) provides a summary of this

theory of ‘Raising Rival’s Costs’and also gives specific real life examples of such cost-raising strategies chosen

by the incumbent.
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mizing number. Consequently, evasion can aggravate or mitigate excessive entry.

Maskin (1999) analyses a model where capacity installation by an incumbent firm serves

to deter others from entering the industry. The uncertainty about demand or costs forces

the incumbent to choose a higher capacity level than it would under certainty. This higher

level diminishes the attractiveness of deterrence under uncertainty. In our model, we show

that incompleteness of information may result in more bribes (which dis-incentivises entry)

as compared to the case of complete information. Our results stands somewhat in contrast

to the results in Maskin (1999).

There is a huge literature on corruption but very few papers are directly related to the

approach taken in the present exercise. Some papers that are somewhat related to our paper

are discussed below. It may be noted that the models and the focus of these papers are very

different from ours.

The paper by Shleifer and Vishny (1993) shows that structure of government institutions

and the political process are important determinants of corruption. In their framework

government offi cials have some discretion over some economic activities (for example, issuing

licence/permits to produce) and this enables them to collect bribes from private agents. In

our model, weak law enforcement machinery allows the incumbent to harm potential entrants

through unscrupulous means and deter entry.

Harstad and Svensson (2011) analyze a model where faced with a regulatory constraint,

firms can either comply, bribe the regulator to get around the rule, or lobby the government

to relax it. This model explains the common perception that bribery is relatively more

common in poor countries, whereas lobbying is relatively more common in rich ones.

Campos, Estrin and Proto (2010) argue that corruption matters not so much because

of the value of the bribe, but because of another less studied feature of corruption, namely

bribe unavoidability. The paper by Emran and Shilpi (2000) constructs simple asymmetric

information models to analyze the effects of bureaucratic corruption on entry conditions and

output. Sequeria and Djankov (2013) analyze how the structure of public bureaucracies

determines the way in which public offi cials set bribes. Broadman and Recanatini (2000)

develop an analytical framework for examining the role basic market institutions play as

determinants of rent-seeking and illicit behavior in transition economies. The papers by
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Athreya and Majumdar (2005) and Lambert-Mogiliansky, Majumdar and Radner (2008)

deal with some aspects of petty bureaucratic corruption and its effi ciency implications. The

paper by Kunieda and Shibata (2014) considers an economy with credit market imperfections

(that typically characterize a low quality financial market with weak enforcements rules) and

analyses how changes in the degree of credit constraints affect economic fluctuations.

Plan of the paper We provide the model of our exercise in section 2. Thereafter, in

section 3 we derive the equilibrium of our three-stage game and provide the major results

on optimal bribe. Section 4 provides some basic computations of total surplus and market

quality. In section 5 we deal with uncertainty and market quality. Section 5 provides an

analysis of bribe and market quality. In section 6 we give our concluding remarks. Lastly,

in the appendix we provide the details of our equilibrium computations and the proofs of all

the results.

2 The Model

We consider the following scenario in an emerging economy market. There is one incumbent

(firm 1) and one potential entrant (firm 2). Firm 1’s per unit cost is c. When firm 1 does

not resort to any unfair means (it pays no bribe) firm 2’s per unit cost is c− α, where α is

the effi ciency level of firm 2. This α is private information to firm 2. Firm 1 cannot observe

α. We assume that α is distributed over [0, ᾱ] (where ᾱ < c) with distribution function F (.)

and density function f (.). This means if firm 1 does not resort to any unfair means then

firm 2 has a cost advantage.

However, the incumbent can increase the cost of operation of firm 2 by paying some bribe

(say b) to the politician, who in turn can harm the potential entrant. If firm 1 pays b then

this increases the marginal cost of firm 2 by b. As noted before, b is the ‘height ’of entry

barrier.

Let k2 (where k > 0) be the entry cost of firm 2. We provide the cost function of the

incumbent (firm 1) and the entrant (firm 2) below. Let firm 1 choose b ≥ 0. This bribe is

like a sunk cost for firm 1. Then we have the following:
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C1 (q1) = cq1 + b

C2 (q2, α) = (c+ b− α) q2 + k2

α can be interpreted as effi ciency of the entrant. This is private information to firm 2. We

consider the following three-stage game.

1. In the first-stage the incumbent (firm 1) decides on a level of bribe, b (= ‘height ’of

entry barrier).

2. In the second stage the entrant (firm 2) observes its own marginal cost and then

decides to enter or not to enter. It may be noted that observing its own marginal cost

is equivalent to observing α and b. Typically, in emerging economies when an entrant

takes an entry decision, it is based on its cost which it knows clearly. In case it chooses

to enter, 2 incurs an entry cost, k2. 2 decides to enter iff it expects strictly positive

profit in the third stage. This is a standard assumption in the IO literature (see Dixit,

1980 and Tirole, 1988).

3. If 2 enters, then in the third stage the firms play an incomplete information Cournot

game in a differentiated good market. If 2 does not enter then 1 produces monopoly

output. Note that in this stage b is sunk cost for 1 and k2 is a sunk cost for 2.

For the third-stage competition we consider a representative consumer’s utility function

based on Dixit (1979). Scores of papers in the literature have used this. A small sample

of such papers is as follows: Singh and Vives (1984), Hackner ( 2000), Bester and Petrakis

(1993), Zanchettin (2006), Pal (2010) and Alipranti, Milliou and Petrakis (2014).

On the demand side of the market, the representative consumer’s utility function of two

differentiated products, q1 and q2, and a numeraire good, q0, is given by the following:

U = a (q1 + q2)− 1

2

(
q2

1 + q2
2 + 2γq1q2

)
+ q0.
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The parameter γ measures the degree of product differentiation and γ ∈ [−1, 1]. When

γ < 0 the goods are complements and when γ > 0 the goods are substitutes. Note that

when γ is unity then the products are homogeneous (perfect substitutes) and when γ is zero

the products are independent. We will consider cases where γ 6= 0.

The utility function generates the following system of inverse demand functions:

p1 = a− q1 − γq2

p2 = a− γq1 − q2

2.1 Notations and Assumptions

Let

A = a− c, B = 2− γ and D = 4− γ2

Note that since γ ∈ [−1, 1] we have B ∈ [1, 3] and D ∈ [3, 4]. We can interpret A to be

a proxy for market size.

Let

µ (x) =
1

1− F (x)

∫ ᾱ

x

αf (α) dα

Note that µ (0) is the expected effi ciency of the entrant and µ (x) is the expected effi ciency

given that it is more than x. We assume the following.

Assumption 1 A > µ (0) and A ≥ 3k.

Assumption 2 µ′ (x) ∈ (0, 1) and µ′′ (x) ≥ 0 for all x ∈ (0, ᾱ).

Remark The first assumption holds true if the market size ‘A’is high enough relative

to entry cost and the expected effi ciency of the entrant. It may be noted that the first

assumption ensures that in the absence of any bribe being paid (i.e. with zero height of

entry barrier) all types of firm 2 will enter. That is, with b = 0 entry occurs with probability

one (see Lemma 1). The second assumption puts some restrictions on the distribution

function of 2’s types. This is required for some of our major results on optimal bribe. It may

be noted that the second assumption always holds if α is uniformly distributed over [0, ᾱ].

It also holds for many other distributions.
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3 Equilibrium analysis

We will solve the game backwards. We will first analyze the third-stage game. We now

proceed to provide the equilibrium derivations.

3.1 Third stage equilibrium

If firm 2 chooses to enter in the second stage, then in the third stage the firms play an

incomplete information Cournot game and earn duopoly profits. If firm 2 had chosen not to

enter in the second stage, then firm 1 chooses monopoly output.

Now suppose 2 has chosen to enter in the second stage. In the appendix we provide the

computation the Bayesian-Nash equilibrium of the third stage. In this stage, bribe level b

has been determined previously and known to both firms, whereas the entrant’s effi ciency,

α, is known only to the entrant. For any given b, let the Bayesian-Nash equilibrium be q1 (b)

(quantity choice by firm 1, which does not know α) and equilibrium choice by firm 2 (with

type α) be q2 (α, b).

Note that we construct an equilibrium such that in the second-stage 2 will enter iff it’s

effi ciency (α) is higher than a critical type α∗. That is, firm 2 enters iff α ∈ (α∗, ᾱ]. If 2

enters, then in the third stage firms 1 and 2 play an incomplete information Cournot duopoly

game. The equilibrium outcome is provided below. The computation details are provided in

the appendix.

Third-stage Bayesian Nash equilibrium

q1 (b) =


AB+γb−γµ(α∗)

D
if 2 enters

A
2
if 2 does not enter

q2 (α, b) =


2AB+αD−4b+γ2µ(α∗)

2D
if α ∈ (α∗, ᾱ]

0 if α ∈ [0, α∗] (2 does not enter for such α)
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Equilibrium profits at a Bayesian Nash equilibrium Routine computations show

that the equilibrium duopoly profits are as follows.

π1 (b) = [q1 (b)]2 − b

π2 (α, b) = [q2 (α, b)]2 − k2 where α ∈ (α∗, ᾱ]

3.2 2nd stage equilibrium

Given the equilibrium outcome in the third stage, we next proceed to analyze the second

stage game. In the second stage firm 2 makes a move and chooses either to enter or not

to enter. We analyze the relationship between bribe paid (height of the nerdy barrier) in

the first-stage and firm 2’s entry decision in the second stage. The proofs are given in the

appendix.

We first analyze the behavior of firm 2 when its type is α = 0 (i.e. the lowest possible

type). First suppose that b = 0. That is, firm 1 does not resort to any bribing. Then, we

show that even the lowest possible type (α = 0) will get strictly positive payoff if it enters.

Lemma 1 π2 (0, 0) > 0.

Remark Note that q2 (α, b) is strictly increasing in α. This implies that π2 (α, b) is strictly

increasing in α. Hence, π2 (α, 0) > π2 (0, 0) for all α > 0. This means that if b = 0 (firm 1

does nothing), all types (even the lowest effi ciency type) will choose to enter. This fact is

also intuitively obvious.

We now analyze the case where b > 0. Let

b =
2AB + γ2µ (0)− 2Dk

4

b̄ =
2AB + 4ᾱ− 2Dk

4

Since γ2 ≤ 1 and ᾱ > µ (0), we clearly get that b̄ > b. We proceed to our major results in

the second-stage equilibrium.

Proposition 1 When b ∈ (0, b) then the following is true. (i) All types enter and the

probability of entry is one. (ii) ∂π2(α,b)
∂b

< 0 and ∂π2(α,b)
∂α

> 0.
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Proposition 2 When b ∈
(
b, b̄
)
then the following is true. (i) α∗ ∈ (0, ᾱ) and when firm

2’s type is α ∈ [0, α∗] it does not enter. When firm 2’s type is α ∈ (α∗, ᾱ] it enters. The

probability of entry is 1− F (α∗). (ii) ∂π2(α,b)
∂b

< 0 and ∂π2(α,b)
∂α

> 0.

Remark Note that firm 2 enters iff it expects strictly positive profit in the post-entry

game. Suppose b = b. Then, if firm 2 when type α = 0 (the lowest type) enters, its payoff

would be π2 (0, b) = 0. This implies, when b = b the lowest type will not enter. Note that

π2 (α, b) > π2 (0, b) for all α ∈ (0, ᾱ). This means if b = b then all types α > 0 will enter.

Now suppose b = b̄. Then, if firm 2 when type α = ᾱ (the highest type) enters, its payoff

would be π2

(
ᾱ, b̄
)

= 0. This means type ᾱ will not enter if b = b̄. Since π2

(
α, b̄
)
< π2

(
ᾱ, b̄
)

for all α ∈ [0, ᾱ), no type will enter if b = b̄. In short, propositions 1 and 2 and the discussion

above imply the following:

1. b ∈ [0, b] then α∗ = 0. All types enter. Here the probability of entry is one.

2. If b ∈
(
b, b̄
)
then α∗ ∈ (0, ᾱ). Here α∗ is such that π2 (α∗, b) = [q2 (α∗, b)]2 − k2 = 0. 2

enters iff its type is α ∈ (α∗, ᾱ]. Here The probability of entry is 1− F (α∗).

3. If b ∈
[
b̄,∞

)
then α∗ = ᾱ. No type will enter. Entry is completely blockaded and the

probability of entry is zero.

The next result extends the points stated above. It identifies conditions under which

α∗ ∈ (0, ᾱ).

Proposition 3 α∗ ∈ (0, ᾱ) iff 4
D
b ∈

(
2A

2+γ
− 2k + γ2

D
µ (0) , 2A

2+γ
− 2k + 4ᾱ

D

)
.

3.2.1 Preliminary results

We now provide some preliminary results. These will help us in deriving the major results

on optimal bribe (optimal height of entry barrier) in the next section.

Lemma 2 q1 (b) is continuous for all b ∈
[
0, b̄
)
.
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Lemma 3

q′1 (b) =


γ
D
if b ∈ (0, b)

γ

(
1− dµ(α∗)

dα∗

)
D+γ2

dµ(α∗)
dα∗

if b ∈
(
b, b̄
)
.

Lemma 4 If f (0) > 0 then

lim
b−→b−

dq1 (b)

db
> lim

b−→b+
dq1 (b)

db
iff γ > 0

and if f (0) = 0 then

lim
b−→b−

dq1 (b)

db
= lim

b−→b+
dq1 (b)

db
.

Lemma 5

lim
b−→b̄−

q1 (b) =
A− kγ

2
and lim

b−→b̄−

dq1 (b)

db
=

γ

D + 4
.

Remark Lemma 2 shows that q1 (b) is continuous for all b ∈
[
0, b̄
)
. Lemma 4 demonstrates

that q1 (b) is not differentiable at b unless f (0) = 0. However, q1 (b) is differentiable at all

b ∈ (0, b) ∪
(
b, b̄
)
.

We now proceed to demonstrate that both q1 (b) and q2 (α, b) are strictly positive for all

b ∈
[
0, b̄
)
. We need this for non-triviality of our results. Note that assumption 1 implies

that A > µ (0). Since B ∈ [1, 2] and γ ∈ [−1, 1] this implies that q1 (0) = AB−γµ(0)
D

> 0.

First take γ > 0 (goods are substitutes). Note that assumption 2 states dµ(α∗)
dα∗ ∈ (0, 1). This

implies from lemma 3 we get that q′1 (b) > 0 for all b ∈ (0, b) ∪
(
b, b̄
)
iff γ > 0. Also, lemma

2 shows that q1 (b) is continuous for all b ∈
[
0, b̄
)
. Since q1 (0) > 0 and q′1 (b) > 0 when γ > 0

then we must have q1 (b) > 0 for all b ∈
[
0, b̄
)
. Now take γ < 0 (goods are complements).

Lemma 5 shows that limb−→b̄− q1 (b) = A−kγ
2

> 0 (since γ < 0). Note that from lemma 3

we have if γ < 0 then q′1 (b) < 0 for all b ∈ (0, b) ∪
(
b, b̄
)
. This means that if γ < 0 then

q1 (b) > limb−→b̄− q1 (b) for all b ∈
(
0, b̄
)
. This ensures that q1 (b) > 0 for all for all b ∈

(
0, b̄
)
.

Using a similar logic we can show that q2 (α, b) > 0 for all b ∈
[
0, b̄
)
.

3.3 First stage equilibrium

We now analyze the first-stage game and solve for the equilibrium level of bribe (optimal

height of entry barrier) chosen by firm 1. In the first stage firm 1 chooses the optimal level
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of bribe b to maximize its expected payoff (anticipating the equilibrium outcomes in stage 2

and 3). Let the optimal level of bribe be b∗.

Note that if 1 chooses b ∈ [0, b] then all types enter (α∗ = 0). In this case 1 gets duopoly

payoffπ1 (b) = (q1 (b))2−b. When 1 chooses b ∈
(
b, b̄
)
then α∗ ∈ (0, ᾱ). 2 does not enter if its

type is α ≤ α∗. The probability of this event is F (α∗). In this event 1 will be monopolist and

his payoff will be A2

4
− b. Note that 2 will enter if its type is α > α∗. The probability of this

event is (1− F (α∗)). Here 1 will be a duopolist and his payoff will be π1 (b) = (q1 (b))2 − b.

When 1 chooses b ∈
[
b̄,∞

)
no type of 2 will enter (α∗ = ᾱ). In this event 1 will be monopolist

and his payoff will be A2

4
− b.

Hence, 1’s expected payoff, denoted by E1 (b), is as follows:

E1 (b) =


π1 (b) if b ∈ [0, b][

F (α∗ (b))
(
A2

4
− b
)

+ (1− F (α∗ (b))) π1 (b)
]
if b ∈

(
b, b̄
)

A2

4
− b if b ∈

[
b̄,∞

)
where π1 (b) = (q1 (b))2 − b.

Since q1 (b) is continuous for all b ∈
[
0, b̄
)
and α∗ (b) is continuous in b, we must have

that E1 (b) is also continuous for all b ∈
[
0, b̄
)
. Note that if b ∈

(
b, b̄
)

E1 (b) = F (α∗)

[
A2

4
− (q1 (b))2

]
+ (q1 (b))2 − b

Using computations derived in the appendix we get if b ∈
(
b, b̄
)

E ′1 (b) =
dα∗

db

f (α∗)

[
A2

4
− (q1 (b))2

]
+
γ [1− F (α∗)] q1 (b)

(
1− dµ(α∗)

dα∗

)
2

− 1


Note that limb−→b α

∗ (b) = 0. Using the previous lemmas we get,

lim
b−→b−

dE1 (b)

db
=

γ

2D
[2A− γµ (0)− 2kγ]− 1

lim
b−→b+

dE1 (b)

db
=

hγ

4 [D + γ2f (0)µ (0)]

 4A− 4kγ − 2γµ (0)− 4f (0) k2γ

+f (0) γ (µ (0))2 + 8Af (0) k

− 1
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Therefore,

lim
b−→b+

dE1 (b)

db
− lim

b−→b−
dE1 (b)

db

=
γf (0)

4D [f (0)µ (0) γ2 +D]

 −4Dk2γ + 4kγ3µ (0) + 8ADk + 2γ3 (µ (0))2

−4Aγ2µ (0) +Dγ (µ (0))2


Note that the above implies if f (0) > 0 then E1 (b) may not be differentiable at b = b.

However, E1 (b) is differentiable at all b ∈ (0, b) ∪
(
b, b̄
)
.

3.4 Optimal bribe (height of entry barrier)

We now provide the main results regarding the optimal level of bribe, b∗(optimal height of

entry barrier), which is chosen by the incumbent. We will first consider the case when the

goods are substitutes (γ > 0).

Note that the bribe, b, is like a sunk cost for the incumbent. It chooses this sunk cost

in the first stage. While higher b increases the sunk cost, it also increases 2’s per unit cost

of production. This in turn increases 1’s profit and decreases 2’s profit in the third stage

(when they play a incomplete information quantity choice game). That is, higher b has two

opposing effects. In equilibrium, therefore, 1 must choose an optimal b (optimal height of

entry barrier) where these two effects balance each other out.

We noted earlier that if b = b̄ and if firm 2’s type is ᾱ (highest possible type) and if

this type enters then it will get zero payoff (π2

(
ᾱ, b̄
)

= 0). Since 2 enters only when it gets

strictly positive payoff it means that if b = b̄ then no type of 2 will enter. Firm 1 is then a

monopolist and produces output A2

4
and gets a profit π1

(
b̄
)

= A2

4
− b̄. Note that 1 will never

choose a b > b̄ as it will then get E1 (b) = A2

4
− b < E1

(
b̄
)
. Hence, in all equilibria, we get

b∗ ≤ b̄.

3.4.1 Optimal bribe (height of entry barrier) when goods are substitutes (γ > 0)

We provide the following result regarding optimal bribe, b∗, when goods are substitutes

(γ > 0). The proof is given in the appendix.
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Proposition 4 (i) If γA [f (α) (2k + ᾱ) + 1] ≤ D for all α ∈ [0, ᾱ] then b∗ = 0. (ii) If

γ [A− µ (0)] ≥ 8 then b∗ ≥ b. (iii) If max
{

12
5f(α)kγA

, 8
γ[A−µ(0)]

}
≤ 1 for all α ∈ [0, ᾱ] then

b∗ = b̄.

Remark Other things remaining the same, the market size, A, and the differentiation

parameter, γ, play a crucial role in determining the optimal bribe, b∗(optimal height of entry

barrier). If A and γ are small enough then the optimal bribe (optimal height) is zero (for

small A and γ the inequality in Proposition 4(i) is likely to be satisfied). In this case entry

is certain. If on the other hand, if A and γ are large enough then a positive b∗ (or even the

highest possible bribe level, b̄) can be observed in equilibrium (Proposition 4 - (ii) and (iii)).

In this case, entry is restricted (as height of entry barrier is positive).

The following proposition demonstrates that it is not possible to have 0 < b∗ < b.

Proposition 5 b∗ ∈ {0} ∪
[
b, b̄
]
.

Remark Proposition 5 is interesting. It states that if there is an equilibrium with strictly

positive bribe, then the level of such a bribe will be at least b. Hence, in equilibrium we will

observe either a ‘zero’bribe or a bribe which is at least b. Since b = 2AB+γ2µ(0)−2kD
4

, it is

strictly increasing in the market size. Therefore, the minimum possible bribe (height of entry

barrier)is higher if the market size, A, is bigger. Note that if the distribution of 2’s types is

uniform, then µ (0) = 1
2
ᾱ. In this case, higher is ᾱ (uncertainty level) higher will be b. That

is, the minimum possible height of entry barrier increases with uncertainty.

Note that b∗ ∈
(
b, b̄
)
is possible. In section 5 we provide an example where this is

demonstrated.

We now provide the main result on optimal bribe with complements (γ < 0).

3.4.2 Optimal bribe (height of entry barrier) when goods are complements

(γ < 0)

Proposition 6 If goods are complements (i.e. γ < 0) then b∗ = 0.
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Remark When goods are complements then regardless of the level of fairness index (or

market quality), we observe zero bribe (zero height of entry barrier) in equilibrium. The

intuition is as follows. Bribe pushes up costs of entrants and discourages entry. However,

with complements, it better for the incumbent firm to allow entry as it pushes up its de-

mand and hence its profit. Consequently, the incumbent chooses to opt for zero bribe. This

has interesting policy prescription in the following sense. In emerging economies like India,

where market quality is poor, it is better for the government to foster competition in com-

plementary goods. This is likely to reduce bribery. Since competition in substitutes tends

to eat away profits, the incumbent finds it advantageous to resort to bribe and discourage

entry. To counter this tendency, the governments should choose to encourage competition

in complementary goods.

3.5 Optimal bribe (optimal height) with no uncertainty

Suppose ᾱ = 0. That is, there is no incompleteness of information. 2’s marginal cost (which

is equal to c in this case) is known to the incumbent. In this case, firms play a complete

information Cournot game in the third stage. Routine computation yield the following.

q1 (b) =


AB+γb
D

if 2 enters
A
2
if 2 does not enter

and q2 (b) =

 2AB−4b
2D

if 2 enters

0 if 2 does not enter

Let b̂ = 2AB−2Dk
4

. It can be easily shown that 2 always enters if b ∈
[
0, b̂
)
and does not

enter, if b ∈
[
b̂,∞

)
.

Remark First note that b̂ < b < b̄. Let optimal bribe (optimal height of entry barrier) for

the case of complete information be b∗∗. Note it can be easily shown that b∗∗ ∈
{

0, b̂
}
. That

is, in equilibrium, firm 2 is either clearly in (b∗∗ = 0) or clearly out
(
b∗∗ = b̂

)
. There cannot

be any partial entry deterrence (as in the case of incomplete information).

Note that

b∗∗ = b̂⇐⇒ A2

4
− 2AB − 2Dk

4
−
(
AB

D

)2

≥ 0.

Note that since B = 2− γ and D = 4− γ2, we get

b∗∗ = b̂⇐⇒ A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)
≥ 0.
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3.5.1 Case of substitutes

When goods are substitutes we have γ ∈ (0, 1]. We now provide the following result with no

uncertainty.

Proposition 7 Let ᾱ = 0 and γ ∈ (0, 1]. If A ≥ 18
5
then there exists γ ∈ (0, 1) s.t. the

following is true. (i) If γ ≥ γ then b∗∗ = b̂. (ii) γ < γ then b∗∗ = 0.

Remark Note that if γ is small enough then the optimal bribe (optimal height of entry

barrier) , b∗∗ = 0. This resonates with our result with incomplete information (see proposition

4(i)). However, if γ is large enough and market size, A, is above a critical level, then b∗∗ = b̂

and we have completely blockaded entry. Note that when there is uncertainty (ᾱ > 0) and

there is positive bribe in equilibrium (i.e. b∗ > 0), it is at least b (see proposition 5). With no

uncertainty (ᾱ = 0), the amount of equilibrium bribe (height of entry barrier), when positive,

is b∗∗ = b̂. That is, equilibrium bribe, when positive, is larger with incomplete information

than with complete information (since b̂ < b). That is, bribe (i.e., the height of entry barrier)

is higher with uncertainty than it is with complete information.

3.5.2 Case of complements

When goods are complements γ ∈ [−1, 0). We now provide the following result.

Proposition 8 Let ᾱ = 0 and γ ∈ [−1, 0). Optimal bribe b∗∗ = 0.

Remark When goods are complements, with no uncertainty (ᾱ = 0) the optimal bribe

(optimal height of entry barrier), b∗ = 0. This is similar to the case where there is incomplete

information (see proposition 6).

4 Total social surplus and market quality

We now provide some basics on social surplus and market quality.
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4.1 Total social surplus

Note that on the demand side of the market, the representative consumer’s utility function

of two differentiated products, q1 and q2, and a numeraire good, q0 is given by

U = a (q1 + q2)− 1

2

(
q2

1 + q2
2 + 2γq1q2

)
+ q0.

The inverse demand functions are

pi = a− qi − γqj; i, j = 1, 2; i 6= j.

Here consumer surplus is

CS = U (q1, q2)− p1q1 − p2q2

= a (q1 + q2)− 1

2

(
q2

1 + q2
2 + 2γq1q2

)
+ q0 − p1q1 − p2q2

The producer surplus is 1’s profit plus 2’s profit.

PS = π1 + π2 = [p1q1 − cq1 − b] +
[
p2q2 − (c+ b− α) q2 − k2

]
Therefore, ‘total social surplus’is CS + PS + bribe (as bribe is just a transfer within the

system):

CS + PS + bribe = (a− c) q1 + (a− c− hb+ α) q2 −
1

2

(
q2

1 + q2
2 + 2γq1q2

)
+ q0 − b− k2 + b

= Aq1 + (A− hb+ α) q2 −
1

2

(
q2

1 + q2
2 + 2γq1q2

)
+ q0 − k2

Note that in equilibrium 1’s output is q1 (b) and 2’s output (when type α) is q2 (α, b). So

we have to look for expected welfare. Note that when firm 2’s type is α ≤ α∗, firm 2 does

not enter (q2 = 0) and firm 1 is a monopolist
(
q1 = qm1 = A

2

)
. Such types (α ≤ α∗) do not

enter and do not incur the entry cost k2. For this case,

CS + PS + bribe = Aq1 −
1

2
q2

1 + q0

=
3

8
A2 + q0
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The probability of the above case is F (α∗). Therefore the expected (CS + PS + bribe),

which is the expected total surplus, is as follows:

W (b) =

[
3

8
A2 + q0

]
F (α∗)

+

∫ ᾱ

α∗

 Aq1 (b) + (A− hb+ α) q2 (α, b)

−1
2
{q2

1 (b) + q2
2 (α, b) + 2γq1 (b) q2 (α, b)}+ q0 − k2

 dF (α)

4.2 Market quality

It may be noted that market quality (Q) is defined to be sum of total surplus (W ) and

fairness (−b). That is, we have

Q (b) = W (b)− b.

5 Uncertainty and market quality

As noted in the introduction, three primary factors determine market quality. These primary

factors are, “quality of competition”, “quality of information”, and “quality of products”.

In this paper we focus on two of these: (i) “quality of competition”- to what extent entry is

restricted? and (ii) “quality of information”- how the extent of incompleteness of information

(captured by ᾱ) affect bribe (height of entry barrier) and market quality.

We now seek to answer the following question. Does an increase in the uncertainty lead

to a increase in equilibrium bribe (optimal height of entry barrier) and decrease in market

quality?

While a general answer to such a question may not be possible, we produce an example,

where 2’s types are uniformly distributed, to demonstrate that an increase in uncertainty

indeed leads to a decrease in market quality. This seems to be a vindication of the idea in

Yano (2009 and 2016).13

13Note that when ᾱ changes, the disctribution unction F (.) also changes. To take care of this problem

we proceed as follows. Let for each ᾱ > 0, Fᾱ (.) denote a family of distribution functions over [0, ᾱ]. One

example is Fᾱ (t) =
[
t
ᾱ

]θ
where θ > 0. When θ = 1 then it’s a simple uniform distribution. In our example,

we take θ = 1.
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5.1 An illustrative example

Let k = 1 = γ, A = 5. Let α be uniformly distributed over [0, ᾱ]. This means F (α) = α
ᾱ

and f (α) = 1
ᾱ
. We assume that ᾱ ∈ [2.5714, 3.5117]. The following may be noted.

b =
1

8
(8 + ᾱ) , b̄ = 1 + ᾱ

α∗ =


0 if b ∈ [0, b]

8b−ᾱ−8
7

if b ∈
(
b, b̄
)

ᾱ if b ∈
[
b̄,∞

] , µ (α∗) =


ᾱ
2
if b ∈ [0, b]

1
2

[α∗ + ᾱ] = 4b+3ᾱ−4
7

if b ∈
(
b, b̄
)

ᾱ if b ∈
[
b̄,∞

]
q1 (b) =

 13−ᾱ+b
7

if 2 enters
A
2
if 2 does not enter

, q2 (α, b) =


(22+7α+ᾱ−8b)

14
if α ∈ (α∗, ᾱ]

0 if α ∈ [0, α∗]

E1 (b) =


(

13−ᾱ+b
7

)2 − b if b ∈ [0, b]

8b−ᾱ−8
7ᾱ

[
25
4
− b
]

+
(
1− 8b−ᾱ−8

7ᾱ

) [(
13−ᾱ+b

7

)2 − b
]
if b ∈

(
b, b̄
)

25
4
− b if b ∈

[
b̄,∞

)
5.1.1 Optimal bribe

Routine computations show that when ᾱ ∈ [2.5714, 3.5117] then b∗ ∈
(
b, b̄
)
and b∗ = ᾱ +

7
12

√
14 (26− 3ᾱ)− 25

3
. To illustrate this point, take ᾱ = 3. Then

b =
8 + 3

8
= 1.375 and b̄ = 4. Also,

E1 (b) =


(

10+b
7

)2 − b if b ∈ [0, 1.375]

8b−11
21

[
25
4
− b
]

+
(
1− 8b−11

21

) [(
10+b

7

)2 − b
]
if b ∈ (1.375, 4)

25
4
− b if b ∈ [4,∞)

.

We plot E1 (b) over [0, 6] in figure 1 below to demonstrate our point. Note that when ᾱ = 3,

b∗ = 3.6659 maximizes E1 (b).
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Firgure 1: E1 (b) when ᾱ = 3

5.1.2 Uncertainty and market quality

We noted that when ᾱ ∈ [2.5714, 3.5117] then b∗ ∈
(
b, b̄
)
and b∗ = ᾱ+ 7

12

√
14 (26− 3ᾱ)− 25

3
.

At equilibrium (i.e. when b = b∗) we have the following.

α∗ (b∗) = ᾱ +
2

3

√
14 (26− 3ᾱ)− 32

3

q1 (b∗) =
1

12

√
14 (26− 3ᾱ) +

2

3

q2 (α, b∗) =

 1
2
α− 1

2
ᾱ− 1

3

√
14 (26− 3ᾱ) + 19

3
if α ∈ (α∗, ᾱ]

0 if α ∈ [0, α∗]

The following may be noted.

1. It is clear that q1 (b∗) is strictly decreasing in the uncertainty parameter ᾱ.

2. Also, for all ᾱ ∈ [2.5714, 3.5117]

∂q2 (.)

∂ᾱ
= −1

2

√
26− 3ᾱ−

√
14√

26− 3ᾱ
< 0.

The above means that 2’s output, conditional on entry, decreases with ᾱ for each of

2’s possible types.
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3. Note that

∂b∗

∂ᾱ
=

1

8

8
√

26− 3α− 7
√

14√
26− 3α

> 0 for all ᾱ ∈ [2.5714, 3.5117]

That is, optimal bribe, b∗((optimal height of entry barrier), is strictly increasing in

ᾱ. As uncertainty goes up, the bribe paid also goes up (i.e. height of entry barrier

increases). That is, with increasing uncertainty, entry becomes more diffi cult.

5.1.3 Market Quality

The above computations indicate that expected market quality is likely to decrease with an

increase in ᾱ. We now demonstrate this possibility. Note that the expected market quality

in our example is as follows:

MQ (b∗) = W (b∗)− b∗

=

 (
3
8
A2
) α∗(b∗)

ᾱ
− k2

(
1− α∗(b∗)

ᾱ

)
+ q0

+
∫ ᾱ
α∗(b∗)

(
Aq1 (b∗) + 3

2
q2

2 (t, b∗)− 1
2
q2

1 (b)
)
dt
ᾱ
− b∗


=

1

216ᾱ

 224
√

14 (26− 3ᾱ)
3
2 − 12 807ᾱ− 216ᾱ2 − 126ᾱ

√
14 (26− 3ᾱ)

−15 340
√

14 (26− 3ᾱ) + 987ᾱ
√

14 (26− 3ᾱ) + 182 064


We now plot market quality over the range ᾱ ∈ [2.5714, 3.5117] in figure 2 below to show

that it is strictly decreasing with the uncertainty parameter ᾱ.

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5
5.5

5.6

5.7

5.8

Uncertainty

Market Quality

Figure 2: Uncertainty (ᾱ) and Market Quality
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Remark The main takeaways of the above example is as follows:

1. More uncertainty leads to an increase in the height of entry barrier (bribe amount) and

a decrease in market quality. This is a clear vindication of the Yano (2009, 2016) idea

that market quality is inversely linked with the quality of information.

2. Uncertainty is bribery-promotive since optimal bribe increases as the level of uncertainty

increases. This result stands somewhat in contrast to Maskin (1999).

6 Bribe (height of entry barrier) and market quality

Note that market quality Q = W (b) − b. A natural question that arises is the following:

Does zero bribe (which implies zero height of entry barrier and hence certain entry) always

maximize total surplus and market quality? When goods are substitutes, our answer is sur-

prisingly negative. However, when goods are complements, then zero bribe always maximizes

total surplus and market quality.

6.0.4 Case of substitutes (γ > 0)

For substitutes we can show that W ′ (b) < 0 and Q′ (b) < 0 at b = 0 (see the appendix for

the computations). This means b = 0 is a local maximizer for W (b) and Q (b). We now

demonstrate that b = 0 need not be a global maximizer for .

An illustrative example Note that when b = 0, all types of firm 2 enter (i.e. proba-

bility of entry is one). In this case α∗ = 0 and the expected total surplus is as follows:

W (0) =

∫ ᾱ

0

 Aq1 (0) + (A+ α) q2 (α, 0)

−1
2
{q2

1 (0) + q2
2 (α, 0) + 2γq1 (0) q2 (α, 0)}+ q0 − k2

 dF (α)

Note that market quality Q (b) = W (b)− b. Hence, and Q (0) = W (0).

Note that when b = b̄ then no type of firm 2 enters. This means α∗ = ᾱ and firm 1 is a

monopolist. In this case, we have

W
(
b̄
)

=
3

8
A2 + q0 and Q

(
b̄
)

=
3

8
A2 + q0 − b̄−−−− (47)
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Consider the following values of the parameters.

A = 3, k = 1, γ = 1 and α is uniformly distributed over [0, ᾱ] .

ᾱ ∈ (0, 0.219)

All the assumptions of our model are satisfied here and we have

µ (0) =
ᾱ

2
, b =

ᾱ

8
and b̄ = ᾱ.

Using routine computations we can show that

W (0) = Q (0) =
53

288
ᾱ2 +

2

3
ᾱ + 3 + q0 and

W
(
b̄
)

=
27

8
+ q0, Q

(
b̄
)

=
27

8
− ᾱ + q0

Note that from above we have

W
(
b̄
)
−W (0) = − 53

288
ᾱ2 − 2

3
ᾱ +

3

8

Q
(
b̄
)
−Q (0) = − 53

288
ᾱ2 − 5

3
ᾱ +

3

8

It may be noted that

W
(
b̄
)
−W (0) > 0 and Q

(
b̄
)
−Q (0) > 0 for all ᾱ ∈ (0, 0.219)

Our example shows that zero bribe is not the global maximizer ofW (b) when ᾱ ∈ (0, 0.219)

(since W
(
b̄
)
−W (0) > 0).

To illustrate it further take ᾱ = 0.2. Then, b = 0.025 and b̄ = 0.2. Note that when

ᾱ = 0.2 then

W (b) =

 11
18
b2 − 131

90
b+ 22 613

7200
if b ∈ [0, b]

−300
343
b3 + 1300

343
b2 + 251

343
b+ 42 313

13 720
if b ∈

(
b, b̄
]

Q (b) =

 11
18
b2 − 221

90
b+ 22 613

7200
if b ∈ [0, b]

−300
343
b3 + 1300

343
b2 − 92

343
b+ 42 313

13 720
if b ∈

(
b, b̄
]

In figure 3 below we plot W (b), in solid lines, and Q (b), in dash lines, over the range[
0, b̄
]

= [0, 0.2]
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Figure 3: Total surplus and market quality

Clearly, when ᾱ = 0.2 the bribe that maximizes total surplus and market quality is b = b̄ =

0.2. 14 We state this result in terms of a proposition.

Proposition 9 When goods are substitutes (γ > 0) zero bribe (no entry barrier) may not be

maximize either total surplus or market quality..

Remark As noted in the introduction, this result is somewhat related to Mankiw and

Whinston (1986). In their paper it is shown that when entrants incur a fixed set-up cost

of entry and when there is “business stealing effect” then free entry is not total surplus

maximizing. We provide a discussion of this point below.

Business stealing in our model According to Mankiw and Whinston (1986) the

business-stealing effect exists when the equilibrium strategic response of existing firms to

new entry results in their having a lower volume of sales-that is, when a new entrant ‘steals

business’from incumbent firms. Put differently, a business-stealing effect is present if the

equilibrium output per firm declines as the number of firms grows. Note that this does not

mean that total output decreases with entry. In fact, in our model, where there are two

14When b = b̄, firm 1 is a monopolist and chooses a monopoly output in equilibrium. Its net monopoly

profit is A
2

4 − b̄ = 9
4 − ᾱ > 0 when ᾱ ∈ (0, 0.219).
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firms, with complete information and substitutes (γ > 0) the incumbents’output decreases

with entry while the total output goes up. With incomplete information the concept of

business stealing is as follows:

When b ∈
(
b, b̄
)
we have α∗ ∈ (0, ᾱ) and probability of entry is 1 − F (α∗). Note that

as b increases the probability of entry goes down. In our paper when b ∈
(
b, b̄
)
then the

incumbent’s equilibrium output, q1 (b), increases with b provided γ > 0 (substitutes). More

b means lower probability of entry and incumbent’s equilibrium output increases. In other

words, more entry (lower b ⇔ lower height of entry barrier) would imply that incumbent’s

equilibrium output decreases. This is ‘business stealing effect’in our model with incomplete

information.

Note that without entry the incumbent’s output is A
2
. If b∗ = 0 then entry is certain.

With zero bribe the incumbent’s equilibrium output is AB−γµ(0)
D

and entrant’s output is
2AB+αD+γ2µ(0)

2D
. Now A

2
> AB−γµ(0)

D
iff γ > 0. That is, with b = 0 and certain entry the

incumbent’s output goes down. However, total output (incumbent’s output plus entrant’s

output) with entry is strictly greater than A
2
. That is, total output increases with entry when

there is zero bribe. Also note that both for b ∈
(
b, b̄
)
we have ∂

∂b
(q1 (b) + q2 (α, b)) < 0. That

is, total output q1 (b) + q2 (b) decreases with b. That is, lower entry (more b⇔ more height

of entry barrier) implies lower total output. In other words, more entry (lower b ⇔ lower

height of entry barrier) implies greater total output.

Mechanism behind increase in total surplus with increase in bribe We have

shown that zero bribe (certain entry) need not maximize total surplus. Take the case of

b∗ = 0 (incumbent’s optimal bribe is zero). In our example both total surplus and market

quality are maximized at b = b̄ (maximum possible height and no-entry at all). If an entrant

causes incumbent firms to reduce output, entry may be more desirable to the entrant than

it is to society. In our model, lower b means more probability of entry but lower output for

the incumbent. Also, incumbent’s profit will be lower than its profit as a monopolist. While

more entry (lower b⇔ lower height of entry barrier) means additional output of the entrant

and some additional profits as well, it may be insuffi cient to make up for the loss in output

and profit of the entrant. As a result, total surplus ( and also market quality) may go down
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with lower b (lower height and hence more entry).

6.0.5 Case of complements (γ < 0)

Proposition 10 When goods are complements (γ < 0), if −Aγ ≥ k then zero bribe (zero

height of entry barrier) maximizes both total surplus and market quality.

Remark For complements γ ∈ [−1, 0). Now −Aγ ≥ k will hold true if the market size,

A, is large relative to entry cost. Since A ≥ 3k (assumption 1), −Aγ ≥ k will also hold if

γ ≤ −1
3
.

In proposition 6 we had shown that when goods are complements then the incumbent

optimally chooses zero bribe in equilibrium. In proposition 10 we demonstrated that if the

market size is large enough zero bribe maximizes both total surplus and market quality

when goods are complements. This reinforces our policy prescription that governments

should foster competition in complements to reduce bribery (which increases fairness) and

increase market quality.

7 Conclusion

In this paper we analyzed the determinants of the ‘height’of entry barriers in a developing

economy. The incumbent can raise the costs of the potential entrant by resorting to dubious

means (such as bribes) that moves government offi cials to raise the entry barrier. We com-

pletely characterized the optimal bribe level (optimal height of entry barrier) in equilibrium

and also showed zero bribe (no entry barrier) need not always be welfare maximizing. Our

results seem to be compatible with anecdotal evidences from an emerging economy like India.

A more rigorous empirical study is required to check whether our theoretical results hold

true or not. Some simple questions that arise are as follows.

1. In our exercise if the incumbent pays bribe, b, it incurs a sunk cost equal to b. What

happens to equilibrium outcomes if the the cost of paying the bribe (b) is some function

β (b), where β (.) is strictly increasing? For example, suppose that the incumbent

generates funds for the bribe amount by taking money away from the other profitable
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activities. The optimal way to do this is to take it out from the least profitable

alternatives first. The resulting opportunity cost of paying a bribe, b, may thus be

convex in b. That is, we may have β′′ > 0 (in our model β′′ = 0). The analysis of

equilibrium outcomes for such bribe costs will be an interesting exercise.

2. Will the results change if instead of Cournot competition we have Bertrand competi-

tion in the third stage? We know that in the industrial organization literature, there

are papers that show that equilibrium outcomes depend crucially on the nature of

competition (Cournot or Bertrand).15 It would be interesting to recast our exercise

with price competition in the third stage.

3. The result (zero bribes or no entry barrier is not always socially optimal) is possibly

a direct consequence of the existence of an entry cost. In case the equilibrium bribe

(equilibrium height of entry barrier) is positive, the optimal policy may be to set a

tax on entry. A bribe is, at least partially, a social waste, but an entry tax probably

represents a superior policy. Clearly more research is needed on this front.

15See Vives (1999) for a succinct summary of the classic results around this point. Alipranti et al (2014)

provides some recent results.
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Appendix

In the appendix we provide the equilibrium computations and the proofs of all the results

mentioned in the paper.

8 Computation of third stage equilibrium

If firm 2 chooses to enter in the second stage, then in the third stage the firms play an

incomplete information Cournot game and earn duopoly profits. If firm 2 had chosen not to

enter in the second stage, then firm 1 chooses monopoly output.

Now suppose 2 has chosen to enter in the second stage. We will now compute the

Bayesian-Nash equilibrium of the third stage. In this stage, bribe level b has been determined

previously and known to both firms, whereas the entrant’s effi ciency, α, is known only to

the entrant. For any given b, let the Bayesian-Nash equilibrium be q1 (b) (quantity choice by

firm 1, which does not know α) and equilibrium choice by firm 2 (with type α) be q2 (α, b).

Note that in the second-stage 2 will enter iff it’s effi ciency (α) is higher than a critical

type α∗. That is, firm 2 enters iff α ∈ (α∗, ᾱ]. If 2 enters, then in the third stage firms 1 and

2 play an incomplete information Cournot duopoly game.

Hence, in the third-stage equilibrium, 1 knows that 2 enters iff its type α ≥ α∗. That is,

in equilibrium, 1 knows that it is facing an opponent with type α ≥ α∗. Since 1 knows it is

facing an opponent with type α ≥ α∗, then in equilibrium it computes 2’s expected output

to be Exp.(q2 (α, b) | α ≥ α∗) =
∫ ᾱ
α∗ q2 (α, b) f(α)

1−F (α∗)
dα.

In a Bayesian-Nash equilibrium, where α ∈ [α∗, ᾱ] we have the following.

q2 (α, b) = arg max
q2≥0

[
q2 {A− γq1 (b)− q2 − b+ α} − k2

]
, −−−− (1a)

q1 (b) = arg max
q1≥0

[
q1

(
A− q1 − γ

∫ ᾱ

α∗
q2 (α, b)

f (α)

1− F (α∗)
dα

)
− b
]
−−−− (1b)

Using (1a) and (1b) we get that

∂

∂q2

[
q2 {A− γq1 (b)− q2 − b+ α} − k2

]
= 0 at q2 = q2 (α, b) −−− (2a)

∂

∂q1

[
q1

(
A− q1 − γ

∫ ᾱ

α∗
q2 (α, b)

f (α)

1− F (α∗)
dα

)
− b
]

= 0 at q1 = q1 (b)−−−− (2b)
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Let

qExp.2 (α∗) =

∫ ᾱ

α∗
q2 (α, b)

f (α)

1− F (α∗)
dα.

Using (2a) and (2b) we have

q2 (α, b) =
1

2
[A− γq1 (b)− b+ α]−−−− (3a)

q1 (b) =
1

2

[
A− γqExp.2 (α∗)

]
−−−− (3b)

Using (3b) in (3a) we get

q2 (α, b) =
1

2

[
A− γ

2

{
A− γqExp.2 (α∗)

}
− b+ α

]
=

1

4

[
AB + γ2qExp.2 (α∗)− 2b+ 2α

]
−−−− (4)

From (4) above we get ∫ ᾱ

α∗
q2 (α, b)

f (α)

1− F (α∗)
dα

=

∫ ᾱ

α∗

1

4

[
AB + γ2qExp.2 (α∗)− 2b+ 2α

] f (α)

1− F (α∗)
dα

=
1

4

[
AB + γ2qExp.2 (α∗)− 2b

]
+

1

2

∫ ᾱ

α∗
α

f (α)

1− F (α∗)
dα

=
1

4

[
AB + γ2qExp.2 (α∗)− 2b+ 2µ (α∗)

]
−− (5)

Since as per our definition
∫ ᾱ
α∗ q2 (α, b) f(α)

1−F (α∗)
dα = qExp.2 (α∗) the above implies that

qExp.2 (α∗) =
[AB − 2b] + 2µ (α∗)

4− γ2
=

[AB − 2b] + 2µ (α∗)

D
−−−− (6)

Using (6) in (3b) we get

q1 (b) =
AB + γb− γµ (α∗)

D
−−−− (7)

Using (7) in (3a) we get

q2 (α, b) =
2AB + αD − 4b+ γ2µ (α∗)

2D
−−−− (8)

It may be noted that if firm 2 does not enter, then firm 1 is a monopolist in this stage and

it produces qm1 = A
2
.
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Third-stage Bayesian Nash equilibrium

q1 (b) =


AB+γb−γµ(α∗)

D
if 2 enters

A
2
if 2 does not enter

q2 (α, b) =


2AB+αD−4b+γ2µ(α∗)

2D
if α ∈ (α∗, ᾱ]

0 if α ∈ [0, α∗] (2 does not enter for such α)

Equilibrium profits at a Bayesian Nash equilibrium Routine computations show

that the equilibrium duopoly profits are as follows.

π1 (b) = [q1 (b)]2 − b

π2 (α, b) = [q2 (α, b)]2 − k2 where α ∈ (α∗, ᾱ]

9 Computation and proofs of 2nd stage equilibrium

outcomes

Given the equilibrium outcome in the third stage, we next proceed to analyze the second

stage game. In the second stage firm 2 makes a move and chooses either to enter or not to

enter. We analyze the relationship between bribe paid in the first-stage and firm 2’s entry

decision in the second stage.

Proof of Lemma 1 Suppose b = 0 and suppose that firm 2 when its type is α = 0 decides

to enter. Then, following our earlier computations we get π2 (0, 0) = [q2 (0, 0)]2 − k2 > 0 iff

q2 (0, 0) > k. Now

q2 (0, 0) =
2AB + γ2µ (0)

2D
> k

⇐⇒ 2AB + γ2µ (0) > 2kD −−−− (9)

Note that D = B (2 + γ) and γ ∈ [−1, 1]. Note γ = 0 implies that B = 2 and D = 4.

Then 2AB + γ2µ (0) = 4A > 2kD = 8k (see assumption 1). Now suppose γ 6= 0. Then

γ2 > 0. Note that 2AB ≥ 2kD ⇐⇒ A ≥ k (2 + γ). From assumption 1 we have A ≥ 3k.

This means 2AB + γ2µ (0) > 2kD.�
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We now analyze the case where b > 0 but is small enough. Since π2 (0, 0) > 0 and π2 (0, b)

is continuous in b, we have that for b small enough π2 (0, b) > 0. This means all types of firm

2 will enter when b is small enough. That is, α∗ = 0 for b small enough.

Note that for b small enough we have α∗ = 0 and hence

π2 (0, b) = [q2 (0, b)]2 − k2

=

[
2AB − 4b+ γ2µ (0)

2D

]2

− k2 > 0.−−−− (10)

(10) above clearly shows that π2 (0, b) is strictly decreasing in b and there exists b > 0 s.t.

π2 (0, b) = 0. This implies π2 (0, b) > 0 for all b ∈ [0, b). This in turn means that if 1 chooses

b ∈ [0, b) all types of firm 2 will enter. Clearly when b ≤ b, we have α∗ = 0. Note that

π2 (0, b) = 0−−−− (11)

Now note that π2 (0, b) = 0 ⇐⇒ q2 (0, b) = k. This implies 2AB−4b+γ2µ(0)
2D

= k.

Hence

b =
2AB + γ2µ (0)− 2kD

4
−−−− (12)

Proof of Proposition 1 Straight forward and follows from discussion above. Note that

when b ∈ (0, b) all types enter. That is, α∗ = 0. Here

π2 (α, b) =

[
2AB + αD − 4b+ γ2µ (0)

2D

]2

− k2

Clearly ∂π2(.)
∂b

= − 2
D
< 0 and ∂π2(.)

∂α
= 1

2
> 0.�

We now provide some discussion that will lead to the proofs of propositions 2 and 3.

Since π2 (0, b) = 0 it means that if b > b and if firm 2, when its type is α = 0 were to

enter, its payoff would be π2 (0, b) < 0. This implies that when b > b some types will choose

not to enter. That is, α∗ > 0 for b > b.

Now note that

µ (α∗) =

∫ ᾱ

α∗
α

f (α)

1− F (α∗)
dα =

∫ ᾱ
α∗ αf (α) dα

1− F (α∗)
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This means

dµ (α∗)

dα∗
=
− (1− F (α∗))α∗f (α∗) + f (α∗)

∫ ᾱ
α∗ αf (α) dα

(1− F (α∗))2

=
f (α∗)

1− F (α∗)
[µ (α∗)− α∗]−−−− (13)

Note that µ (α∗) − α∗ ≥ 0 (Since µ (α∗) is the expected value α given that it is more than

α∗). This means dµ(α∗)
dα∗ ≥ 0.

Now take b > b. Note that for b close enough to b the critical type, α∗ will be lower than

the highest type ᾱ. Note that π2 (α∗, b) = [q2 (α∗, b)]2− k2 = 0. Now [q2 (α∗, b)]2− k2 = 0 iff

q2 (α∗, b) = k. This means

2AB + α∗D − 4b+ γ2µ (α∗)

2D
− k = 0

From above (and using (13)) we can compute that

dα∗

db
=

4h

D + γ2 f(α∗)
1−F (α∗)

[µ (α∗)− α∗]
−−−− (14)

Note that dα∗

db
> 0 as µ (α∗) ≥ α∗.

For b > b and α ≥ α∗ we have

π2 (α, b) = [q2 (α, b)]2 − k2

=

[
2AB + αD − 4b+ γ2µ (α∗)

2D

]2

− k2 −−−− (15)

Note that

∂q2 (α, b)

∂b
=

1

2D

[
−4h+ γ2dµ (α∗)

dα∗
dα∗

db

]
=

1

2D

[
−4h+ γ2 f (α∗)

1− F (α∗)
[µ (α∗)− α∗] dα

∗

db

]
−−− (16)

From (14) we get that

−4h+ γ2 f (α∗)

1− F (α∗)
[µ (α∗)− α∗] dα

∗

db

= −Ddα
∗

db
< 0. −−−− (17)

Using (16), (17) and (14) we get that

∂q2 (α, b)

∂b
< 0−−−− (18)
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From (15) we know that ∂π2(α,b)
∂b

= 2q2 (α, b) ∂q2(α,b)
∂b

. Hence from (18) we have when b > b,

π2 (α, b) is strictly decreasing in b. Also, in this case, π2 (α, b) is strictly increasing in α.

That is, π2 (ᾱ, b) > π2 (α, b) for b > b.

Now note that using L’hospital’s rule we get

lim
α∗−→ᾱ

µ (α∗) = ᾱ−−−− (19)

Since D = 4− γ2, by using (15) we get,

π2 (ᾱ, b) =

[
2AB − 4b+ ᾱD + γ2ᾱ

2D

]2

− k2

=

[
2AB − 4b+ 4ᾱ

2D

]2

− k2 −−−− (20)

Note that π2 (ᾱ, b) is strictly decreasing in b and there exists b̄ s.t. π2

(
ᾱ, b̄
)

= 0. This means,

for b = b̄, α∗ = ᾱ.

Hence

π2

(
ᾱ, b̄
)

=

[
2AB − 4b̄+ 4ᾱ

2D

]2

− k2 = 0

iff
2AB − 4b̄+ 4ᾱ

2D
= k

From above we get that

b̄ =
2AB + 4ᾱ− 2kD

4
−−−− (21) .

Since γ2 ≤ 1 and ᾱ > µ (0), comparing (21) with (12) we clearly get that

b̄ > b−−−− (22)

Proof of Proposition 2 Straightforward and follows from discussion above ( see equations

13-21).�

Proof of Proposition 3 Note that from the discussion in the main body of our paper it

is clear that.

0 < α∗ < ᾱ⇐⇒ b < b < b̄
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From (12) and (21) ) we get

b =
2AB + γ2µ (0)− 2kD

4

b̄ =
2AB + 4ᾱ− 2Dk

4h

Therefore,

b < b < b̄⇐⇒ 2AB + γ2µ (0)− 2kD

4
< b <

2AB + 4ᾱ− 2kD

4h

⇐⇒ 2AB + γ2µ (0)− 2kD

D
<

4b

D
<

2AB + 4ᾱ− 2kD

D

Note that since B = 2 − γ and D = 4 − γ2 = B (2 + γ) the above is equivalent to the

following:

b < b < b̄⇐⇒ 2A

2 + γ
− 2k +

γ2

D
µ (0) <

4

D
hb <

2A

2 + γ
− 2k +

4ᾱ

D

This completes the proof.�

10 Notes on preliminary results and their proofs

Note that π1 (b) = [q1 (b)]2 − b. Hence,

dπ1 (b)

db
= 2q1 (b)

dq1 (b)

db
− 1−−−− (23)

When b ≤ b then α∗ = 0. This means for b ∈ (0, b)

q1 (b) =
AB + γb− γµ (0)

D
−−−− (24)

dq1 (b)

db
=

γ

D
−−−− (24a)

This implies when b ∈ (0, b)

dπ1 (b)

db
=

2 [AB + γb− γµ (0)] γ

D2
− 1−−−− (25)

From (12) and (24) we get that

q1 (b) =
2A− γµ (0)− 2kγ

4
−−−− (26)
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Proof of lemma 2 Note that when b ∈ (0, b) we have q1 (b) = AB+γb−γµ(0)
D

. Clearly q1 (b)

is continuous for all b ∈ (0, b). When b ∈
(
b, b̄
)
we have q1 (b) = AB+γb−γµ(α∗)

D
. Since α∗

is continuous in b, clearly q1 (b) is continuous for all b ∈
(
b, b̄
)
. Note that as b −→ b we

have α∗ −→ 0. Hence, limb→b α
∗ (b) = 0. Routine computation shows that limb→b− q1 (b) =

limb→b+ q1 (b) = q1 (b). Hence, q1 (b) is continuous for all b ∈
[
0, b̄
)
.�

Note that when b ∈
(
b, b̄
)
we have

q1 (b) =
AB + γb− γµ (α∗)

D
−−−− (27)

where α∗ ∈ (0, ᾱ) . Hence, for b ∈
(
b, b̄
)
we have

dq1 (b)

db
=

γ

D

[
1− dµ (α∗)

dα∗
dα∗

db

]

=
γ

D

[
1− f (α∗)

1− F (α∗)
[µ (α∗)− α∗] 4

D + γ2 f(α∗)
1−F (α∗)

[µ (α∗)− α∗]

]

=
γ

D
(
D + γ2 f(α∗)

1−F (α∗)
[µ (α∗)− α∗]

) [D + γ2 f (α∗)

1− F (α∗)
[µ (α∗)− α∗]− 4f (α∗)

1− F (α∗)
[µ (α∗)− α∗]

]

=
γ

D
(
D + γ2 f(α∗)

1−F (α∗)
[µ (α∗)− α∗]

) [D(1− f (α∗)

1− F (α∗)
[µ (α∗)− α∗]

)]

=
γ
(

1− f(α∗)
1−F (α∗)

[µ (α∗)− α∗]
)

(
D + γ2 f(α∗)

1−F (α∗)
[µ (α∗)− α∗]

) −−−− (28)

Since dµ(α∗)
dα∗ = f(α∗)

1−F (α∗)
[µ (α∗)− α∗] using above we get that when b ∈

(
b, b̄
)

dq1 (b)

db
=
γ
(

1− dµ(α∗)
dα∗

)
D + γ2 dµ(α∗)

dα∗

−−−− (28a)

Note that when b = b we have α∗ = 0. Hence, using (28) we get

lim
b−→b+

dq1 (b)

db
=

γ (1− f (0)µ (0))

(D + γ2f (0)µ (0))
−−−− (29)

Proof of lemma 3 Note that when b ∈ (0, b) we have q1 (b) = AB+γb−γµ(0)
D

. Hence,

when b ∈ (0, b) we have q1 (b) = γ
D
. From (28a) we get that when b ∈

(
b, b̄
)
we have

dq1(b)
db

=
γ

(
1− dµ(α∗)

dα∗

)
D+γ2

dµ(α∗)
dα∗

.�
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Proof of lemma 4 Note that from the previous lemma we have limb−→b−
dq1(b)
db

= γ
D
. From

(29) we get that limb−→b+
dq1(b)
db

= γ(1−f(0)µ(0))
(D+γ2f(0)µ(0))

. Hence,

lim
b−→b−

dq1 (b)

db
− lim

b−→b+
dq1 (b)

db

=
γ

D

[
1− D (1− f (0)µ (0))

(D + γ2f (0)µ (0))

]

Note that since µ (0) > 0 we get that if f (0) > 0

D (1− f (0)µ (0))

(D + γ2f (0)µ (0))
< 1 =⇒ 1− D (1− f (0)µ (0))

(D + γ2f (0)µ (0))
> 0.

This means when f (0) > 0

lim
b−→b−

dq1 (b)

db
> lim

b−→b+
dq1 (b)

db
iff γ > 0.

Also, when f (0) = 0 then limb−→b−
dq1(b)
db
− limb−→b+

dq1(b)
db

= 0.�

Now let

J = lim
α∗−→ᾱ

dµ (α∗)

dα∗
= lim

α∗−→ᾱ

f (α∗)

1− F (α∗)
[µ (α∗)− α∗]−−−− (30)

Note that

J = f (ᾱ) lim
α∗−→ᾱ

µ (α∗)− α∗
1− F (α∗)

−−−− (31)

Using (19) and the fact that α is distributed over [0, ᾱ] with distribution function F (.) we

know that

lim
α∗−→ᾱ

[µ (α∗)− α∗] = 0

and lim
α∗−→ᾱ

[1− F (α∗)] = 0−−−− (32)
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Hence, by using L’hospital’s rule we get

J = f (ᾱ) lim
α∗−→ᾱ

d[µ(α∗)−α∗]
dα∗

d[1−F (α∗)]
dα∗

= f (ᾱ) lim
α∗−→ᾱ

dµ(α∗)
dα∗ − 1

−f (α∗)

= f (ᾱ) lim
α∗−→ᾱ

f(α∗)
1−F (α∗)

[µ (α∗)− α∗]− 1

−f (α∗)
(using (13))

= f (ᾱ)
limα∗−→ᾱ

f(α∗)
1−F (α∗)

[µ (α∗)− α∗]− 1

−f (ᾱ)

= 1− lim
α∗−→ᾱ

f (α∗)

1− F (α∗)
[µ (α∗)− α∗]

= 1− J (see (30))−−−− (32a)

(32a) implies that

J =
1

2
−−−− (33)

Using (28a) and routine computations show that

lim
b−→b̄−

dq1 (b)

db
=

γ

D + 4
−−−− (34)

and

lim
b−→b̄−

q1 (b) =
A− kγ

2
−−−− (35)

Proof of lemma 5 Directly follows from (34) and (35).�

11 Computations and proofs of first stage equilibrium

outcomes

We now analyze the first-stage game and solve for the equilibrium level of bribe chosen by

firm 1. In the first stage firm 1 chooses the optimal level of bribe b to maximize its expected

payoff (anticipating the equilibrium outcomes in stage 2 and 3). Let the optimal level of

bribe be b∗. We will first deal with substitutes (γ > 0).
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11.1 Optimal bribe when goods are substitutes (γ > 0)

We now provide some preliminary computations for the proofs of propositions 4-9.

Note that combining (13) and (14) we get

dα∗

db
=

4

D + γ2 dµ(α∗)
dα∗

−−−− (36)

Since by assumption 2 dµ(α∗)
dα∗ ≥ 0 we must have dα∗

db
≤ 4

D
. Again by assumption 2 dµ(α∗)

dα∗ is

non-decreasing in α∗. From (30) to (33) we showed J = limα∗−→ᾱ
dµ(α∗)
dα∗ = 1

2
. This means

dµ(α∗)
dα∗ ≤

1
2
for all α∗ ∈ [0, ᾱ]. Hence, from (36) we have dα∗

db
≥ 4

D+ 1
2
γ2

= 8
2D+γ2

= 8
8−γ2 ≥ 1 (as

γ2 ≤ 1). From the above discussion we get that

1 ≤ dα∗

db
≤ 4

D
−−−− (37) .

From lemma 3 we get that when b ∈
(
b, b̄
)
, q′1 (b) =

γ

(
1− dµ(α∗)

dα∗

)
D+γ2

dµ(α∗)
dα∗

. Using (36) we have

q′1 (b) =
dα∗

db

(γ
4

)(
1− dµ (α∗)

dα∗

)
−−−− (38)

From the main body of the paper we know that if b ∈
(
b, b̄
)

E1 (b) = F (α∗)

[
A2

4
− (q1 (b))2

]
+ (q1 (b))2 − b

This means if b ∈
(
b, b̄
)

E ′1 (b) = f (α∗)
dα∗

db

[
A2

4
− (q1 (b))2

]
+ 2q1 (b) q′1 (b) [1− F (α∗)]− 1

Using (38) we get for all b ∈
(
b, b̄
)

E ′1 (b) =
dα∗

db

 f (α∗)
[
A2

4
− (q1 (b))2

]
+1

2
q1 (b) γ

(
1− dµ(α∗)

dα∗

)
[1− F (α∗)]

− 1−−− (39)

Routine computations show that

A2

4
− (q1 (b))2 =

γ

16
[2k + µ (0)] [4A− 2kγ − γµ (0)]−−−− (40)

Note that µ (0) < ᾱ and γ ∈ [0, 1] as goods are substitutes. This means

If γ > 0

A2

4
− (q1 (b))2 <

γ

4
[2k + ᾱ]A−−−− (41)
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Proof of Proposition 4 (i) From previous lemmas and discussion we get that when γ > 0

(goods are substitutes) and b ∈ (0, b) we have q1 (b) = AB+γb−γµ(0)
D

and dq1(b)
db

= γ
D
> 0. When

b ∈ (0, b) we have E1 (b) = π1 (b) = (q1 (b))2 − b. From (26) we have q1 (b) = 2A−γµ(0)−2kγ
4

.

As q1 (.) is strictly increasing in b we get for all b ∈ (0, b)

E ′1 (b) = π′1 (b) = 2q1 (b)
γ

D
− 1 < 2q1 (b)

γ

D
− 1

=
2A− γµ (0)− 2kγ

2

γ

D
− 1 ≤ γA

D
− 1.

The above shows that E ′1 (b) < 0 if 1 ≤ D
γA
. By hypothesis of the proposition we have

1 ≤ D
γA[f(α)(2k+ᾱ)+1]

. This implies 1 ≤ D
γA
. Hence, we get E ′1 (b) < 0 for all b ∈ (0, b).

Using (37) and (39) we get that for all b ∈
(
b, b̄
)

E ′1 (b) ≤ 4

D

 f (α∗)
[
A2

4
− (q1 (b))2

]
+1

2
q1 (b) γ

(
1− dµ(α∗)

dα∗

)
[1− F (α∗)]

− 1−−− (42)

Note that since q1 (b) is strictly increasing for all b ∈
(
b, b̄
)
,1−F (α∗) ≤ 1 and 1− dµ(α∗)

dα∗ ≤ 1

(from assumption 2) we get from above

E ′1 (b) <
4

D

{
f (α∗)

[
A2

4
− (q1 (b))2

]
+

1

2
γ lim
b→b̄−

q1 (b)

}
− 1−−− (43)

Since γ > 0 by using (35) and (41) in (43) we get that

E ′1 (b) <
4

D

{
f (α∗)

γ

4
[2k + ᾱ]A+

1

2
γ
A− kγ

2

}
− 1

<
4

D

{
f (α∗)

γ

4
[2k + ᾱ]A+

1

4
γA

}
− 1

=
γA

D
{f (α∗) γ [2k + ᾱ] + 1} − 1−−−− (44)

Note that 1 ≤ D
γA[f(α)(2k+ᾱ)+1]

for all α ∈ [0, ᾱ] implies γA
D
{f (α∗) γ [2k + ᾱ] + 1} − 1 ≤ 0.

From (44) this implies E ′1 (b) < 0 for all b ∈
(
b, b̄
)
. We have already demonstrated that

E ′1 (b) < 0 for all b ∈ (0, b). Also, E1 (b) is continuous for all b ∈
[
0, b̄
]
. All these together

imply that E1 (0) > E1 (b) for all b ∈
(
0, b̄
]
. Hence, if 1 ≤ D

γA[f(α)(2k+ᾱ)+1]
for all α ∈ [0, ᾱ]

then b∗ = 0.�

53



Proof of Proposition 4(ii) From (25) we get that when b ∈ (0, b)

dπ1 (b)

db
=

2 [AB + γb− γµ (0)] γh

D2
− 1

Since γ > 0, we get 2[AB+γb−γµ(0)]γ
D2 > 2[AB−γµ(0)]γ

D2 . Since γ ≤ 1, D ∈ [3, 4] and B ∈ [1, 3] we

get 1 ≥ 8
γ[A−µ(0)]

implies that 1 ≥ D2

2γ(AB−γµ(0))
and this turn implies 2[AB−γµ(0)]γ

D2 − 1 ≥ 0 and

this means dπ1(b)
db

= 2[AB+γhb−γµ(0)]γ
D2 − 1 > 0 for all b ∈ (0, b). Note that E1 (b) = π1 (b) for all

b ∈ (0, b). Hence we get that if 1 ≥ 8
γ[A−µ(0)]

then E ′1 (b) > 0 for all b ∈ (0, b). Also, E1 (b) is

continuous for all b ∈
[
0, b̄
]
. Consequently, b∗ ≥ b.�

Proof of Proposition 4(iii) Since γ > 0 implies that q1 (b) is strictly increasing in all

b ∈
(
b, b̄
)
we must have

A2

4
− (q1 (b))2 >

A2

4
− lim

b→b̄−
(q1 (b))2

=
A2

4
−
(
A− kγ

2

)2

=
kγ

4
(2A− kγ)

≥ kγ

4
(2A− k) (since γ ≤ 1)−−− (45)

From (37) we have 1 ≤ dα∗

db
. Also, 1−F (α∗) ≥ 0. Using these facts and (45) in (39) we have

for all b ∈
(
b, b̄
)
E ′1 (b) =

dα∗

db

 f (α∗)
[
A2

4
− (q1 (b))2

]
+1

2
q1 (b) γ

(
1− dµ(α∗)

dα∗

)
[1− F (α∗)]

− 1

> f (α∗)
kγ

4
(2A− k)− 1−−−− (46) .

Now note that from assumption 1 we have A ≥ 3k. This means

2A− k ≥ 2A− A

3
=

5A

3
−−−− (47) .

Using (47) in (46) we get for all b ∈
(
b, b̄
)

E ′1 (b) >
5kγf (α∗)

12
− 1−−−− (50) .

If 1 ≥ max
{

12
5f(α)kγA

, 8
γ[A−µ(0)]

}
for all α ∈ [0, ᾱ] then 1 ≥ 12

5f(α)kγA
. But this implies (from

(50)) for all b ∈
(
b, b̄
)
, E ′1 (b) > 0.
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From proposition we know that if 1 ≥ 8
γ[A−µ(0)]

then b∗ ≥ b. Consequently, 1 ≥

max
{

12
5f(α)kγA

, 8
γ[A−µ(0)]

}
implies that b∗ = b̄.�

Proof of Proposition 5 Note that from proposition 4 we get suffi cient conditions under

which b∗ = 0 or b∗ ∈
[
b, b̄
]
. We now rule out the possibility that b∗ ∈ (0, b). On the contrary

suppose that 0 < b∗ < b. Note that when b ∈ (0, b), E1 (b) = π1 (b). From (25) we know that

when b ∈ (0, b)
dπ1 (b)

db
=

2 [AB + γb− γµ (0)] γ

D2
− 1

Clearly dπ1(b)
db

is strictly increasing in b when b ∈ (0, b). This implies π1 (b) cannot achieve a

maximum in (0, b). Hence, b∗ /∈ (0, b).�

11.2 Optimal bribe when goods are complements (γ < 0)

Proof of Proposition 6 Note that when b ∈ (0, b) we have E1 (b) = π1 (b) = (q1 (b))2− b.

Therefore when b ∈ (0, b) we get dE1(b)
db

= 2q1 (b) dq1(b)
db
− 1. From (24a) we get that for

b ∈ (0, b), dq1(b)
db

= γ
D
< 0 (since γ < 0). Hence, γ < 0 implies that E ′1 (b) < 0 for all

b ∈ (0, b).

Now note that if b ∈
(
b, b̄
)

E1 (b) = F (α∗)

[
A2

4
− (q1 (b))2

]
+ (q1 (b))2 − b

From (44) we know that for all b ∈
(
b, b̄
)

E ′1 (b) <
γA

D
{f (α∗) γ [2k + ᾱ] + 1} − 1−−−− (51)

Since γ < 0 from (61) we get that E ′1 (b) < 0 for all b ∈
(
b, b̄
)
. Also, E1 (b) is continuous for

all b ∈
[
0, b̄
]
. Hence, b∗ = 0.�

11.3 Case of No uncertainty (ᾱ = 0)

Proof of Proposition 7 From the discussion in section 5 we know that

A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)
≥ 0 =⇒ b∗∗ = b̂−− (51)

and

A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)
< 0 =⇒ b∗∗ = 0−− (52)
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Note that since γ ∈ (0, 1]

∂

∂γ

[
A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)]
= 2 (γ + 2)

(
A2 + 3Aγ − 2A− 4kγ2 − 4kγ + 8k

)
≥ 0⇐⇒

(
A2 + 3Aγ − 2A− 4kγ2 − 4kγ + 8k

)
≥ 0−−−− (53)

Again, since γ ∈ (0, 1] and A ≥ 18
5

A2 + 3Aγ − 2A− 4kγ2 − 4kγ + 8k

= A (A+ 3γ − 2) + k
(
8− 4γ2 − 4γ

)
≥ A (A+ 3γ − 2) > 0 −−−− (54)

(53) and (54) together imply that

∂

∂γ

[
A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)]
> 0−−−− (55)

Now note that when γ = 0 then[
A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)]
= −16A+ 32k < 0 since A ≥ 3k (assumption 1)−−−− (56)

When γ = 1 then since A ≥ 18
5
and k > 0 we get[

A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)]
= 5A2 − 18A+ 54k > 0 −−−− (57) .

Note that [A2 (γ2 + 4γ) + 2A (−8− 4γ + 2γ2 + γ3) + 2k (16 + 16γ − 4γ3 − γ4)] is continu-

ous in γ and is strictly increasing (see (54)). Using this fact, (55), (56) and the intermediate

value theorem, we get that there exists a unique γ ∈ (0, 1) such that

A2
(
γ2 + 4γ

)
+2A

(
−8− 4γ + 2γ2 + γ3

)
+2k

(
16 + 16γ − 4γ3 − γ4

)
= 0⇐⇒ γ = γ−−−(58)

Also,[
A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)]
> 0 if γ > γ −−−− (59)

and[
A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)]
< 0 if γ < γ −−−− (60)

Hence, using (51) and (52) we get that if A ≥ 18
5
then γ ≥ γ =⇒ b∗∗ = b̂ and γ < γ =⇒ b∗ =

0.�
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Proof of Proposition 8 Note that (γ2 + 4γ) is strictly increasing. This implies when

γ ∈ [−1, 0), (γ2 + 4γ) ≤ 0. Since |γ| ≤ 1, we have

(
−8− 4γ + 2γ2 + γ3

)
< 0−−−− (61)

Since A ≥ 3k,

A2
(
γ2 + 4γ

)
+ 2A

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)
≤ 6k

(
−8− 4γ + 2γ2 + γ3

)
+ 2k

(
16 + 16γ − 4γ3 − γ4

)
= −2k (γ + 2)2 (γ − 1) (γ − 2) < 0 for all γ ∈ [−1, 0)−−−− (62) .

Using (52) and (62) we get that when γ ∈ [−1, 0) we must have b∗∗ = 0.�

12 Computations and proofs on total surplus and mar-

ket quality

Note that in section 4.1 we have already derived the total surplus function. We reproduce

it below.

W (b) =

[
3

8
A2 + q0

]
F (α∗)

+

∫ ᾱ

α∗

 Aq1 (b) + (A− b+ α) q2 (α, b)

−1
2
{q2

1 (b) + q2
2 (α, b) + 2γq1 (b) q2 (α, b)}+ q0 − k2

 dF (α)−− (63)

From above we can write the expected total surplus as follows:

W (b) =

[
3

8
A2

]
F (α∗) +

[
Aq1 (b)− 1

2
q2

1 (b)− k2

]
(1− F (α∗))

+ [A− b− γq1 (b)]

∫ ᾱ

α∗
q2 (α, b) dF (α) +

∫ ᾱ

α∗
αq2 (α, b) dF (α)

−1

2

∫ ᾱ

α∗
q2

2 (α, b) dF (α) + q0 −−−− (64)

Note that for b ∈ [0, b) we have α∗ = 0 (all types enter). This means F (α∗) = 0. Hence
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for b ∈ [0, b)

W (b)|b∈[0,b) = Aq1 (b)− 1

2
q2

1 (b) + [A− b− γq1 (b)]

∫ ᾱ

0

q2 (α, b) dF (α)

+

∫ ᾱ

0

αq2 (α, b) dF (α)− 1

2

∫ ᾱ

0

q2
2 (α, b) dF (α)

+q0 − k2 −−−− (65)

Hence, for b ∈ [0, b)

W ′ (b)|b∈[0,b) = (A− q1 (b)) q′1 (b)− [h+ γq′1 (b)]

∫ ᾱ

0

q2 (α, b) dF (α)

+ [A− hb− γq1 (b)]

∫ ᾱ

0

∂q2 (α, b)

∂b
dF (α)

+

∫ ᾱ

0

α
∂q2 (α, b)

∂b
dF (α)−

∫ ᾱ

0

q2 (α, b)
∂q2 (α, b)

∂b
dF (α)−−−− (66)

To computeW ′ (b) for b ∈ [0, b), note the following. From our earlier derivations we know

that ∫ ᾱ

α∗
q2 (α, b)

f (α)

1− F (α∗)
dα =

[AB − 2b] + 2µ (α∗)

D

When b ∈ [0, b), α∗ = 0 and we have

q1 (b) =
AB + bγ − γµ (0)

D
−−−−−−− (67a)

q2 (α, b) =
2AB + αD − 4b+ γ2µ (0)

2D
−−− (67b)∫ ᾱ

0

q2 (α, b) f (α) dα =
AB − 2b+ 2µ (0)

D
−−−−−−− (67c)

From (67) we get that when b ∈ [0, b)

q′1 (b) =
γ

D
and

∂q2 (α, b)

∂b
= − 2

D
−−−− (68)

Hence, for b ∈ [0, b) (using (66) and (68))

W ′ (b)|b∈[0,b) = (A− q1 (b))
γ

D
−
[
1 +

γ2

D

] ∫ ᾱ

0

q2 (α, b) dF (α)

− [A− b− γq1 (b)]

∫ ᾱ

0

2

D
dF (α)

−
∫ ᾱ

0

α
2

D
dF (α) +

∫ ᾱ

0

q2 (α, b)
2

D
dF (α)−−−− (69)
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Using the fact that D + γ2 = 4, B = 2− γ and using (69) we get that for b ∈ [0, b)

W ′ (b)|b∈[0,b) =
1

D

 (A− q1 (b)) γ − 2
∫ ᾱ

0
q2 (α, b) dF (α)

−2 [A− b− γq1 (b)]− 2µ (0)


=

h

D

[
−AB + γq1 (b) + 2 [hb− µ (0)]− 2

∫ ᾱ

0

q2 (α, b) dF (α)

]
−−− (70)

We now compute W ′ (b) at b = 0.

W ′ (b)|b=0 =
1

D

[
−AB + γq1 (0)− 2µ (0)− 2

∫ ᾱ

0

q2 (α, 0) dF (α)

]
=

1

D

[
−AB + γ

AB − γµ (0)

D
− 2µ (0)− 2

AB + 2µ (0)

D

]
−−−− (71)

12.1 Case of substitutes (γ > 0)

For substitutes since γ ∈ (0, 1] using (71) above we can show that W ′ (b) < 0 at b = 0. Since

market quality, Q (b) = W (b) − b. Hence, Q′ (b) = W ′ (b) − 1 < 0 at b = 0. This means

b = 0 is a local maximizer for W (b) and Q (b). Now we will show that b = 0 need not be

the global maximizer of either W (b) or Q (b).

Note that when b = 0, all types of firm 2 enter (i.e. probability of entry is one). In this

case α∗ = 0 and the expected welfare is as follows:

W (0) =

∫ ᾱ

0

 Aq1 (0) + (A+ α) q2 (α, 0)

−1
2
{q2

1 (0) + q2
2 (α, 0) + 2γq1 (0) q2 (α, 0)}+ q0 − k2

 dF (α)−−−− (72)

Note that when b = b̄ then no type of firm 2 enters. This means α∗ = ᾱ and firm 1 is a

monopolist. In this case, we have

W
(
b̄
)

=
3

8
A2 + q0 −−−− (73)

Now consider the following values of the parameters.

A = 3, k = 1, γ = 1 and α is uniformly distributed over [0, ᾱ] .

ᾱ ∈ (0, 0.219)
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All our assumptions are satisfied here and we have µ (0) = ᾱ
2
. In this specific example we

also have

B = 1, D = 3, b =
ᾱ

8
and b̄ = ᾱ

Hence when b = 0, we have

q1 (0) =
3− ᾱ

2

3

q2 (0, α) =
6 + 3α + ᾱ

2

6
−−−− (74)

Using (72), (73) and (74) routine computations show that

W (0) =
53

288
ᾱ2 +

2

3
ᾱ + 3 + q0 = Q (0)−−−− (75a)

W
(
b̄
)

=
27

8
+ q0, Q

(
b̄
)

=
27

8
− ᾱ + q0 −−−− (75b)

Note that from (75a and 75b) we have

W
(
b̄
)
−W (0) = − 53

288
ᾱ2 − 2

3
ᾱ +

3

8

Q
(
b̄
)
−Q (0) = − 53

288
ᾱ2 − 5

3
ᾱ +

3

8

It may be noted that W
(
b̄
)
−W (0) > 0 t and Q

(
b̄
)
−Q (0) for all ᾱ ∈ (0, 0.219).

12.2 Case of complements (γ < 0)

Note the following which follows from our earlier computations. Since γ < 0 (complements)

and dµ(α∗)
dα∗ < 1 for all α∗ ∈ [0, ᾱ] (assumption 2)

∂q2 (α, b)

∂b
=

 − 4h
2D

< 0 for b ∈ (0, b)

−1
2
dα∗

db
< 0 for b ∈

(
b, b̄
) −−− (76a)

dq1 (b)

db
=


hγ
D
< 0 for b ∈ (0, b)

hγ

(
1− dµ(α∗)

dα∗

)
D+γ2

dµ(α∗)
dα∗

< 0 for b ∈
(
b, b̄
) −−− (76b)

When γ < 0 by using (69) it is straightforward to show that W ′ (b) < 0 and Q′ (b) < 0

for all b ∈ (0, b). Now suppose b ∈
(
b, b̄
)
. Then from (63) we have

W (b) =

[
3

8
A2

]
F (α∗) + q0

+

∫ ᾱ

α∗

 Aq1 (b) + (A− hb+ α) q2 (α, b)

−1
2
{q2

1 (b) + q2
2 (α, b) + 2γq1 (b) q2 (α, b)} − k2

 f (α) dα−− (77)
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Note that π2 (α, b) = (A− hb+ α) q2 (α, b)− k2 = [q2 (α, b)]2 − k2. Using this in (77) we get

that when b ∈
(
b, b̄
)

W (b) =

[
3

8
A2

]
F (α∗) + q0

+

∫ ᾱ

α∗

 Aq1 (b) + 1
2

[q2 (α, b)]2 − k2

−1
2
q2

1 (b)− γq1 (b) q2 (α, b)

 f (α) dα−− (78)

From (78) we get that when b ∈
(
b, b̄
)

W ′ (b) =
3

8
A2f (α∗)

dα∗

db

−dα
∗

db
f (α∗)

 Aq1 (b) + 1
2

[q2 (α∗, b)]2 − k2

−1
2
q2

1 (b)− γq1 (b) q2 (α∗, b)


+

∫ ᾱ

α∗

 Adq1(b)
db

+ q2 (α, b) ∂q2(α,b)
∂b

−q1 (b) dq1(b)
db
− γq1 (b) ∂q2(α,b)

∂b
− γq2 (α, b) dq1(b)

db

 f (α) dα−− (79)

Note that π2 (α∗, b) = [q2 (α∗, b)]2 − k2 = 0 and q2 (α∗, b) = k. Using these facts and (79) we

have that when b ∈
(
b, b̄
)

W ′ (b) =
3

8
A2f (α∗)

dα∗

db

−dα
∗

db
f (α∗)

[
Aq1 (b)− 1

2
k2 − 1

2
q2

1 (b)− γkq1 (b)

]

+

∫ ᾱ

α∗

 dq1(b)
db

(A− q1 (b)− γq2 (α, b))

+∂q2(α,b)
∂b

(q2 (α, b)− γq1 (b))

 f (α) dα−− (80)

Note that from (76a) and (76b) we get that dq1(b)
db

, ∂q2(α,b)
∂b

< 0. This means

dq1 (b)

db
(A− q1 (b)− γq2 (α, b)) +

∂q2 (α, b)

∂b
(q2 (α, b)− γq1 (b)) < 0−− (81)

Also note that

d

db

[
Aq1 (b)− 1

2
k2 − 1

2
q2

1 (b)− γkq1 (b)

]
=

dq1 (b)

db
[A− q1 (b)− γk] < 0−− (82)
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(82) implies that

Aq1 (b)− 1

2
k2 − 1

2
q2

1 (b)− γkq1 (b)

> lim
b→b̄

[
Aq1 (b)− 1

2
k2 − 1

2
q2

1 (b)− γkq1 (b)

]
=

3

8
(A− γk)2 − 1

2
k2 −−−− (83)

Now note that

3

8
(A− γk)2 − 1

2
k2 ≥ 3

8
A2 ⇐⇒ −4Aγ ≥ k

(
4− 3γ2

)
−− (84)

Proof of Proposition 11 Note that since for complements γ ∈ (−1, 0) we get that

−Aγ ≥ k =⇒ −4Aγ ≥ k (4− 3γ2). Now using (80) and (84) we get that W ′ (b) < 0 for

all b ∈
(
b, b̄
)
. This means Q′ (b) = W ′ (b) − 1 < 0 for all b ∈

(
b, b̄
)
. We also know that

W ′ (b) < 0 and Q′ (b) < 0 for b ∈ (0, b). All these imply that when γ ∈ (−1, 0) we have

b∗ = 0.�
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