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Abstract 

Agglomeration externalities have been recognized as major sources of lumpy spatial distributions of industries 

and population. While the abstraction of interregional space has been a common exercise, the recent increasing 

availability of disaggregated geographical data and more sophisticated computational techniques have promoted 

counterfactual analyses based on many-region models of agglomeration externalities with explicit interregional 

space (e.g., Redding and Sturm, 2008; Allen and Arkolakis, 2014). A caveat is that incorporating interregional 

space to a many-region model with agglomeration externalities by itself does not warrant the formation of 

polycentric agglomerations in stable equilibria—a crucial property in order to replicate the observed geography 

of agglomerations. We elaborate this point by comparing a pair of new economic geography models: Forslid 

and Ottaviano (2003) and Helpman (1998). In a two-region economy, these models exhibit both “agglomeration” 

(i.e., a relative concentration of mobile agents in one of the regions) and “dispersion” (i.e., a uniform 

distribution of mobile agents across the two regions). But, if the location space were more disaggregated, only 

the former admits polycentric agglomerations in stable equilibria, while in the latter, only a monocentric 

agglomeration can occur if any. 
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1 Introduction

Empirical studies in the recent decades have accumulated ample evidence that agglom-
eration externalities are major sources of lumpy spatial distributions of industries and
population (see, e.g., Rosenthal and Strange, 2004, for a survey). Accordingly a wide
variety of formal models for the underlying mechanisms have been proposed (see, e.g.,
Duranton and Puga, 2004, for a survey). Nevertheless, there is little theoretical devel-
opment to account for the global spatial patterns of agglomerations, and consequently
the empirical studies so far have focused mainly on the local interactions between the
agglomeration size and location-specific factors (see, e.g., Combes and Gobillon, 2015,
for a survey).

A main reason for this is that the explicit consideration of interregional space is a
primary obstacle for achieving analytical tractability in theoretical models. There are
two popular approaches adopted to abstract from interregional space. One is the so-
called “city-systems” framework which was first proposed by Henderson (1974). The
models of this type explain the diversity among cities with respect to, e.g., productivity,
growth, the composition of industries and population, in terms of the tension between
city-specific positive and negative externalities together with other local factors, while
abstracting from inter-city space (see Behrens and Robert-Nicoud, 2015, for a survey).
The other is to consider the minimum spatial economy consist of two regions in which
the agglomeration is expressed simply in terms of the concentration of mobile agents
in one of the two regions. As one exception, the new economic geography (NEG) was
developed in 1990s to explore the spatial patterns of agglomerations in a general location
space (e.g., Fujita et al., 1999, Pt. II). But, this approach has never flourished, and the
two-region setup soon dominated the NEG literature (see, e.g., Baldwin et al., 2003).

While the disregard of interregional space has been routine in the theoretical model-
ing of spatial economy, the recent increasing availability of disaggregated geographical
data and sophisticated computational techniques have promoted the emergence of coun-
terfactual analyses based on many-region models with agglomeration externalities and
explicit interregional space (see Redding and Sturm, 2008; Desmet and Rossi-Hansberg,
2009, 2014, 2015; Allen and Arkolakis, 2014; Behrens et al., 2014; Redding, 2015; Desmet
et al., 2015a,b). This shift took place rather suddenly, without close inspection of the
model behavior in a many-region economy. Among a number of requirements for these
models, the most fundamental one perhaps is the ability to endogenously generate poly-
centric agglomerations in stable equilibria. A caveat is that incorporating interregional
space to a many-region model with agglomeration externalities does not by itself warrant
this consequence.

We elaborate this point by comparing a pair of NEG models as they offer us a tractabil-
ity in a multi-region setup. The first one is a multi-region extension of the two-region
NEG model developed by Forslid and Ottaviano (2003) (henceforth called “FO model”),
which is a solvable variant of the original core-periphery model by Krugman (1991). The
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other is a multi-region version of Helpman (1998) (henceforth “Hm model”) in which
the agricultural sector in the core-periphery model is replaced with the housing sector.1

In a two-region economy, these models exhibit both “agglomeration” (i.e., a relative con-
centration of mobile agents in one of the two regions) and “dispersion” (i.e., a uniform
distribution of mobile agents across the regions). But in a multi-region economy with
more than two regions, only the former can generate poly-centric agglomerations in sta-
ble equilibria, while in the latter, only a mono-centric agglomeration can occur if any.
That is, even if the Hm model were extended to a many-region economy, it will not be
able to replicate poly-centric agglomerations.

In fact, Redding and Sturm (2008) calibrated the multi-region Hm model to fit the
population agglomeration pattern in Germany in 1939. But, nearly 90% of the actual
city size variation was accounted for by the unobserved city-specific amenities that were
given exogenously to the model.2 This is not surprising provided that the poly-centric
city system in Germany is hardly represented by a mono-centric pattern which is the
only possible agglomeration pattern in the Hm model. Fabinger (2015) pointed out that
mono-centric patterns are the only possibility in stable equilibria also in the model by
Allen and Arkolakis (2014) which was calibrated to fit the spatial population distribution
in the US.

To this end, we apply the analytical approach developed by Akamatsu et al. (2012)
that exploited the circulant property of the “spatial discounting matrix (SDM)” in a circu-
lar region system (“racetrack economy (RE)”) and the “discrete Fourier transformation
(DFT).” Their approach is applicable to various types of NEG models with an arbitrary
discrete number of symmetric locations, and allows us not only to examine whether the
agglomeration of mobile factors emerges from a uniform distribution but also to trace
the evolution of spatial agglomeration patterns (i.e., bifurcations from various poly-centric
patterns as well as from a uniform pattern) in response to the change in parameter values.

In this article, these tools are utilized to elaborate the dichotomy of the model behavior
between the FO- and Hm-models under the multi-region extension. For each of these
multi-region models with symmetric locations (i.e., equidistant locations placed on a
circumference and unskilled labor/land supply are symmetrically distributed),3 we first
derive (in Proposition 3.1) the indirect utility of a consumer for a short-run equilibrium
(in which a location pattern of consumers is fixed) as a function of mobile consumers’

1The urban costs modeled in Tabuchi (1998) and Murata and Thisse (2005) exercise a similar effect on
agglomeration patterns as the housing sector in the Hm model.

2 More precisely, the unobserved amenities in their model is the city-specific “housing stock” in the
original Hm model which acts as a slack variable to fill the gap between the actual and model city sizes. If
the log of city sizes are regressed on their “unobserved amenity” in 1939 (provided in their online Appendix),
the fit is as high as R2 = 0.895. See also Nakajima (2008) and Redding (2015) for similar applications of the
Hm model.

3It is worth noting that, in many fields such as physics, engineering, and applied mathematics, the
concept that bifurcation behavior under symmetry assumption reveals essential properties of the model has
been recognized, and the symmetry assumption has become the orthodox and powerful tool to clarify the
intrinsic properties of many phenomena (e.g., Golubitsky et al., 1988; Ikeda and Murota, 2010; Stewart, 2013;
Strogatz, 2014).
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spatial distribution. In order to understand the bifurcation mechanism of the models,
we need to understand how the eigenvalues of the Jacobian matrix of the adjustment
process4 (that is a function of the indirect utility) for each model depend on bifurcation
parameters (e.g., the transportation cost parameter). A combination of the RE (with
discrete locations) and the resultant circulant properties of the SDM greatly facilitate this
analysis. Indeed, it is shown (in Proposition 4.1) that the k-th eigenvalue gk of the Jacobian
matrix of the adjustment process can be expressed as a simple unimodal function of the
k-th eigenvalue fk of the SDM. The former eigenvalue gk thus obtained has a natural
economic interpretation as the strength of “net agglomeration force,” and offers the key
to understanding the agglomeration properties of the NEG models. In this bifurcation
analysis, we intentionally restricted ourselves to the four-region economy for clarity of
exposition, as it allows us to illustrate the essential features of our approach without
going into excessive technical detail.5

Exploiting the information on the eigenvalues thus obtained, we investigate each of
the evolutionary processes of the spatial agglomeration of mobile factors in the multi-
region FO model and the Hm model in turn. In the investigation, we follow the process
of agglomeration from a uniform distribution over the regions, since it is natural from
the bifurcation theoretical viewpoint to follow (possibly) a series of bifurcations in such
a way that the symmetry is successively reduced.6

For the FO model, we consider the process in which transportation costs steadily
decrease over time. Starting from the infinite transport costs at which the uniform distri-
bution of mobile factors over the regions is a unique stable equilibrium, we investigate
when and what spatial patterns of agglomeration emerge (i.e., bifurcation occurs) with
the decrease in transport costs. The analytical expression of the eigenvalues allows us to
identify the “break point” at which the bifurcation occurs, and the associated patterns of
agglomeration that emerge at the bifurcation (Proposition 5.2). Unlike the conventional
two-region models that exhibit only a single bifurcation, this is not the end of the story
in the four-region model. Indeed, it is shown (in Proposition 5.3) that the agglomeration
pattern after the first bifurcation evolves over time with steady decrease in transport
costs; it first grows to a duo-centric pattern, which continues to be stable for a while.
Further decrease in transport costs, however, trigger the second bifurcation, which in
turn leads to the formation of a mono-centric agglomeration.

For the Hm model, in contrast to the FO model, we consider the process in which
transport cost steadily increase from the minimum value, 0, at which a uniform distribu-
tion over the regions is a unique stable equilibrium. By the eigenvalue analysis similar

4In this paper, we employ the replicator dynamic as the adjustment process.
5The approach presented in this paper can deal with a model with an arbitrary number of regions (refer to

Akamatsu et al., 2012). Note that this approach allows us to obtain stable equilibrium agglomeration patterns
even if the model exhibits hysteresis. Furthermore, by identifying the type of bifurcation (supercritical or
subcritical) using the approach presented in Ikeda and Murota (2010, 2014), we can check whether hysteresis
exists.

6This strategy is commonly used in various fields of science to study bifurcation behavior of symmetric
systems (e.g., Golubitsky et al., 1988; Ikeda and Murota, 2010; Stewart, 2013; Strogatz, 2014).
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to that for the FO model, it is shown (in Proposition 6.2) that a uniform distribution
directly branches to a mono-centric distribution. Furthermore, it is also proved that the
duo-centric pattern, which emerges in the FO model, never emerges in the Hm model
(Proposition 6.3). That is, unlike the FO model, the Hm model admits at most a single
peak in spatial distribution of mobile agents, even if it involves more than two regions.

The remainder of the paper is organized as follows. Section 2 reviews the related
literature. Section 3 presents the equilibrium conditions of the multi-region NEG models
as well as definitions of the stability and bifurcation of the equilibrium state. Section
4 defines the SDM in a racetrack economy, whose eigenvalues are provided by a DFT.
Sections 5 and 6 analyze the evolutionary process of spatial patterns observed in the FO
and Hm models, respectively. These theoretical results are then illustrated by numerical
examples in Section 7. Finally, Section 8 concludes the paper.

2 Related literature

A method that can be used to analytically predict bifurcation properties of a wide class
of multi-region models is the Turing (1952) approach, in which one focuses on the onset
of instability in the uniform equilibrium distribution (“flat earth equilibrium”) of mobile
agents. That is, by assuming a certain class of adjustment process (e.g., “replicator dy-
namic”), one examines a trend of the economy away from, rather than toward, the flat
earth equilibrium whose instability implies the emergence of some agglomeration.7 Krug-
man (1996) and Fujita et al. (1999, Chap.6) applied this approach to the NEG model with
a continuum of locations on the circumference and succeeded in showing that a steady
decrease in transportation costs leads toward the instability of the flat earth equilibrium
state. Subsequently, a few studies have also applied this approach, and re-examined the
robustness of Krugman’s findings in the core-periphery model with a continuous space
racetrack economy. Mossay (2003) theoretically qualified Krugman’s results in the case
of workers’ heterogeneous preferences for location. Picard and Tabuchi (2010) examined
the impact of the shape of transport costs on the structure of spatial equilibria. While this
approach offers a remarkable way of thinking about a seemingly complex issue, it deals
with only the first stage of agglomeration when the value of a parameter (e.g., trans-
portation cost) steadily changes. Therefore, it cannot provide a good description of what
actually happens thereafter. Indeed, Krugman (1996) and Fujita et al. (1999, Chap.17)
resorted to rather ad hoc numerical simulations for analyzing the possible bifurcations
in the later stages; subsequent studies of Mossay (2003) and Picard and Tabuchi (2010)
were silent on such bifurcations.

Tabuchi et al. (2005) presented an approach to study the impact of decreasing trans-
portation costs on the size and number of locations in the multi-region model that ex-
tends a two-region NEG model by Ottaviano et al. (2002). Oyama (2009) showed that

7The first notable application of this approach to analyzing agglomeration in a spatial economy was
made by Papageorgiou and Smith (1983).
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the multi-region NEG model admits a potential function, which allows identifying a sta-
tionary state that is uniquely absorbing and globally accessible under perfect foresight
dynamics. However, these analyses were restricted to a very special class of transport
geometry: Tabuchi et al. (2005) assumed that locations are equidistant (i.e., transportation
costs are the same regardless of the origin and destination); Oyama (2009) allowed dif-
ferent locations to have different destination specific transportation costs but which are
independent of the origin. Recently, Tabuchi and Thisse (2011) showed that a hierarchical
urban system structure emerges for the Pflüger (2004) model with multiple industries.
Although they analyzed the multi-region NEG model, the purpose and the emphasis
of their study was to show how a hierarchical urban system structure emerges for the
NEG model with multiple industries, and not to provide a general methodology that is
applicable to the analysis of a wider class of models other than Pflüger (2004) model.8

Akamatsu et al. (2012) provides an analytical approach to study the evolution of
spatial agglomeration patterns with changes in the parameter values and analyzes the
multi-region NEG model by Pflüger (2004). Although this approach is applicable to
various types of NEG models, their focus is to analytically prove the occurrence of “spatial
period-doubling cascade” in Pflüger’s model with 2n regions. Ikeda et al. (2012a) utilizes
group-theoretic bifurcation theory to study the bifurcation behavior of multi-region NEG
models. While this theory can narrow down the possible bifurcation patterns to occur
for a more general location space (e.g., two-dimensional discrete location spaces in Ikeda
et al. (2012b, 2014) and Ikeda and Murota (2014)) than that in the present study, it cannot
pin down an explicit event to occur, i.e., the stability of the agglomeration patterns
cannot be identified. Hence, it must resort to the numerical analysis to examine what
agglomeration patterns emerge as stable equilibria.

3 The Model

3.1 Basic Assumptions

We present a pair of multi-region NEG models whose frameworks follow Forslid and
Ottaviano (2003) and Helpman (1998) (defined as FO and Hm, respectively).9

3.1.1 Forslid and Ottaviano (2003) Model

We first provide basic assumptions of the FO model. The economy is composed of K
regions indexed by i = 0, 1, ...,K − 1, two factors of production and two sectors. The two
factors of production are skilled and unskilled labor while the workers supply one unit
of each type of labor inelastically. The total endowment of skilled and unskilled workers

8The analysis of Tabuchi and Thisse (2011) covers only a limited range of parameter values in which
bifurcations are supercritical. Hence, it does not provide the entire description of bifurcation behavior of
even the Pflüger model.

9Ottaviano (2001) presents the same model as Forslid and Ottaviano (2003), which is based on Forslid
(1999) and Ottaviano (1996).
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is H and L, respectively. The skilled worker is mobile across regions and hi denotes
their population in region i. The unskilled worker is immobile, and the population in
region i is denoted by li. The two sectors consist of agriculture (abbreviated as A) and
manufacturing (abbreviated as M). The A-sector output is homogeneous and each unit is
produced using a unit of unskilled labor under perfect competition. This output is chosen
to be the numèraire. The M-sector output is a horizontally differentiated product that is
produced using both skilled and unskilled labor under increasing returns to scale and
Dixit-Stiglitz monopolistic competition. The goods of both sectors are transported, but
the transportation of A-sector goods is frictionless while the transportation of M-sector
goods is inhibited by iceberg transportation costs. That is, for each unit of M-sector goods
transported from region i to j, only a fraction 1/τi j < 1 arrives.

All workers have identical preferences U over both M- and A-sector goods. The
utility of an individual in region i is given by

U(CM
i ,C

A
i ) = µ ln CM

i + (1 − µ) ln CA
i (0 < µ < 1), (3.1)

CM
i ≡

∑
j

∫ n j

0
q ji(k)(σ−1)/σdk


σ/(σ−1)

, (3.2)

where CA
i is the consumption of A-sector goods in region i; CM

i represents the manufac-
turing aggregate in region i; q ji(k) is the consumption of variety k ∈ [0,n j] produced in
region j and n j is the number of varieties produced in region j; µ is the constant expendi-
ture share on industrial varieties and σ is the constant elasticity of substitution between
any two varieties. The budget constraint is given by

CA
i +

∑
j

∫ n j

0
p ji(k)q ji(k)dk = yi, (3.3)

where p ji(k) denotes the price in region i of the M-sector goods produced in region j, and
yi denotes the income of an individual in region i. The incomes (wages) of the skilled
and the unskilled workers are represented, respectively, by wi and wu

i .
The utility maximization of (3.1) yields the following demand q ji(k) of an individual

in region i for a variety of M-sector goods k produced in region j:

q ji(k) =
µ{p ji(k)}−σ

ρ1−σ
i

yi, (3.4)

ρi ≡

∑
j

∫ n j

0
p ji(k)1−σdk


1/(1−σ)

, (3.5)

where ρi denotes the price index of the differentiated product in region i. Since the total
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income in region i is wihi + wu
i li, we have the total demand Q ji(k):

Q ji(k) =
µ{p ji(k)}−σ

ρ1−σ
i

(wihi + wu
i li). (3.6)

In the M-sector, product differentiation ensures a one-to-one relationship between
firms and varieties. Specifically, in order to produce xi(k) unit of product k, a firm incurs
a fixed input requirement of α unit of skilled labor and a marginal input requirement of
βxi(k) unit of unskilled labor. Therefore, the total cost of production for a firm in region i
is thus given by αwi + βxi(k)wu

i . A-sector technology requires one unit of unskilled labor
to produce one unit of output. With free trade in the A-sector, the choice of these goods as
the numèraire implies that in equilibrium, the wage of the unskilled worker wu

i is equal
to one in all regions, i.e., wu

i = 1.10

Due to the iceberg transportation costs, the total supply of the M-sector firm in region
i (i.e., xi(k)) is given by

xi(k) =
∑

j

τi jQi j(k). (3.7)

Therefore, a typical M-sector firm located in region i maximizes profit as given by:

Πi(k) =
∑

j

pi j(k)Qi j(k) −

αwi + β
∑

j

τi jQi j(k)

 . (3.8)

Since we have a continuum of firms, each one is negligible in the sense that its action
has no impact on the market (i.e., the price indices). Hence, the first order condition for
profit maximization gives

pi j(k) =
σβ

σ − 1
τi j. (3.9)

This expression implies that the price of M-sector goods does not depend on variety k,
so that Qi j(k) and xi(k) also do not depend on k. Therefore, we describe these variables
without argument k.

3.1.2 Helpman (1998) Model

We next present a multi-region Hm model. Helpman (1998) introduces the housing
(abbreviated as H) sector that works as a centrifugal force instead of the A-sector in
Krugman (1991), and thereby assumes that all workers are mobile and each region i has
a fixed stock Ai of housing.

10Wage equalization holds as long as the A-sector goods are produced in all regions. We assume that this
condition is satisfied; therefore, βxini < li ∀i holds.
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The utility of a worker in region i is expressed as

U(CM
i ,C

H
i ) = µ ln CM

i + (1 − µ) ln CH
i (0 < µ < 1), (3.10)

where CH
i is the consumption of H-sector goods in region i and CM

i denotes the manufac-
turing aggregate in region i, which is given by (3.2). The budget constraint of a worker
located at i is represented by

pH
i CH

i +
∑

j

∫ n j

0
p ji(k)q ji(k)dk = yi, (3.11)

where pH
i is the price of H-sector goods in region i. The utility maximization of (3.10)

leads to the following demand:

CM
i = µ

yi

ρi
, (3.12)

CH
i = (1 − µ)

yi

pH
i

, (3.13)

Q ji(k) =
µ{p ji(k)}−σ

ρ1−σ
i

yihi. (3.14)

We assume that the housing stocks are equally owned by all workers as in Helpman
(1998) and Pflüger and Südekum (2010).11 Therefore, the income of a worker is composed
of labor income wi plus income w̄ from the housing ownership

yi = wi + w̄, (3.15a)

w̄ =
1
H

∑
j

pH
j CH

j h j. (3.15b)

In order to normalize prices, we set w̄ equal to unity.
In the H-sector, the total demand hiCH

i in region i cannot be greater than the maximum
supply Ai. If the demand in region i is less than the supply, the price pH

i should be the
lower boundary (i.e., zero), otherwise positive. Thus, we have the following housing
market clearing condition: hiCH

i = Ai if pH
i > 0,

hiCH
i ≤ Ai if pH

i = 0,
∀i. (3.16)

11Ottaviano et al. (2002), Murata and Thisse (2005), and Redding and Sturm (2008) assume that the housing
stocks are locally owned (i.e., w̄i = pH

i CH
i ). Note that the income of a worker is given by yi = wi/µ under

this assumption. This implies that the specification of housing ownership will not affect the essential results
obtained in this study.
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This condition and (3.13) give the consumption of housing and its price in region i:

CH
i =

Ai

hi
, (3.17)

pH
i = (1 − µ)

yihi

Ai
. (3.18)

In the M-sector, a firm requires α + βxi(k) unit of (skilled) labor input for producing
xi(k) unit of variety k. The profit of a firm is then represented by

Πi(k) =
∑

j

pi j(k)Qi j(k) − wi
(
α + βxi(k)

)
, (3.19)

which is almost the same as that of the FO model except for the cost function. Further-
more, the market clearing condition for M-sector goods is expressed by (3.7). Therefore,
the profit maximization yields pi j(k) as follows.

pi j(k) =
σβ

σ − 1
wiτi j. (3.20)

This expression implies that as in the FO model, the price of M-sector goods does not
depend on variety k, and thus we describe the variables without argument k.

3.2 Short-Run Equilibrium

In the short run, the skilled workers are immobile between regions; that is, their spatial
distribution (h ≡ [h0, h1, ..., hK−1]>) is taken as given. The short-run equilibrium condi-
tions consist of the M-sector goods market clearing condition, the zero profit condition
due to the free entry and exit of firms, and the skilled labor market clearing condition. The
first condition can be written as (3.7). The second condition requires that the operating
profit of a firm is entirely absorbed by the wage bills of its skilled workers:

[FO model] wi =
1
α

∑
j

pi jQi j − βxi

 , (3.21a)

[Hm model] wi
(
α + βxi

)
=

∑
j

pi jQi j. (3.21b)

The third condition is represented as

[FO model] αni = hi, (3.22a)

[Hm model] (α + βxi)ni = hi. (3.22b)

Equations (3.9), (3.20), (3.21), and (3.22) give the price index ρi of the FO and Hm models
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as follows:

[FO model] ρi =
σβ

σ − 1

 1
α

∑
j

h jd ji


1/(1−σ)

, (3.23a)

[Hm model] ρi =
σβ

σ − 1

 1
ασ

∑
j

w1−σ
j h jd ji


1/(1−σ)

, (3.23b)

where d ji ≡ τ1−σ
ji is a “spatial discounting factor” between region i and j. Furthermore,

substituting (3.6), (3.7), (3.9), (3.14), (3.20), and (3.23) into (3.21), we have the short-run
equilibrium wage equations:

[FO model] wi =
µ

σ

∑
j

di j

∆ j
(w jh j + l j), (3.24a)

[Hm model] wi = µ
∑

j

di jw1−σ
i

∆̃ j
(w j + 1)h j, (3.24b)

where ∆ j ≡
∑

k dkjhk and ∆̃ j ≡
∑

k dkjw1−σ
k hk.

To obtain the indirect utility function vi(h) of these models, we express the equilibrium
wage wi(h). For this, we rewrite (3.24) in matrix form by using the “spatial discounting
matrix” D whose (i, j) element is di j. Then, the equilibrium wage equations (3.24) are
represented as

[FO model] w = κ
[
I − κMdiag[h]

]−1Ml, (3.25a)

[Hm model] (diag[w̃])σ1 = µM̃diag[h](w̃ + 1), (3.25b)

where κ ≡ µ/σ, l ≡ [l0, l1, ..., lK−1]>, 1 ≡ [1, 1, ..., 1]>, and I is a unit matrix. w and w̃
denote the equilibrium wages of the FO and Hm models, respectively. M and M̃ are
defined as

M ≡D{diag[D>h]}−1, (3.26a)

M̃ ≡D{diag[D>(diag[w̃])1−σh]}−1. (3.26b)

This leads to the following propositions.

Proposition 3.1 The indirect utility v(h) ≡ [v0(h), v1(h), ..., vK−1(h)]> of each of the multi-
region FO and Hm models is expressed as12

[FO model] v(h) = κ−S(h) + ln[w(h)], (3.27)

[Hm model] v(h) = κ−S̃(h) + µ ln[w̃(h) + 1] − (1 − µ)(ln[h] − ln[A]), (3.28)

12We ignore the constant terms, which have no influence on the results in the following sections.
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where κ− ≡ µ/(σ − 1),A ≡ [A0,A1, ...,AK−1]>, ln[w] ≡ [ln w0, ln w1, ..., ln wK−1]>,

S(h) ≡ ln[D>h], (3.29a)

S̃(h) ≡ ln[D>(diag[w̃])1−σh], (3.29b)

and the equilibrium wages w(h) and w̃(h) are obtained from (3.25).

Proposition 3.2 For any h ∈ {[h0, h1, ..., hK−1]>|
∑

i hi = H, hi ≥ 0 ∀i}, the multi-region FO and
Hm models admit a unique short-run equilibrium.

Proof see Appendix A.

3.3 Long-Run Equilibrium and Adjustment Dynamics

In the long run, the skilled workers are mobile across regions and will move to the region
where their indirect utility is higher. The long-run equilibrium is defined as the spatial
distribution of the mobile workers h that satisfies the following conditions:V∗ − vi(h) = 0 if hi > 0,

V∗ − vi(h) ≥ 0 if hi = 0,
∀i (3.30a)∑

i

hi = H, (3.30b)

where V∗ denotes the equilibrium utility level. The condition (3.30a) means that a long-
run equilibrium arises when no worker may get a higher utility level by moving to
another region.

In order to define stability of long-run equilibrium, we assume the following adjust-
ment process for the migration of skilled workers:

ḣi = Fi(h) ≡ hi{vi(h) − v̄(h)} ∀i, (3.31)

where v̄(h) denotes the average utility level (i.e., v̄(h) ≡
∑

j(h j/H)v j(h)), or equivalently
written as

ḣ = F (h) ≡ diag[h](v(h) − v̄(h)1). (3.32)

This is the well-known replicator dynamic, which has been studied and routinely used in
new economic geography and evolutionary game theory (e.g., Fujita et al. (1999), Weibull
(1995), Sandholm (2010)).13

The dynamic (3.31) allows us to define stability of a long-run equilibrium h∗ in
the sense of local stability: the stability of the linearized system of (3.31) at h∗. It

13It is noted that we can apply the proposed approach to the other dynamics. See Akamatsu et al. (2012)
for the case of the perturbed best response dynamic, which is used in Tabuchi and Thisse (2002), Murata
(2003) and Mossay (2003) to introduce the heterogeneity of the skilled worker.
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is well known in dynamic system theory that the local stability of the equilibrium h∗

is determined by examining the eigenvalues of the Jacobian matrix of the adjustment
processF (h) ≡ [F0(h),F1(h), ...,FK−1(h)]> (See, for example, Hirsch and Smale (1974) and
Hale and Koçak (1991))14:

∇F (h∗) = ψ(h∗)∇v(h∗) + J (h∗). (3.33)

The matrices ψ(h) and J (h) in the right-hand side are represented as

ψ(h) = diag[h](I −H−1Ediag[h]), (3.34)

J (h) = diag[v(h) − v̄(h)1] −H−1hv(h)>, (3.35)

and ∇v(h) for the two models are given by

[FO model] ∇v(h) = κ−∇S(h) + {diag[w(h)]}−1
∇w(h), (3.36)

[Hm model] ∇v(h) = κ−∇S̃(h) + µ{diag[w̃(h) + 1]}−1
∇w̃(h) − (1 − µ){diag[h]}−1,

(3.37)

where E is a K × K matrix with all elements equal to 1, and ∇S(h), ∇w(h), ∇S̃(h), and
∇w̃(h) are the Jacobian matrices of S(h), w(h), S̃(h), and w̃(h), respectively.

4 Net Agglomeration Forces in a Racetrack Economy

4.1 Racetrack Economy and Spatial Discounting Matrix

Let us consider a “racetrack economy,” which represents the following geometry: 4 regions
{0, 1, 2, 3} are equidistantly located on the circumference of a circle with radius 1; the
unskilled labor and the housing stocks are equally distributed across all regions (i.e.,
li = l, Ai = A ∀i). Let t(i, j) denote the distance between two regions i and j. We define
the distance between the two regions as that measured by the minimum path length:

t(i, j) =
2π
4

m(i, j), (4.1)

where m(i, j) ≡ min{|i − j|, 4 − |i − j|}. The set {t(i, j), (i, j = 0, 1, 2, 3)} of the distances
determines the spatial discounting matrixD whose (i, j) element, di j, is given by

di j ≡ exp[−(σ − 1)τt(i, j)]. (4.2)

14The long-run equilibrium h∗ in (3.30) is defined on the (K − 1)-dimensional simplex
{[h0, h1, ..., hK−1]>|

∑
i hi = H, hi ≥ 0 ∀i}. The extendibility of the Jacobian matrix for this simplex to the

full K-dimension is presented in Sandholm (2010, Chap.3).
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Defining the spatial discount factor (SDF) by

r ≡ exp[−(σ − 1)τ(2π/4)], (4.3)

we can represent di j as rm(i, j). It follows from the definition that the SDF, r is a mono-
tonically decreasing function of the transportation cost (technology) parameter τ, and
hence the feasible range of the SDF (corresponding to 0 ≤ τ < +∞) is given by (0, 1]:
τ = 0 ⇔ r = 1, and τ → +∞ ⇔ r → 0. Note here that the SDF yields the following
expression for the SDM in a racetrack economy:

D =


1 r r2 r
r 1 r r2

r2 r 1 r
r r2 r 1

 . (4.4)

As easily seen from this expression, the matrixD is circulants, which is constructed from
the vector d0 ≡ [1, r, r2, r] (see Appendix C for the definition and properties of circulant
matrices). This circulant property of the SDM plays a key role in the following analysis.

4.2 Stability, Eigenvalues, and Jacobian Matrices

The stability of equilibrium solutions for the FO and Hm models can be determined by
examining the eigenvalues g ≡ [g0, g1, g2, g3]> of the Jacobian matrix of the adjustment
process (3.31). Specifically, the equilibrium solution h satisfying (3.30a) and (3.30b) is
asymptotically stable if all the eigenvalues of ∇F (h) have negative real parts; otherwise,
the solution is unstable (i.e., at least one eigenvalue of ∇F (h) has a positive real part),
and it moves in the direction of the corresponding eigenvector. The eigenvalues, if they
are represented as functions of the key parameters of the FO model and the Hm model
(e.g., transport technology parameter τ), further enable us to predict whether a particular
agglomeration pattern (bifurcation) will occur with changes in the parameter values.

The eigenvalues g of the Jacobian matrix ∇F (h) at an arbitrary distribution h of the
skilled labor cannot be obtained without resorting to numerical techniques. It is, how-
ever, possible in some symmetric distribution h̄ to obtain analytical expressions for the
eigenvalues g of the Jacobian matrix ∇F (h̄). The key tool for making this possible is
a circulant matrix, which has several useful properties for the eigenvalue analysis. To
take “Property 1” of a circulant in Appendix C for example, it implies that if ∇F (h̄) is a
circulant, the eigenvalues g can be obtained by discrete Fourier transformation (DFT) of
the first row vector x0 of ∇F (h̄):

g = Zx>0 , (4.5)
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where Z is a 4 × 4 DFT matrix (i denotes the imaginary unit):

Z ≡


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , (4.6)

and the k-th eigenvector is given by k-th row vector of Z. Furthermore, “Property 2”
assures us that ∇F (h̄) is indeed a circulant if the matrices in the right-hand side of (3.33)
are all circulants.

A uniform distribution of skilled workers, h̄ ≡ [H/4,H/4,H/4,H/4]>, which has
intrinsic significance when examining the emergence of agglomeration, gives us a simple
example for illustrating the use of the above properties of circulants. We first show below
that the Jacobian matrix ∇F (h̄) at the uniform distribution h̄ is a circulant. This in turn
allows us to obtain analytical expressions for the eigenvalues of ∇F (h̄), as will be shown
in Section 4.3.

To show that ∇F (h̄) is a circulant, we examine each of the ∇v(h̄), ψ(h̄), and J (h̄) in
turn. For the configuration h̄ in which h ≡ H/4, skilled workers are equally distributed
in each region (i.e., h̄ ≡ [h, h, h, h]>), the Jacobian matrix ∇v(h̄) of the indirect utility
functions at h̄, which consists only of additions, multiplications, and their inverse of the
circulant matrices D̄ ≡ D/(1 + r)2 and I as shown in Appendix B. It follows from this
that ∇v(h̄) is a circulant. From (3.34) and (3.35), we have the Jacobian matrices ψ(h) and
J (h) at h̄ as

ψ(h̄) = h
(
I −

1
4
E

)
(4.7)

J (h̄) = −
v̄(h̄)

4
E (4.8)

This clearly shows that ψ(h̄) and J (h̄) are circulants because I and E are obviously
circulants. Thus, matrices ∇v(h̄), ψ(h̄), and J (h̄) are circulants, and this leads to the
conclusion that the Jacobian matrix of the adjustment process at the configuration h̄:

∇F (h̄) = ψ(h̄)∇v(h̄) + J (h̄) (4.9)

is circulant.

4.3 Net Agglomeration Forces

The fact that matrices ∇v(h̄), J (h̄), and ψ(h̄) as well as ∇F (h̄) are circulants allows us to
obtain the eigenvalues g of ∇F (h̄) by applying a similarity transformation based on the
DFT matrix Z. Specifically, the similarity transformation of both sides of (4.9) yields

diag[g] = h(diag[1] − diag[δ])diag[e] − v̄(h̄)diag[δ], (4.10)
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Figure 1: Eigenvalues fk (k = 1, 2, 3) of D̄ as functions of the SDF r

where δ and e are the eigenvalues of (1/4)E and ∇v(h̄), respectively. In a more concise
form, this can be written as

g = h[1 − δ] · [e] − v̄(h̄)δ, (4.11)

where [x]·[y] denote the component-wise products of vectorsx and y. The two eigenval-
ues, δ and e, in the right-hand side of (4.10) and (4.11) can be easily obtained as follows.
The former eigenvalues δ are readily given by the DFT of the first row vector of (1/4)E:

δ =
1
4
Z1 = [1, 0, 0, 0]>. (4.12)

As for the latter eigenvalues e, note that ∇v(h̄) consists of additions, multiplications, and
their inverse of the circulants D̄ and I (see (B.3) in Appendix B). This implies that the
eigenvalues e can be represented as functions of the eigenvalues f ≡ [ f0, f1, f2, f3]> of the
spatial discounting matrix D̄. The eigenvalues f , in turn, are obtained by the DFT of the
first row vector d0/d of D̄:

f =
1

(1 + r)2Zd
>

0 = [1, c(r), c(r)2, c(r)]>, (4.13)

where c(r) ≡ (1− r)/(1+ r) ∈ [0, 1). fk (k = 1, 2, 3) is a monotonically decreasing function of
r and f0 > f1 = f3 > f2 as illustrated in Figure 1. We then have the following proposition
characterizing the eigenvalues and eigenvectors of the Jacobian matrix ∇F (h̄):

Proposition 4.1 Consider a uniform distribution h̄ = [h, h, h, h]> of skilled workers in a race-
track economy with four regions. The Jacobian matrix ∇F (h̄) of the adjustment process (3.31) of
the FO and Hm models at h̄ has the following eigenvector and the associated eigenvalues:

1) the k-th eigenvector (k = 0, 1, 2, 3) is given by the kth row vector, zk, of the discrete Fourier
transformation (DFT) matrix Z.

2) the k-th eigenvalue gk of the FO model is given by a function of the k-th eigenvalue fk ∈ [0, 1)
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(a) z0 = [1, 1, 1, 1] (b) z1 = [1, i,−1,−i]

(c) z2 = [1,−1, 1,−1]

Figure 2: Entry patterns of the eigenvectors

of the spatial discounting matrix D̄ ≡D/(1 + r)2:

gk =
G( fk)
φ( fk)

(k = 1, 2, 3), g0 = −v̄(h̄), (4.14a)

G(x) ≡ bx − ax2, (4.14b)

where φ(x) ≡ 1−κx > 0 for x ∈ [0, 1), a ≡ κκ− + 1, b ≡ κ+κ−, and fk is defined in (4.13).

3) the k-th eigenvalue gk of the Hm model is given by a function of fk ∈ [0, 1):

gk =
G̃( fk)

φ̃( fk)
(k = 1, 2, 3), g0 = −v̄(h̄), (4.15a)

G̃(x) ≡ bx − ãx2
− (1 − µ), (4.15b)

where φ̃(x) ≡ 1 − κx − (κ/κ−)x2 > 0 for x ∈ [0, 1) and ã ≡ µκ− + σ−1
− (1 − µ).

The eigenvectors {zk, (k = 0, 1, 2, 3)} in the first part of Proposition 4.1 represent ag-
glomeration patterns of skilled workers by the configuration pattern of the entries. For
example, all entries of z0 = [z0,0, z0,1, z0,2, z0,3] are equal to one, and the entry pattern
of z0 = [1, 1, 1, 1] corresponds to the state (configuration of skilled workers among four
regions) in which skilled workers are uniformly distributed among four regions (see
Figure 2a); z2 = [1,−1, 1,−1] has the alternate sequence of 1 and −1 representing a duo-
centric pattern in which skilled workers reside in two regions alternately (see Figure 2c);
similarly, z1 and z3 correspond to a mono-centric pattern (see Figure 2b).

The eigenvalue gk in the second and third parts of Proposition 4.1 can be interpreted
as the strength of the “net agglomeration force” that leads the uniform distribution in the
direction of the k-th agglomeration pattern (i.e., the k-th eigenvector). By the term the
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“net agglomeration force,” we mean the net effect of the “agglomeration force” minus
“dispersion force.” These forces correspond to the positive and negative terms of gk (or
functions G( fk) and G̃( fk)).

The former (agglomeration) force is given by the term bx for both the FO and Hm
models. As is clear from the derivation of the eigenvalues g, this term stems from ∇S
and the positive term of ∇w(h) (see (B.2) and (B.3) in Appendix B), each of which means
the so-called “forward linkage” (or “price index effect”) and “backward linkage” (or
“demand effect”), respectively. This implies that this term represents the centripetal
force induced by the increase in the variety of products that would be realized when the
uniform distribution h̄ deviates to the agglomeration pattern zk.

The latter (dispersion) forces are somewhat different between the two models; they
are given by the terms ax2 and ãx2 + (1 − µ) for the FO and Hm models, respectively.
The term ax2 of the FO model, which stems from the negative term of ∇w, represents
the centrifugal force due to increased market competition (“market crowding effect”) in
the agglomerated pattern zk. The term ãx2 + (1 − µ) of the Hm model represents the
centrifugal force due to increased market competition and housing cost. Specifically, 1)
the housing cost contributes only to the constant term 1 − µ that is irrelevant to changes
in fk; and 2) the removal of immobile consumers in the Hm model reduces the coefficient
of the quadratic term of fk (i.e., the coefficient ã in the Hm model is always smaller than
a in the FO model), which weakens the dispersion force.

Although the net agglomeration forces of the FO and Hm models share certain sim-
ilarities (i.e., both are unimodal functions), they have subtle differences as can be seen
from Figures 3a and 3b, the curve G̃( fk) for the Hm model is shifted to the right along the
fk axis in comparison with the curve G( fk) for the FO model. This is due to the following
differences in the dispersion forces mentioned above: 1) the introduction of the housing
cost in the Hm model adds the constant term of the dispersion force, which shifts the
crossing point x∗

−
of G to the crossing point x̃∗

−
of G̃; and 2) the removal of immobile

consumers in the Hm model shifts the crossing point x∗+ of G to the crossing point x̃∗+ of G̃.
These shifts result in the reversal of the signs of G̃( fk) and G( fk) at the boundaries of fk (i.e.,
fk = 0 and 1). As shown in the following sections, this fact causes significant differences
in the evolutionary processes of agglomeration patterns in the two models. Specifically,
G̃(1) > 0 implies that the Hm model does not satisfy the so-called “no black-hole condi-
tion” in NEG, which in turn implies that no poly-centric agglomerations should occur
in stable equilibria. Therefore, we can say that every model satisfying the no black-hole
condition exhibits essentially the same evolutionary processes of agglomeration patterns
as the FO model. To elucidate this, we shall compare the bifurcation process (caused
by changes in transportation cost) of the FO and Hm models, each of which, in turn, is
analyzed in sections 5 and 6, respectively.
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(a) FO model (b) Hm model

Figure 3: Net agglomeration forces as functions of fk

5 Theoretical Prediction of Agglomeration Patterns of the FO
model

5.1 Emergence of Agglomeration

We first analyze the multi-region FO model. In order for bifurcation from the uniform
equilibrium distribution h̄ = [h, h, h, h]> to occur with the changes in the SDF r (or the
transportation cost τ), either of the eigenvalues g1(= g3) and g2 must change signs. Since
the eigenvalues gk (k = 1, 2, 3) are given by G( fk)/φ( fk) where φ(x) > 0 for x ∈ [0, 1), the
sign changes imply that the quadratic equation with respect to fk:

G(x) = bx − ax2 = 0, (5.1)

should have real solutions in the interval [0, 1) that is the possible range of the eigenvalue
fk (see (4.13) and Figure 1). This leads us to the following proposition:

Proposition 5.1 In the FO model, a bifurcation from a uniform equilibrium distribution h̄ =

[h, h, h, h]> occurs with the changes in the SDF r if and only if the parameters satisfy

b < a, (5.2)

where a ≡ κκ− + 1, b ≡ κ + κ−, κ ≡ µ/σ and κ− ≡ µ/(σ − 1).
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The inequality (5.2) corresponds to the “no black-hole” condition, which is well known
in literature that deals with the two-regional NEG model. For the cases when parameters
of the FO model do not satisfy this condition, the eigenvalues gk (k = 1, 2, 3) are positive
even when the SDF is zero (i.e., transportation cost τ is very high), which implies that
the uniform distribution h̄ cannot be a stable equilibrium.

In the following analyses, we assume that the parameters (σ, µ) of the FO model
satisfy (5.2). We then have two real solutions for the quadratic equation G( fk) = 0 with
respect to fk:

x∗+ ≡
b
a

and x∗− ≡ 0. (5.3)

Each of the solutions x∗
±

means a critical value (“break point”) at which a bifurcation from
the flat earth equilibrium h̄ occurs when we regard the eigenvalue fk as a bifurcation
parameter. This fact can be easily seen in Figure 3a: the flat earth equilibrium h̄ is stable
(i.e., G( fk) is negative) for high values of fk in the range (x∗+, 1], and hence, when we
consider the process of decreasing the value of fk from fk = 1, the bifurcation from h̄

occurs (i.e, sign of G( fk) changes) at fk = x∗+.
Since we are interested in the emergence of agglomeration (bifurcation) that would

arise with changes in transportation costs, we shall take the SDF r (rather than fk) as
a bifurcation parameter, and consider the process of increasing the SDF starting from r = 0
at which the uniform distribution is a unique equilibrium. Let us recall here that each
of the eigenvalues { fk(r)} is a monotonically decreasing function of the SDF (see (4.13)
and Figure 1). This implies that the flat earth equilibrium h̄ is stable for low values of r
corresponding to the range (x∗+, 1] of fk(r), and that the eigenvalue fk(r) crosses the critical
value x∗+ in the process of increasing the SDF.

In this process, we see from (4.13) that the eigenvalue f2(r) first reaches the critical
value x∗+ before f1(r) does, since f2(r) is always smaller than f1(r):

f1(r) ≡ c(r) > f2(r) ≡ c(r)2
∀r ∈ (0, 1]. (5.4)

Thus, we can conclude that the first bifurcation occurs when the SDF first reaches the
critical value r∗+ that satisfies

x∗+ = f2(r∗+) ≡ c(r∗+)2. (5.5)

To be more specific, the critical value r∗+ of the SDF is given by

r∗+ =
1 −

√
x∗+

1 +
√

x∗+
. (5.6)

It is worth noting that (5.6) implicitly provides information on the changes in r∗+ with the
changes in values of the FO model parameters (σ, µ) since x∗+ is explicitly represented as
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Figure 4: Agglomeration pattern of the FO model that emerges from the uniform distri-
bution

a function of the FO model parameters in (5.3).
The fact that the eigenvalue f2(r) first crosses the critical value x∗+ also enables us to

identify the associated agglomeration pattern that emerges at the first bifurcation. Let
us recall here that the equilibrium solution moves in the direction of the eigenvector
whose associated eigenvalue first hits the critical value. As stated in Proposition 4.1,
this direction is the second eigenvector z2 = [1,−1, 1,−1]. Therefore, the pattern of
agglomeration that first emerges is

h = h̄ + δz>2 = [h + δ, h − δ, h + δ, h − δ]> (0 ≤ δ ≤ h), (5.7)

in which skilled workers agglomerate in two alternate regions (Figure 4).15 Thus, we can
characterize the bifurcation from the uniform distribution as follows.

Proposition 5.2 Suppose that the conditions of (5.2) in Proposition 5.1 are satisfied for the FO
model, and that the uniform distribution h̄ = [h, h, h, h]> of skilled workers is a stable equilibrium
at some value of the SDF r (< r∗+). Starting from this state, we consider the process where the
value of the SDF continuously increases (i.e., the transportation cost τ decreases).

1) The net agglomeration force (i.e., the eigenvalue) gk for each agglomeration pattern (i.e.,
the eigenvector) zk increases as the SDF increases, and the uniform distribution becomes
unstable (i.e., agglomeration emerges) at the break point r = r∗+ given by (5.3) and (5.6) (see
Figure 5).

2) The critical value r∗+ for the bifurcation decreases, as a) the expenditure share on industrial
varieties is larger (i.e., µ is large), and b) the elasticity of substitution between two varieties
is smaller (i.e., σ is small).

3) The pattern of agglomeration that first emerges ish = [h+δ, h−δ, h+δ, h−δ]> (0 ≤ δ ≤ h),
in which skilled workers agglomerate alternately in two regions (see Figure 4).

A few remarks are in order about the bifurcation at the latter critical value x∗
−

. Since
the critical value x∗

−
is obtained as (5.3), we have

rk(x∗−) = rk(0) = 1 (k = 1, 2, 3). (5.8)

15It is known in the group-theoretic bifurcation theory (Ikeda and Murota, 2010; Ikeda et al., 2012a) that
the symmetry of an equilibrium is preserved until undergoing a bifurcation. Therefore, the agglomeration
pattern h̄ + δz>2 (0 ≤ δ ≤ 1) that emerges at the first bifurcation must be an equilibrium of the FO model.
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Figure 5: Eigenvalues g1 and g2 of the FO model as functions of the spatial discounting
factor (σ = 3.0, µ = 0.5)

This implies that the net agglomeration forces g are always positive for the interval [r∗+, 1)
of the SDF. This fact is illustrated in Figure 5, where the horizontal axis denotes the SDF
r, and the solid curve denotes the eigenvalue g1 as a function of r, while the dashed
curve denotes the eigenvalue g2. Both curves are unimodal functions whose values
reach zero at r = 1. Therefore, the critical value of the SDF at which the bifurcation from
agglomeration equilibrium to the flat earth equilibrium occurs is

r∗− = 1. (5.9)

That is, no matter how large the SDF is, agglomeration never breaks down, except for
the maximum limit at r = 1.

5.2 Evolution of Agglomeration

In conventional FO model (and other NEG models) with two regions, increases in the
SDF (or decreases in transportation cost τ) lead to the occurrence of a bifurcation from
the uniform distribution h̄ to a mono-centric agglomeration. In the FO model with four
(or more) regions, the first bifurcation shown in Section 5.1 does not directly branch to
the mono-centric pattern; instead, further bifurcations (leading to a more concentrated
pattern) can repeatedly occur.

5.2.1 Evolution to a Duo-centric Pattern h∗ — Sustain Point for h∗

For the FO model, the deviation δ from the uniform distribution h̄ monotonically in-
creases with the increases in the SDF after the first bifurcation. Shortly after the in-
creases in the SDF from the break point r = r∗+, this leads to a duo-centric pattern,
h∗ = [2h, 0, 2h, 0]>, where only the two alternate regions are equally populated by skilled
workers. The fact that the duo-centric pattern h∗ may exist as an equilibrium solution
of the FO model can be confirmed by examining the “sustain point” for h∗. The sustain

21



(a) The sustain point for h∗ (b) The sustain point for h∗∗

Figure 6: Sustainable regions forh∗ = [2h, 0, 2h, 0]> andh∗∗ = [4h, 0, 0, 0]> (σ = 3.0, µ = 0.5)

point is the value of the SDF above which the equilibrium condition for h∗

v0(h∗) = v2(h∗) = max
k
{vk(h∗)} (5.10)

is satisfied. As shown in Appendix D, the condition of (5.10) indeed holds for any r
larger than r∗01, which is the sustain point for h∗. This is illustrated in Figure 6a, where
the horizontal axis denotes the SDF r, and the curve represents the utility difference
v0(h∗)− v1(h∗) as a function of r. As seen in this figure, v0(h∗)− v1(h∗) is positive for any r
larger than r∗01 (the sustain point), which means that the duo-centric pattern h∗ continues
to be an equilibrium for the range of the SDF above the sustain point.

5.2.2 Bifurcation from the Duo-centric Pattern — Break Point at h∗

After the emergence of the duo-centric pattern h∗ = [2h, 0, 2h, 0]>, further increases in
the SDF (above the sustain point r = r∗01) can lead to further bifurcations (i.e., h∗ become
unstable). To investigate such a possibility, we need to obtain the eigenvectors and the
associated eigenvalues for the Jacobian matrix of the adjustment process at h∗:

∇F (h∗) = J (h∗) +ψ(h∗)∇v(h∗). (5.11)

A possible difficulty we encounter in obtaining the eigenvalues is that the Jacobian
∇F (h∗) at h∗ is no longer a circulant matrix, unlike the Jacobian∇F (h̄) at h̄. This is due to
the loss of symmetry in the configuration of skilled workers (see Figure 7), which leads
to the fact that J (h∗), ψ(h∗), and ∇v(h∗) are not circulants. However, as it turns out, it is
still possible to find a closed-form expression for the eigenvalues of ∇F (h∗) by using the
fact that the duo-centric pattern h∗ has partial symmetry and the submatrices of J (h∗),
ψ(h∗), and ∇v(h∗) are circulants (see Lemma E.1).

In order to exploit the symmetry remaining in the duo-centric pattern h∗, we begin by
dividing set C = {0, 1, 2, 3} of regions into two subsets: subset C0 = {0, 2} of regions with
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uniform distribution
 

duo-centric pattern

Figure 7: Symmetry of the two configurations h̄ = [h, h, h, h]> and h∗ = [2h, 0, 2h, 0]>

skilled workers, and subset C1 = {1, 3} of regions without skilled workers. Corresponding
to this division of the set of regions, we consider the following permutation σ of set
C = {0, 1, 2, 3},

σ(0) = 0, σ(1) = 2, σ(2) = 1, σ(3) = 3, (5.12)

such that the first half elements {σ(0), σ(1)} and the second half elements {σ(2), σ(3)} of
set CP = {σ(0), σ(1), σ(2), σ(3)} correspond to subsets C0 and C1, respectively. For this
permutation, we then define the associated permutation matrix P :

P ≡


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (5.13)

It can be readily verified that, for a 4 × 4 matrix A whose (i, j) element is denoted as ai j,
PAP> yields a matrix whose (i, j) element is aσ(i)σ( j), and that PP> = P>P = I ; that
is, the similarity transformation PAP> offers a consistent renumbering of the rows and
columns ofA by the permutation σ.

The permutation σ (or the similarity transformation based on the permutation ma-
trix P ) constitutes a “new coordinate system” for analyzing the Jacobian matrix of the
adjustment process. Under the new coordinate system, the SDM D can be represented
as

PDP> =

 D(0) D(1)

D(1) D(0)

 , (5.14)

where each of the submatrices D(0) and D(1) is a 2 × 2 circulant matrix generated from a
vector d(0)

0 ≡ [1, r2] and d(1)
0 ≡ [r, r], respectively. Similarly, the Jacobian matrix ∇F (h∗) of

the adjustment process is transformed into

P∇F (h∗)P> = PJ (h∗)P> +
{
Pψ(h∗)P>

} {
P∇v(h∗)P>

}
, (5.15)
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where the Jacobian matrices on the right-hand side are respectively defined by

P∇v(h∗)P> =
1
2h

 V (00) V (01)

V (10) V (11)

 , (5.16a)

PJ (h∗)P> =

 −(1/2)v̄(h∗)E −(1/2)v1(h∗)E

0 (v1(h∗) − v̄(h∗))I

 , (5.16b)

Pψ(h∗)P> = 2h

 I − (1/2)E 0

0 0

 , (5.16c)

and submatrices V (i j) and J (i j) (i, j = 0, 1) are 2 × 2 matrices.
For these Jacobian matrices under the new coordinate system, we can show (Lemma

E.1) that all of the submatricesV (i j) are circulants. This fact allows us to conclude (Lemma
E.2) that knowing only the eigenvalues e(00) of the submatrix V (00) = {dvi/dh j, (i, j ∈ C0)}
is sufficient to obtain the eigenvalues g∗ of the Jacobian ∇F (h∗). Furthermore, it can
be readily shown that the submatrix V (00) is a circulant consisting only of submatrices
D(0) and D(1) of the SDM D (these are also circulants). This implies that we can obtain
analytical expressions for the eigenvaluese(00). These considerations lead to the following
lemma:

Lemma 5.1 The Jacobian matrix ∇F (h∗) of the adjustment process (3.31) of the FO model at h∗

has the following eigenvector and the associated eigenvalues:

1) The k-th eigenvector (k = 0, 1, 2, 3) is given by the k-th row vector, z∗k, of the discrete Fourier
transformation (DFT) matrix

Z∗ ≡ P>diag[Z[2],Z[2]]P , where Z2 ≡

1 1
1 −1

 . (5.17)

2) The eigenvalues {g∗k, (k = 0, 1, 2, 3)} are given by g∗0 = −v̄(h∗), g∗k = v1(h∗) − v̄(h∗)
(k = 1, 3), and

g∗2 =
Ĝ(c(r2))
φ(c(r2))

, (5.18)

Ĝ(x) ≡ bx − a∗x2 (5.19)

where φ(x) ≡ 1 − κx > 0, c(r2) ≡ (1 − r2)/(1 + r2), b ≡ κ + κ− and a∗ ≡ κκ− + (κ + 1)/2.

Proof see Appendix E.

The eigenvalues g∗ obtained in Lemma 5.1 allow us to determine the critical value
(“break point”) at which a bifurcation from the duo-centric pattern h∗ = [2h, 0, 2h, 0]>

to a more concentrated pattern occurs. In a similar manner to the discussion for the
first bifurcation from the uniform distribution h̄ = [h, h, h, h]>, we see that the second
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bifurcation from the duo-centric pattern h∗ occurs when the eigenvalue g∗2(x) changes
signs. Since g∗2(x) is given by (5.18), the critical values of x ≡ c(r2) at which the eigenvalue
changes signs are the solutions of the quadratic equation Ĝ(x) = 0. Hence, the critical
values (the two solutions of (5.19)) are given by

x∗∗+ =
b
a∗

=
2(κ + κ−)

2κκ− + κ + 1
and x∗∗− = 0. (5.20)

Note here that x ≡ c(r2) is a monotonically decreasing function of the SDF and its interval
is [0, 1). This implies that, in the course of increasing the SDF, x only crosses x∗∗+ . Therefore,
the second bifurcation occurs when the SDF reaches the critical value r∗∗+ that satisfies
x∗∗+ = c({r∗∗+ }

2). That is, the critical value of the second bifurcation in terms of the SDF is
given by

r∗∗+ =

√
1 − x∗∗+
1 + x∗∗+

. (5.21)

We can also identify the associated agglomeration pattern that emerges at this bifurcation.
The movement away fromh∗ at this bifurcation is the second eigenvector z∗2 = [1, 0,−1, 0].
Accordingly, the emerging spatial configuration is given by

h = h∗ + δ{z∗2}
> = [2h + δ, 0, 2h − δ, 0]> (0 ≤ δ ≤ 2h). (5.22)

Thus, the properties of the second bifurcation can be summarized as follows:

Proposition 5.3 Suppose that the SDF r is larger than the sustain point r∗01 of the duo-centric
pattern h∗ = [2h, 0, 2h, 0]> and h∗ is a stable equilibrium for the FO model. With the increases
in the SDF, the duo-centric pattern h∗ become unstable at the second break point r = r∗∗+ given by
(5.20) and (5.21), and then a more concentrated pattern h = [2h + δ, 0, 2h − δ, 0]> (0 ≤ δ ≤ 2h)
emerges.

5.2.3 Evolution to a Mono-centric Pattern h∗∗ — Sustain Point for h∗∗

After the second bifurcation, the deviation δ from the duo-centric patternh∗ = [2h, 0, 2h, 0]>

increases monotonically with the increase in the SDF, which leads to a mono-centric pat-
tern, h∗∗ = [4h, 0, 0, 0]>. This fact can be confirmed by examining the sustain point for the
mono-centric pattern. As shown in Appendix D, the equilibrium condition for h∗∗,

v0(h∗∗) = max
k
{vk(h∗∗)} (5.23)

is satisfied for any r > r∗∗02 (the critical value), which is the sustain point for h∗∗. This
is illustrated in Figure 6b, where the horizontal axis denotes the SDF, and the solid and
dashed curves are the utility differences v0(h∗∗)−v1(h∗∗) and v0(h∗∗)−v2(h∗∗) as a function
of r, respectively. As seen in this figure, v0(h∗∗) provides the largest utility for any r > r∗∗02
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Figure 8: A series of agglomeration patterns that emerge in the course of increasing the
SDF: spatial period-doubling cascade

(the sustain point), which means that the mono-centric pattern h∗∗ continues to be an
equilibrium for the range 1 > r > r∗∗02.

The results obtained up to this point are summarized in the schematic representation
shown in Figure 8. This clearly shows the occurrence of the spatial period-doubling
cascade.

6 Theoretical Prediction of Agglomeration Patterns of the Hm
Model

6.1 Emergence of Agglomeration

We next investigate the evolution of the agglomeration pattern in the Hm model by the
approach described in Section 5. In order for bifurcation from the uniform equilibrium
distribution h̄ = [h, h, h, h]> to occur with the changes in the SDF r (or the transportation
cost τ), either of the eigenvalues g1(= g3) and g2 must change signs. Since the eigenvalues
gk (k = 1, 2, 3) are given by G̃( fk)/φ̃( fk) where φ̃(x) > 0 for x ∈ [0, 1), the sign changes mean
that the following quadratic equation with respect to fk,

G̃(x) = bx − ãx2
− (1 − µ) = 0, (6.1)
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should have real solutions. That is,

Θ ≡ b2
− 4ã(1 − µ) > 0 (6.2)

should be satisfied. Moreover, either of the solutions, x̃∗
±
≡ (b ±

√
Θ)/2ã, must lie in the

interval [0, 1), which is the possible range of the eigenvalue fk. Note here that, under the
condition (6.2) for the existence of real solutions, this requirement cannot be satisfied for
one of the solutions x̃∗+ (see Figure 3b), and hence, the requirement is reduced to the only
condition for the other solution x̃∗

−
,

x̃∗− ≡
b −
√

Θ

2ã
< 1. (6.3)

Thus, we see that inequalities (6.2) and (6.3) need to be satisfied for the occurrence of a
bifurcation from a uniform distribution. This leads to the following proposition.

Proposition 6.1 In the Hm model, a bifurcation from a uniform equilibrium distribution h̄
occurs with the changes in the SDF r if and only if the parameters satisfy,

(1 − µ)σ < 1. (6.4)

This proposition shows that for any agglomeration to occur, the increasing returns, 1/σ,
must dominate the dispersion force, 1 − µ, generated by the demand for immobile land.

In the following analysis, we assume that the parameters (σ, µ) of the Hm model
satisfy (6.4). The solution x̃∗

−
for the quadratic equation G̃( fk) = 0 with respect to fk means

that the critical value at which a bifurcation from the flat earth equilibrium h̄ occurs
when we regard the eigenvalue fk as a bifurcation parameter. This can be easily seen
from Figure 3b where the flat earth equilibrium h̄ is stable (i.e., G̃( fk) is negative) for low
values of fk in the range [0, x̃∗

−
), and hence, when we consider the process of increasing

the value of fk from fk = 0, the bifurcation from h̄ occurs (i.e, sign of G̃( fk) changes) at
fk = x̃∗

−
.

In fact, Redding and Sturm (2008) calibrated the spatial distribution of population
in Germany in 1939 under the assumption of (1 − µ)σ > 1 (instead of (6.4)) which
admits only the (unique) complete dispersion, i.e., flat earth equilibrium, in the present
setting. Although the “complete dispersion” is not necessarily a uniform distribution if
the regions are asymmetrically placed as in Redding and Sturm (2008), it should be noted
that this parameter range does not admit the formation of any agglomeration based on
the positive externalities assumed in the model. In their paper, the primary determinant
of the spatial distribution of population was the unobserved non-traded amenity which is
the “housing stock, Ai,” for each region i in the present model. Here, this exogenous
city-specific factor was not obtained from the data, but was determined to account for the
deviation of the actual population distribution among cities from the complete dispersion.
Consequently, nearly 90% of city size variation was explained by the unobserved city-fixed

27



Figure 9: Agglomeration pattern of the Hm model that emerges from the uniform distri-
bution

effect (refer to footnote 2).
In order to compare the evolutionary process of the spatial agglomeration in the Hm

model with that in the FO model, we shall take the SDF r (rather than fk) as a bifurcation
parameter. In contrast to the analysis of the FO model, we consider the process of decreasing
the SDF starting from r = 1. This reflects the fact that, unlike the FO model, the flat earth
equilibrium h̄ is stable for high values of r corresponding to the range [0, x̃∗

−
) of fk(r),

and the eigenvalue fk(r) crosses the critical value x̃∗
−

in the process of decreasing the SDF
starting from r = 1.

In this process, unlike the process of increasing r for the analysis of the FO model, we
see from (4.13) that, the eigenvalue f1(r) = f3(r) first reaches the critical value x̃∗

−
before

f2(r) does, since f1(r) is always larger than f2(r). Therefore, the first bifurcation occurs
when the SDF reaches the critical value r̃∗ that satisfies

x̃∗− = f1(r̃∗) ≡ c(r̃∗). (6.5)

To be more specific, the critical value r̃∗ of the SDF is given by

r̃∗ =
1 − x̃∗

−

1 + x̃∗
−

. (6.6)

The fact that the eigenvalue f1(r) first crosses the critical value x̃∗ implies that the equi-
librium solution moves in the direction of the first (or third) eigenvector z1 = [1, 0,−1, 0].
Therefore, the pattern of agglomeration that first emerges is

h = h̄ + δz>1 = [h + δ, h, h − δ, h]> (6.7)

in which skilled workers agglomerate in a single region (Figure 9). Thus, we can charac-
terize the bifurcation from the uniform distribution as follows.

Proposition 6.2 Suppose that the conditions of (6.4) in Proposition 6.1 are satisfied for the Hm
model, and that the uniform distribution h̄ = [h, h, h, h]> of skilled workers is a stable equilibrium
at some value of the SDF r (> r̃∗). Starting from this state, we consider the process where the
value of the SDF continuously decreases (i.e., the transportation cost τ increases).

1) The net agglomeration force (i.e., the eigenvalue) gk for each agglomeration pattern (i.e.,
the eigenvector) zk increases as the SDF decreases, and the uniform distribution becomes
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Figure 10: Eigenvalues g1 and g2 of the Hm model as functions of the spatial discounting
factor (σ = 2.0, µ = 0.8)

unstable (i.e., agglomeration emerges) at the break point r = r̃∗ given by (6.3) and (6.6) (see
Figure 10).

2) The critical value r̃ for the bifurcation increases, as a) the expenditure share on industrial
varieties is larger (i.e., µ is large), b) the elasticity of substitution between two varieties is
smaller (i.e., σ is small).

3) The pattern of agglomeration that first emerges is h = [h + δ, h, h − δ, h]>, in which skilled
workers agglomerate toward a region (see Figure 9), i.e., the spatial distribution of skilled
workers is a unimodal distribution over the regions.

By comparing Propositions 5.2, 5.3, and 6.2, we see that the agglomeration prop-
erties of the FO model and the Hm model are significantly different. The FO model
exhibits a cascade of bifurcation in the course of decreasing the transportation costs:
a uniform distribution of mobile factors on four symmetric regions first bifurcates to
a duo-centric agglomeration pattern, and further decreases as the transportation costs
trigger the occurrence of a second bifurcation, which in turn leads to the formation of a
mono-centric agglomeration. In contrast, the Hm model undergoes only a single bifur-
cation through the course of increasing the transportation costs: the uniform distribution
directly branches to a unimodal distribution.

This difference in agglomeration processes is essentially a consequence of the differ-
ence between the two possible bifurcations from the flat earth equilibrium: one at the
right critical point x∗+ and the other at the left critical point x∗

−
, where each of the two

critical points is the value of fk at which the uni-modal function G( fk) (or G̃( fk)) of the
net agglomeration force changes signs. Let us recall here the two curves, G( fk) and G̃( fk),
of the net agglomeration forces depicted in Figure 3 where the curve G̃( fk) for the Hm
model is shifted to the right in comparison with the curve G( fk) for the FO model. This
leads to the fact that, in the FO model, the bifurcation from the flat earth equilibrium
occurs only at the right critical point x∗+ while, in the Hm model, it occurs only at the left
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critical point x∗
−

. Since the eigenvectors (i.e., the direction of changes in the distribution
of mobile factors) activated by these two bifurcations are different, the resultant spatial
patterns of agglomeration for the two models also are different. Thus, we see that the
agglomeration process in the Hm model is not simply a “reversal” of that in the FO
model, but a qualitatively different one.

6.2 Instability of the Duo-centric Pattern

In this section, we show that poly-centric agglomeration patterns do not emerge in a stable
equilibrium for the Hm model. In the context of the four-region economy, it amounts to
showing that a duo-centric pattern cannot occur in a stable equilibrium. Specifically, we
clarify here that the duo-centric pattern (Figure 4), which emerges in the FO model, never
emerges in the Hm model.

In order to assess the stability of the duo-centric pattern h2 = [h0, h1, h0, h1]> (h0 > h1),
we need to check the sign of the eigenvalues of ∇F (h2). Because ∇F (h2) is symmetric,
the Rayleigh quotient R(∇F (h2)) of ∇F (h2) must lie between the largest eigenvalue gmax

and the smallest eigenvalue gmin of ∇F (h2):

R(∇F (h2),x) =
x>∇F (h2)x

x>x
∈ [gmin, gmax], (6.8)

where x is a nonzero 4×1 vector. Furthermore, R(∇F (h2),x) has the following property:

Lemma 6.1 Suppose that h2 is an equilibrium of the Hm model. Then, for any r less than r̃∗,

R(∇F (h2), z>1 ) > 0. (6.9)

Proof See Appendix F

This lemma shows that the largest eigenvalue gmax of ∇F (h2) must be positive when the
uniform distribution is unstable. This leads to the following proposition.

Proposition 6.3 In the Hm model, the duo-centric pattern h2 cannot be a stable equilibrium if
the uniform distribution h̄ is unstable.

A key implication of Proposition 6.3 is that when the complete dispersion ceases
to be a stable equilibrium, poly-centric agglomeration patterns do not emerge as stable
equilibria in the multi-region extension of the Hm model.16 Thus, this model by itself
cannot replicate poly-centric agglomeration patterns observed in reality. Although the
dispersion force considered in the Hm model is relevant in reality, it becomes useful
only when it is combined with other dispersion forces as in the FO model. While most
variants of Krugman (1991) directly assume the presence of dispersed consumers, it is
also possible to make this dispersion endogenous. For instance, Fujita and Krugman

16This implies that the results of Redding and Sturm (2008), which uses the multi-region Hm model for
the empirical analysis, can be significantly changed if the FO model is employed.
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(1995) considered that the production of the A-sector requires labor and land as inputs,
and assumed that workers employed in this sector live where they work, which in turn
resulted in the endogenous dispersion of consumers.

7 Numerical Examples

This section describes numerical examples of the evolutionary process of agglomeration
patterns in order to illustrate the theoretical results shown in Sections 5 and 6. The
parameter values in these cases are identical with those in Figures 5 and 10 (i.e., σ =

3.0, µ = 0.5 for the FO model and σ = 2.0, µ = 0.8 for the Hm model). For the computation
of these examples, we employ the algorithm developed by Ikeda et al. (2012a), which
applies the computational bifurcation theory to the multi-region NEG model. This
algorithm allows us to obtain a complete picture of the evolutionary process of the
agglomeration patterns including the transition processes. The results of the numerical
analysis are shown in Figure 11, in which the horizontal axis denotes the SDF r and the
curves represent the fraction hi/H of the skilled workers in each region.

FO Model: Figure 11a shows the evolutionary process of the agglomeration patterns of
the FO model in the course of increasing r. First, the spatial pattern is the uniform
distribution until r is smaller than the break point r∗+. When r reaches r∗+, the first
bifurcation occurs and the duo-centric pattern emerges. As r keeps increasing, the
second bifurcation occurs at r∗∗+ , and this increase in r leads to the mono-centric
pattern. These results are consistent with Propositions 5.2 and 5.3. In addition, it
is worth noting that, though the first pitchfork bifurcation is supercritical (i.e., a
catastrophic agglomeration occurs), the second pitchfork bifurcation is subcritical
(i.e., a smooth agglomeration occurs).

Hm Model: The evolutionary process of the Hm model, which is illustrated in Figure
11b, is significantly different from (i). The agglomeration pattern of this model
directly evolves from a uniform distribution toward the unimodal distribution as r
decreases. This result clearly shows that the evolutionary process of the Hm model
is not the opposite of that of the FO model.

8 Concluding Remarks

Using NEG models, this study has shown that an extension of a two-region model with
agglomeration externalities to a multi-region one (with more than two regions) does
not necessarily admit the possibility of poly-centric agglomeration patterns. Thus, to
replicate the observed poly-centric agglomeration patterns in reality, one needs to be
careful in selecting an appropriate model. More specifically, we compared two types of
NEG models by Forslid and Ottaviano (2003) and Helpman (1998). It has been shown
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that the former model exhibits multi-stage bifurcations in response to decreases in trans-
portation costs where a uniform distribution of mobile factors on four symmetric regions
first bifurcates to a duo-centric agglomeration pattern, which continues to be stable for a
range of transportation costs; further decreases in transportation costs trigger the second
bifurcation resulting in the formation of a mono-centric agglomeration. In contrast, the
latter model undergoes only a single bifurcation through the course of increasing trans-
portation costs and the uniform distribution directly branches to a mono-centric pattern.
Furthermore, it has been formally proved that a duo-centric pattern never emerges in the
latter model.

Methodologically, we demonstrated that the spatial discounting matrix (SDM) encap-
sulates the essential information required for analyzing the multi-region NEG models.
Specifically, in order to understand the spatial concentration-dispersion patterns that
may emerge in the NEG models, it suffices: a) to obtain the eigenvalues of the SDM;
and b) to represent the Jacobian matrix of the indirect utility as a function of the SDM.
It should be emphasized that this fact holds for a wide variety of models that deal with
endogenous agglomerations of economic activities. Indeed, the same procedure as that
of this paper can be readily applied to other types of agglomeration models other than
NEG models, such as self-organizing urban structure models with endogenous CBD
formation (Takayama and Akamatsu, 2011; Osawa et al., 2015).

Although we focused on the possibility of poly-centric agglomerations in the context
of a homogeneous circular space, asymmetries of location space could be important deter-
minants of the spatial pattern of mobile agents in reality. Besides heterogeneous regional
endowments whose relevance has been extensively discussed recently (e.g., Allen and
Arkolakis, 2014; Caliendo et al., 2015; Desmet and Rossi-Hansberg, 2013), the presence
of edges in the location space could often explain the formation of major cities, such
that New York and Los Angeles at the coasts became substantially larger than the inland
cities in the US. Although analytical investigations become suddenly tough once under
these asymmetries, Ikeda et al. (2015) showed that the FO model exhibits a striking re-
semblance in the agglomeration characteristics between the long narrow economy and
the racetrack economy by utilizing computational bifurcation theory suggested by Ikeda
et al. (2012a).

Finally, it should be kept in mind that the models which admit poly-centric agglom-
erations are still not enough as candidate models to replicate the agglomeration patterns
in reality. In the case of NEG models studied in this paper, all individual agglomerations
in stable poly-centric equilibria for the FO model have equal size. In fact, in the absence
of exogenous location-specific factors, this is a common behavior among the NEG models
with a single type of differentiated goods where the substitutability between each pair
of differentiated goods is symmetric (e.g., Krugman, 1991; Forslid and Ottaviano, 2003;
Pflüger, 2004; Behrens and Murata, 2007). In the context of NEG models, one way to en-
dogenously generate a large size diversity among agglomerations is to introduce multiple
differentiated industries as in Fujita et al. (1999, Chap.11) and Tabuchi and Thisse (2011).
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While Tabuchi and Thisse (2011) made an initial step in this direction, the development
of more general approach is left for future research.17

17Refer to Hsu (2012) for an alternative model to NEG introducing multiple differentiated industries.
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Appendix

A Proof of Proposition 3.2

For the proof of Proposition 3.2, it suffices to show that the uniqueness of the price index
(3.23a) and the wage (3.25a) of the multi-region FO and Hm models. Thus, we prove the
uniqueness of these variables of two models in turn.
FO model
(1) From (3.23a), we can confirm that the price index ρ is uniquely determined.
(2) It follows from (3.25a) that the wage w is uniquely determined if the matrices
diag[D>h] and {I − (µ/σ)Mdiag[h]} are invertible. The former is true since it is readily
verified that

det |diag[D>h]| > 0. (A.1)

The latter can be proved if the matrix {I − (µ/σ)Mdiag[h]} satisfies Hawkins-Simon
condition (Hawkins and Simon, 1949). From Theorem 6.1 of Nikaido (1968, p.90), this
condition is equivalent to the following condition: there is a positive vector x such that[

I −
µ

σ
Mdiag[h]

]
x > 0. (A.2)

Substituting x = Dh(> 0) into the left hand side of (A.2), we have[
I −

µ

σ
Mdiag[h]

]
Dh =

(
1 −

µ

σ

)
Dh. (A.3)

Since σ is larger than µ in the FO model, (A.2) is always satisfied. Therefore, the wage of
the FO model is uniquely determined.
Hm model
(1) From (3.23b), the price index ρ is uniquely determined if the equilibrium wage w̃ is
unique.
(2) The wage equations (3.25b) are equivalent to the following problem:

Ψ(w̃) = 0, (A.4a)

Ψ(w̃) = [Ψi(w)]

=

wihi − µ
∑

j

di jw1−σ
i hi∑

k dkjw1−σ
k hk

(w j + 1)h j

 . (A.4b)

If there exists a short-run equilibrium wage w̃∗ (i.e., Ψ(w̃∗) = 0), w̃∗ is a solution of the
following nonlinear complementarity problem (NCP)

w̃ ·Ψ(w̃) = 0, w̃ ≥ 0, Ψ(w̃) ≥ 0. (A.5)
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It is known that, if ∇Ψ(w̃) = [∂Ψi/∂w j] is a P matrix for all w̃ ∈ R+, NCP (A.5) has at
most one solution.18 Furthermore, ∇Ψ(w̃) is a P matrix for all w̃ ∈ R+ if ∇Ψ(w̃) satisfies
the following condition (see Cottle et al., 2009):

max
i

wi[∇Ψ(w̃)w̃]i > 0 ∀w̃ ∈ R+. (A.6)

Because [∇Ψ(w̃)w̃]i is given by

[∇Ψ(w̃)w̃]i = hiwi − µ
∑

j

di jw1−σ
i hi∑

k dkjw1−σ
k hk

w jh j (A.7)

and
∑

i[∇Ψ(w̃)w̃]i = (1 − µ)
∑

i hiwi > 0, we have [∇Ψ(w̃)w̃]i > 0 and wi > 0 for i =

arg maxi[∇Ψ(w̃)w̃]i. This shows that ∇Ψ(w̃) is a P matrix for all w̃ ∈ R+, and thus NCP
(A.5) has at most one solution. This indicates that the short-run equilibrium wage w̃∗ is
uniquely determined if there exists w̃∗. Therefore, we next prove the existence of w̃∗.

The wage equations is also equivalent to the following fixed point problem:

find w̃ ∈ W such that wi = Φi(w̃) ∀i,

where Φi(w̃) = µ
∑

j

di jw1−σ
i∑

k dkjw1−σ
k hk

(w j + 1)h j, W =

w̃
∣∣∣∣∣∣∣ ∑

i

wihi =
µ

1 − µ
H, w̃ ≥ 0

 ,
because

∑
i Ψi(w̃) = 0 gives

∑
i wihi = Hµ/(1 − µ). It follows from this, Φi(w̃) ∈ W, and

Brouwer’s fixed point theorem that there exists at least one short-run equilibrium wage
w̃. Therefore, the short-run equilibrium wage and price index are uniquely determined.

B Jacobian Matrices of the Indirect Utility of the FO Model and
the Hm Model

The Jacobian matrix, ∇v, in the right-hand side of (3.33) of the FO model and the Hm
model are expressed as (3.36) and (3.37), respectively. The matrices ∇S(h) and ∇w(h) in
(3.36) are given by

∇S(h) = M>, (B.1a)

∇w(h) = κ{I − κMdiag[h]}−1
{Mdiag[w(h)] −MY (h)M>

}, (B.1b)

Y (h) ≡ diag[w(h)]diag[h] + lI . (B.1c)

The matrices ∇S̃(h) and ∇w̃(h) in (3.37) are expressed as

∇S̃(h) = M̃>(diag[w̃])1−σ
− (σ − 1)M̃>diag[h](diag[w̃(h)])−σ∇w̃(h), (B.2a)

18For the proof, see, e.g., Facchinei and Pang (2003)
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∇w̃(h) = −

(
∂W (w̃,h)

∂w̃

)−1
∂W (w̃,h)

∂h
, (B.2b)

W (w̃,h) ≡ µM̃diag[h](w̃ + 1) − (diag[w̃])σ1, (B.2c)

∂W (w̃,h)
∂w̃

= µM̃diag[h]{I + (σ − 1)diag[w̃ + 1]M̃>(diag[w̃])−σdiag[h]}

− σ(diag[w̃])σ−1, (B.2d)

∂W (w̃,h)
∂h

= µM̃diag[w̃ + 1]{I − diag[h]M̃>(diag[w̃])1−σ
}. (B.2e)

For the configuration h̄ ≡ [h, h, h, h]>, the definitions of M and M̃ in (3.26) yield
M (h̄) = (hd)−1D, M̃ (h̄) = (hw̃1−σd)−1D, where d ≡ d0 · 1 = (1 + r)2 and w̃ ≡ µ/(1 − µ),
and hence the Jacobian matrix of the indirect utility functions at h̄ reduces to

[FO model] ∇v(h̄) =
1
h

{
κ−D̄ +

[
I − κD̄

]−1
D̄

[
κI − D̄

]}
, (B.3a)

[Hm model] ∇v(h̄) =
1
h

{
κ−D̄ + κ(µI − D̄)

[
I − κD̄ −

κ
κ−
D̄2

]−1
D̄(I − D̄) − (1 − µ)I

}
,

(B.3b)

where D̄ ≡D/d.

C Properties of Circulant Matrices

A circulant C is defined as a square matrix of the form

C ≡



c0 c1 c2 · · · cK−2 cK−1

cK−1 c0 c1 c2 · · · cK−2
...

...
...

c2 c3 · · · cK−1 c0 c1

c1 c2 · · · cK−2 cK−1 c0


. (C.1)

The elements of each row of C are identical to those of the previous row, but are moved
one position to the right and wrapped around. The whole circulant is evidently deter-
mined by the first row vector c = [c0, c1, · · · , cK−1]. Circulant matrices satisfy the following
two well-known properties19.

Property 1 Every circulant matrix C is diagonalized by the following similarity trans-
formation:

Z∗CZ = diag[λ], (C.2)

where Z is the DFT matrix whose ( j, k) entry is given by ω jk = exp[i(2π jk/K)], i ≡

19For the proofs of these properties, see, for example, Horn and Johnson (2013), Gray (2006)

36



√
−1; λ ≡ [λ0, λ1, · · · , λK−1]>, and Z∗ denotes the conjugate transpose of Z. The k-th

eigenvalues and the eigenvectors of C are therefore λk and the k-th row of the DFT
matrixZ, respectively. Furthermore, λ is directly given by the DFT of the first row vector
c of C: λ = Zc>.

Property 2 If C1 and C2 are circulant matrices, the sum C1 +C2 and the product C1C2

are circulants. Also, if C1 is nonsingular, its inverse C−1
1 is a circulant.

D Sustain Points for h∗ = [2h, 0, 2h, 0]> and h∗∗ = [4h, 0, 0, 0]>

We will show the derivation of sustain points forh∗ = [2h, 0, 2h, 0]> andh∗∗ = [4h, 0, 0, 0]>,
in turn.

(1) For the duo-centric pattern h∗ = [2h, 0, 2h, 0]>, we can easily obtain the indirect utility
for each region by substituting h = h∗ into (3.27):

vi(h∗) =


κ− ln[2hd(0)] + ln

[
κ

1 − κ
l
h

]
if i = 0, 2

κ− ln[2hd(1)] + ln
[
κ

1 − κ
l

2h

(
(1 + κ)

d(1)

d(0)
+ (1 − κ)

d(0)

d(1)

)]
if i = 1, 3

(D.1)

where d(0) ≡ 1 + r2 and d(1) ≡ 2r. To obtain the sustain point for h∗, we represent the
utility difference between the “core” regions and the “periphery” regions as a function
of the SDF:

v01(r) ≡ v0(h∗) − v1(h∗)

= κ− ln
[
d(0)

d(1)

]
− ln

[
1
2

(
(1 + κ)

d(1)

d(0)
+ (1 − κ)

d(0)

d(1)

)]
(D.2)

By inspecting the function v01(r), we see that it takes zero value at r = 1 and r = r∗01 > 0
(i.e., the equation v01(r) = 0 has two positive solutions 1 and r∗01) and that

v01(r)

< 0 for 0 < r < r∗01,

≥ 0 for r∗01 ≤ r < 1.
(D.3)

This means that the equilibrium condition for h∗, v0(h∗) = v2(h∗) = maxk{vk(h∗)}, is
satisfied for any r larger than r∗01; that is, r = r∗01 is the sustain point for h∗.

(2) The sustain point for the mono-centric pattern h∗∗ = [4h, 0, 0, 0]> can be obtained in a
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similar manner. The indirect utility at h∗∗ is given by

vi(h∗∗) =



κ− ln[4h] + ln
[
κ

1 − κ
l
h

]
if i = 0,

κ− ln[4rh] + ln
[
κ

1 − κ
l

2h

(
(1 + κ)r + (1 − κ)

1
r

)]
if i = 1, 3,

κ− ln[4r2h] + ln
[
κ

1 − κ
l

4h

{
(1 − κ)

(
r +

1
r

)2
+ 4κr2

}]
if i = 2.

(D.4)

Define the following utility difference functions at h∗∗

v01(r)≡v0(h∗∗) − v1(h∗∗)

=κ− ln
[1

r

]
− ln

[1
2

(
(1 + κ)r + (1 − κ)

1
r

)]
(D.5)

v02(r)≡v0(h∗∗) − v2(h∗∗)

=κ− ln
[ 1
r2

]
− ln

[
1 − κ

4

(
r +

1
r

)2
+ κr2

]
(D.6)

After a tedious calculation, we can show that

v0i

< 0 for 0 < r < r∗∗0i,

≥ 0 for r∗∗0i ≤ r < 1,
(i = 1, 2), and 0 < r∗∗01 < r∗∗02, (D.7)

where r∗∗0i is the solution of v0i(r) = 0 (i = 1, 2). That is, the equilibrium condition for h∗∗,
v0(h∗∗) = maxk{vk(h∗∗)}, is satisfied for any r larger than r∗∗02; that is, r = r∗∗02 is the sustain
point for h∗∗.

E Proof of Lemma 5.1

The following two lemmas help us prove Lemma 5.1:

Lemma E.1 All the submatrices V (i j) defined in (5.16) are circulants.

Lemma E.2 The eigenvalues g∗k (k = 0, 1, 2, 3) of the Jacobian matrix∇F (h∗) ath∗ = [2h, 0, 2h, 0]>

are represented as g∗2 = e(00)
1 , g∗0 = −v̄(h∗) and g∗k = v1(h∗) − v̄(h∗) (k =, 1, 3), where e(00)

≡

[e(00)
0 , e(00)

1 ]> denotes the eigenvalues of the Jacobian matrix V (00).

Proof of Lemma E.1:
As is shown in (3.36), the Jacobian matrix ∇v(h∗) consists of additions and multi-

plications of M (h∗) ≡ D{diag[D>h∗]}. It follows from this that the Jacobian matrix
D]v(h∗) ≡ P∇v(h∗)P> in the new coordinate system consists of those of PM (h∗)P>,
which in turn is composed of submatricesM (i j) (i, j = 0, 1):

PM (h∗)P> ≡
1
2h

M (00) M (01)

M (01) M (11)

 . (E.1)

38



Therefore, in order to prove thatV (i j) are circulants, it suffices to show that the submatrices
M (i j) are circulants. Note here that PM(h∗)P> can be represented as

PM (h∗)P> =
[
PDP>

] [
P {diag[D>h∗]}−1P>

]
. (E.2)

The first bracket of the right-hand side of (E.2) is given in (5.14), and a simple calculation
of the second bracket yields

P {diag[D>h∗]}−1P> =
1
2h

{
diag[d(0), d(0), d(1), d(1)]

}−1
(E.3)

where d(0) ≡ 1 + r2 and d(1) ≡ 2r. Thus, we have

PM (h∗)P> =
1
2h

D(0)/d(0) D(1)/d(1)

D(1)/d(0) D(0)/d(1)

 (E.4)

which shows that the submatricesM (i j) are circulants.

Proof of Lemma E.2: Consider the Jacobian matrix ∇]F (h∗) ≡ P∇F (h∗)P> in the new
coordinate system:

∇
]F (h∗) = J ](h∗) +ψ](h∗)∇]v(h∗) ≡

F (00) F (01)

F (10) F (11)

 , (E.5)

where J ](h∗) ≡ PJ (h∗)P> andψ](h∗) ≡ Pψ(h∗)P>. Note here that the submatrices F (i j)

of the Jacobian matrix ∇]F (h∗) are circulants because all submatrices of J ](h∗), ψ](h∗)
and ∇]v(h∗) are circulants. This enables us to diagonalize each of the submatrices F (i j)

by using a 2-by-2 DFT matrix Z[2]:

{Z]
}
−1
∇
]FZ] =

diag[f (00)] diag[f (01)]]

diag[f (10)] diag[f (11)]

 , (E.6)

where f (i j) is the eigenvalues of F (i j), and Z]
≡ diag[Z[2],Z[2]]. It also follows that

applying the similarity transformation based on Z[2] to both sides of F (i j) yields

f (i j) =



[1 − δ] · [e(i j)] − v̄δ if i = j = 0,

[1 − δ] · [e(i j)] − v1δ if i = 0, j = 1,

0 if i = 1, j = 0

(v1(h∗) − v̄(h∗))1 if i = j = 1

(E.7)

where δ ≡ [1, 0]> and e(i j)
≡ [e(i j)

0 , e(i j)
1 ]> denote the eigenvalues of (1/2)E and the Jacobian

matrix V (i j), respectively.
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Therefore, (E.6) reduces to

{Z]
}
−1
∇
]FZ] =


−v̄(h∗) 0 −v1(h∗) 0

0 e(00)
1 0 e(01)

1

0 0 v1(h∗) − v̄(h∗) 0
0 0 0 v1(h∗) − v̄(h∗)

 (E.8)

Converting this into the original coordinate system, we obtain

P>
[
{Z]
}
−1
∇
]FZ]

]
P = {Z×}−1

∇FZ×

=


−v̄(h∗) −v1(h∗) 0 0

0 v1(h∗) − v̄(h∗) 0 0

0 0 e(00)
1 e(01)

1
0 0 0 v1(h∗) − v̄(h∗)

 , (E.9)

where Z× ≡ P>Z]P . Since eigenvalues of an upper-triangular matrix are given by the
diagonal entries, we can conclude that the eigenvalues of the Jacobian ∇F (h∗) are given
by [−v̄(h∗), v1(h∗) − v̄(h∗), θe(00)

1 , v1(h∗) − v̄(h∗)]>.

Proof of Lemma 5.1: Substituting (3.36) and (E.4) into the definition of ∇]v(h∗) in (5.16),
we see that the Jacobian matrix V (00) consists of additions and multiplications of D(0)

andD(1):

V (00)
≡

[
I − κ

(
D(0)

d(0)

)]−1
b [
D(0)

d(0)

]
−

a∗
[
D(0)

d(0)

]2

+ a∗(1)

[
D(1)

d(1)

]2

 , (E.10)

where d(0) ≡ 1 + r2, d(1) ≡ 2r, a∗ ≡ κκ− + (1 + κ)/2, a∗(1) ≡ (1 − κ)/2 and b ≡ κ + κ−. Since
D(0) and D(1) are circulants, we have the following expressions for the eigenvalues e(00)

of the Jacobian V (00):

e(00)
k =

b f (0)
k − {a

∗[ f (0)
k ]2 + a∗(1)[ f (1)

k ]2
}

1 − κ f (0)
k

, (E.11)

where f (i)
k (i = 0, 1) is the k-th eigenvalue ofD(i)/d(i), which is obtained by DFT of vectors

d
(i)
0 :

f(0) =
1

d(0)
Z[2]{d

(0)
0 }
> =

1
1 + r2

1 1
1 −1

  1
r2

 =

 1
c(r2)

 , (E.12a)

f(1) =
1

d(1)
Z[2]{d

(1)
0 }
> =

1
2r

1 1
1 −1

 rr
 =

10
 (E.12b)
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Substituting (E.12) into (E.11) yields

e(00)
0 = −1 + κ−, e(00)

1 =
bx − a∗x2

1 − κx
, where x ≡ c(r2) (E.13)

Combining (E.13) and Lemma E.2, we obtain Lemma 5.1.

F Proof of Lemma 6.1

Suppose that h2 is an equilibrium (i.e., v0(h2) = v1(h2)). Then, we have

R(∇F (h2), z>1 ) =

−(1 − µ) + (κ + κ−)(1 − r2)η − µκ−(1 − r2)2η2
− {σ−1

− (1 − µ)}
[
1 + r2

− 2r
(

w1
w0

)σ]
η

1 −
{
κ
κ−

[
1 + r2 − 2r

(
w1
w0

)σ]
+ κ(1 − r2)

}
η

,

(F.1)

where η ≡ (w1−σ
0 h0)/∆̃0 < 1. The following lemma helps in proving that the Rayleigh

quotient R(∇F (h2), z>1 ) is positive.

Lemma F.1 If the duo-centric pattern h2 = [h0, h1, h0, h1]> (h0 > h1) is an equilibrium of the
Hm model, w0 − w1 and w1−σ

0 h0 − w1−σ
1 h1 are positive.

Proof For the duo-centric pattern h2, we can rewrite the wage equations (3.25b) as

w0 = µw1−σ
0

{
(1 + r2)(w0 + 1)h0

∆̃0
+

2r(w1 + 1)(H/2 − h0)
∆̃1

}
, (F.2a)

w1 = µw1−σ
1

{
2r(w0 + 1)h0

∆̃0
+

(1 + r2)(w1 + 1)(H/2 − h0)
∆̃1

}
, (F.2b)

∆̃0 = (1 + r2)w1−σ
0 h0 + 2rw1−σ

1 (H/2 − h0), (F.2c)

∆̃1 = 2rw1−σ
0 h0 + (1 + r2)w1−σ

1 (H/2 − h0). (F.2d)

This yields the relationship between w0 − w1 and w1−σ
0 h0 − w1−σ

1 h1:

µrH(w0 + 1)w1−σ
0 (1 − r)2

(
w1−σ

0 h0 − w1−σ
1 h1

)
=

{
∆̃0∆̃1(1 − µ) + µrHw1−σ

0 ∆̃0

}
(w0 − w1) − µrH(w0 + 1)∆̃1

(
w1−σ

0 − w1−σ
1

)
. (F.3)

Because −(w1−σ
0 − w1−σ

1 ) and (w0 − w1) have the same sign, w0 − w1 and w1−σ
0 h0 − w1−σ

1 h1

also have the same sign. Moreover, the equilibrium condition for the duo-centric pattern
is rewritten as

µ

σ − 1
ln

[
∆̃0

∆̃1

]
+ µ ln

[w0 + 1
w1 + 1

]
= (1 − µ) ln

[
h0

h1

]
> 0. (F.4)

This condition implies that w0 − w1 and/or ∆̃0 − ∆̃1 = (1 − r)2(w1−σ
0 h0 − w1−σ

1 h1) must be
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positive. Thus, from (F.3) and (F.4), w0 − w1 and ∆̃0 − ∆̃1 = (1 − r)2(w1−σ
0 h0 − w1−σ

1 h1) are
positive if the duo-centric pattern h2 is an equilibrium. 2

From Lemma F.1 and the wage equations (3.25b), we have

(1 − r2)η > f1(r), (F.5a)

µ(h0 + h1) = (1 − µ)(w0h0 + w1h1) < (1 − µ)w0(h0 + h1). (F.5b)

Combining (3.25b) with (F.5b), we obtain

1 + r2
− 2r

(w1

w0

)σ
=
µ(1 − r)2(w0 + 1)w−σ0 h0

∆̃0
< (1 − r2)2η. (F.6)

It follows from this and (6.4) that the Rayleigh quotient R(∇F (h2), z>1 ) satisfies the fol-
lowing condition:

R(∇F (h2), z>1 ) >
−(1 − µ) + b(1 − r2)η − ã(1 − r2)2η2

1 −
{
κ
κ−

[
1 + r2 − 2r

(
w1
w0

)σ]
+ κ(1 − r2)

}
η
. (F.7)

Because −(1 − µ) + bx − ãx2 > 0 for any x larger than x̃∗
−

(Figure 3 (b)) and the condition
(F.5a) holds,

−(1 − µ) + b(1 − r2)η − ã(1 − r2)2η2

1 −
{
κ
κ−

[
1 + r2 − 2r

(
w1
w0

)σ]
+ κ(1 − r2)

}
η
> 0 if f1(r) > x̃∗−. (F.8)

Therefore, we obtain (6.9).

42



References

Akamatsu, T., Takayama, Y., Ikeda, K., 2012. Spatial discounting, Fourier, and racetrack
economy: A recipe for the analysis of spatial agglomeration models. Journal of Eco-
nomic Dynamics and Control 36 (11), 1729–1759.

Allen, T., Arkolakis, C., 2014. Trade and the topography of the spatial economy. The
Quarterly Journal of Economics 129 (3), 1085–1140.

Baldwin, R. E., Forslid, R., Martin, P., Ottaviano, G. I. P., Robert-Nicoud, F., 2003. Eco-
nomic Geography and Public Policy. Princeton University Press.
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Figure 11: Evolution of the agglomeration pattern
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