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good or bad quality. This process increases the incentive to hold risky loans, which in 
turn increases the cost of regulatory compliance when the regulator seeks to limit the 
risk taken by banks. The profitability of improved monitoring must be balanced against 
the increase in the cost of regulation, and we show that the trade off is always negative. 
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1 Introduction

This paper studies the effects of loan monitoring systems on bank risk and benefits, and the

effects of regulations on banks’ incentives for investment in loan monitoring systems.1 Some

attribute bank failures to underinvestment in monitoring. For instance, the Basel Committee

asserts “that a significant cause of bank failures is poor credit quality and credit risk assess-

ment. Failure to identify and recognise deterioration in credit quality in a timely manner can

aggravate and prolong the problem. Thus, inadequate credit risk assessment policies and

procedures, which may lead to inadequate and untimely recognition and measurement of

loan losses, undermine the usefulness of capital requirements and hamper proper assessment

and control of a bank’s credit risk exposure.”2

It is however a widely held assertion that monitoring of loans reduces loan risk. The

following example illustrates this assertion and its limitations. Suppose a bank either makes

a safe lending decision or a risky lending decision. Prior to making the decision, the bank

can invest in screening of the borrowers. The liability of the bank is 100, and the figure

describes the consequences of the firm’s decision conditional on the state of nature. These

consequences are given at the bottom of the trees by the pair (Loan Value, Bank’s Equity

Value).

The tree on the left, (a) in Figure 1, describes the situation in which the bank does not

acquire any information through screening and makes the lending decision without knowing

the true quality of the risky loan. Assuming that the bank is risk neutral, the shareholders
1The terms “screening” and “monitoring” appear to be used interchangeably in this context, however

screening is sometimes used to describe the information gathering associated with new loans and monitoring
the information gathering associated with existing loans. Screening has also a specific meaning in adverse
selection models in economics where it means the act of inducing self-selection or separation of hidden types
by presenting the decision makers with a choice from a given set of actions, which is not applied here. Finally,
some papers use monitoring to mean information gathering about the loan plus value enhancing intervention
in the risk management of the loan. In this paper monitoring simply means information gathering, as me
model separately the risk management decisions associated with the loan given the information gathering
process.

2Basel Committee on Banking Supervision: Sound credit risk assessment and valuation for loans, June
2006.
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Nature

Bank

(110, 10)

Safe

(150, 50)

Risky

0.5
Bank

(110, 10)

Safe

(70, 0)

Risky

0.5

(a) No Screening

Nature

Bank

(110, 10)

Safe

(150, 50)

Risky

0.5
Bank

(110, 10)

Safe

(70, 0)

Risky

0.5

(b) Perfect Screening

Figure 1: Effects of Loan Screening

prefer the bank lends risky since 25 (the ex ante equity value of risky lending, the average

of 50 and 0) is greater than the 10 (the equity value of safe lending). The regulator however

prefers the bank makes a safe lending decision since this prevents the bailout of the bank in

the bad outcome. The regulator can make the bank buy insurance against the bailout at a

cost of 15 (the expected value of the bailout which is one half probability times the bailout

cost which represents the shortfall in default, or 100− 70 = 30). The shareholder value net

of the regulation cost is 25− 15 = 10, which is the same as the value of safe lending and the

equity holders are indifferent.

The tree on the right, (b) in Figure 1, describes the situation in which the bank acquires

information that perfectly identifies the true quality of the risky loan. In this case, the bank

will lend risky if and only if the true quality of the risky loan is good, with a loan value of

150. In this case, there are no conflicts of interests among the bank, the regulator and the

shareholders, and there is no bailout risk. The shareholder value is 30 (the average of 50

and 10) minus the cost of information. If the cost of the monitoring system is less than 20,

therefore, the bank’s shareholders prefer to invest in monitoring, and the monitoring system

reduces the loan risk.

The crucial feature of the above example is that the investment in monitoring is done

before the lending decision is made, and that the relevant information arrives sufficiently
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rapidly to enable the bank to use the information when the lending decision is made. A

credit scoring system is an example of a system of this kind.

It is natural to assume however there would be useful new information about the credit

quality of the borrower available also after the lending decision is made, and that the bank

can invest in such information as well to make valuable improvements to the risk management

of the loan. The systems that collect this type of information we call dynamic monitoring

systems. An example of such a system is relationship banking, where the bank builds a

relationship with the borrower that enables information to be collected that enables the

bank to make improvements to the management of the loan. Another example is the one

described in Mester et al (2001), which involves monitoring of the borrower’s current account

activity and using this information to assess the credit quality of the loan. In particular,

the system aims to detect events such as overdraft occurrences or shortfall of income, which

may happen independently of whether the borrower maintains loan repayments.3

Another aspect glossed over in the example above, but which becomes more striking in

a dynamical setting, is that banks have the option to sell loans in the secondary market as

a means of manage their balance sheet risk. Several observers have commented on the link

between monitoring and loan sales, with a prominent view that a reduction in monitoring

activity encourages loan sales and lending activity, and therefore increases risk.4 The Basel

Committee’s view that credit risk increases because of the “failure to identify and recognise

deterioration in credit quality” is supported by this argument. That loan sales have become

substitutes for monitoring is also argued by Parlour and Plantin (2008), and Amir Sufi argues

in a recent FT article that banks are no longer “slavvy information gathering lenders, but
3Statistics show that for individual borrowers events such as illness, loss of job, and divorce/separation

are common causes of subsequent default on a loan. For corporations mismanagement of operations and
unexpected loss of main business lines are important.

4Cecchetti (2011) for instance makes the observation that “[i]n the years running up to the crisis, mortgage
lenders reduced their costly screening of borrowers in order to increase their lending and profit. By reducing
screening, they saved costs directly and they also expanded the range of potential borrowers so that they
could boost the number of loans. With costs reduced, more loans mean higher profits if – as usually occurred
– the mortgage lenders quickly sold the new loans to other intermediaries who would securitize them.”
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take instead leveraged bets on real estate,” implying that banks are failing in their duty to

monitor loans.5

However, monitoring of loans and loan sales cannot a priori be seen as mutually exclusive

activities – by gaining more information about the loan quality before making the decision to

sell the loan the bank may improve the profits from loan sales. Bord and Santos (2012) argue

that the fractions of loans that were sold/syndicated/securitised among lead US banks from

1990s onwards (the banks that were the most active users of the originate-to-distribute model

of banking) were increasing not only for new loans but also for loans that had already been

held for some years, suggesting that new information about existing loans obtained through

monitoring is a possible trigger for loan sales. The links between regulation, monitoring, and

risk remains, therefore, unclear.

Meanwhile, the empirical observation suggests that small banks tend to be more willing

to lend to small businesses than larger banks.6 This has been attributed in part to regulation,

as the way risk capital is calculated does not penalise small banks for risky lending in the

same way as large banks, and also in part to the fact that small banks do not rely on credit

scoring systems to the same extent as larger banks.7 Regulation is therefore a potential

factor explaining why banks switch away from dynamic monitoring systems to credit scoring

systems. To add to this point, Dermine (2013) argues directly that loan monitoring is

adversely affected by regulation.

The above observations lead us to ask what the benefits of banks’ investment in loan

monitoring systems are. More specifically, we address the following two questions in the

current paper:

(a) Does dynamic loan monitoring reduce bank risk?
5FT 13 October 2014: Bernanke’s failed mortgage application exposes the flaw in banking.
6See Craig and Hardee (2007), and Berger et al. (2005) who argue that large banks often shy away from

“informationally challenging” borrowers.
7See Stacy Mitchell’s article Why Small Banks Make More Small Business Loans, Institute for Local

Self-Reliance, 10 February 2010.
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(b) What are the net benefits of banks’ investment in dynamic monitoring systems?

To answer these questions, we describe the bank’s problem as an optimal stopping prob-

lem. In our model, the bank forms a prior belief about the loan quality (possibly by the

use of credit scoring systems) and then keeps revising its belief by acquiring further infor-

mation through dynamic monitoring until a stopping time is reached. Based on this model,

we show that a more intense monitoring activity can increase the incentive to keep riskier

loans, which will be met by greater regulatory compliance costs when the regulator seeks

to limit the amount of risk the bank takes. Therefore, banks can destroy their monitoring

systems and make greater savings in terms of regulatory compliance than they lose by the

dismantling of their monitoring ability. This perverse incentive structure should lead to a

rethink of the way we regulate banks.

The related literature spans the following three areas: loan monitoring and the use of

information in loan management; loan sales; and the dynamic modelling of information

release. In the first strand we find Berger et al (2005) and Loranth and Morrison (2009).

These papers distinguish between monitoring systems that generate output in the form

of “soft” information and “hard” information. While hard information can be transmitted

through formal systems, soft information is subjective and is not easily understood out of

context. In contrast, we distinguish between monitoring systems on the basis of fast and

slow output. The information may be soft or hard in either case – the key difference is the

speed of the output.

In the second strand Chemla and Hennessy (2011) and Bester et al. (2013) study the

relationship between loan sales and loan screening in a static framework; Parlour and Winton

(2009) who look at transfer of control rights to new investors who have some ability to

monitor their new loans versus the retention of control rights through insuring the credit

risk of the loan; and Chemla and Hennessy (2012) who consider a secondary market consisting

of rational speculators who may or may not be informed and rational hedgers who trade for
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risk sharing reasons. Their focus is on the loan sale market, whereas our focus is on the

use of monitoring systems that can lead to loan sales. In particular, they do not study the

effects on risk as a result of changes in the monitoring systems.

In the third strand Daley and Green (2012) employ a similar dynamic modelling tech-

nology. Daley and Green (2012) consider an informed seller deciding the optimal timing of

the sale of a good to an uninformed buyer who learns free of cost the value of the good over

time. We consider sales when the seller can invest in costly learning about the value over

time, but when the transaction takes place there is no information asymmetry between the

seller and the buyer. In this sense the similarity to Daley and Green’s (2012) model does

not go beyond the modelling technology.

2 The Basic Model

We look at the problem of intermediating loans between borrowers and sellers. Adverse

selection costs prevent direct trade, and the intermediation is provided by a bank with

monitoring ability which enables better assessment of loan quality than the investors. The

bank decides to hold some loans on its own book, and to sell some loans to the investors

by signalling the bank’s information about the loan, at a cost, to investors. This decision is

the main risk management decision for the bank, as the risk of the bank is a function of the

hold or sell decision.

2.1 The Structure of the Model

The bank first operates a credit scoring system that is activated at the time the loan origi-

nates. A loan that originates at time 0 promises to pay a constant perpetual coupon flow c

and is classified by parameter π0, which is the prior probability that the loan is riskless – a
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loan with π0 = 0 will default with probability 1 and one with π0 = 1 will never default.8 The

discount rate is r. A high quality loan is risk free and has value c
r
. Note that for the bank’s

portfolio, the credit scoring system will produce an initial distribution of the prior beliefs π0,

and the more effective the scoring system is the more probability mass will accumulate near

the extreme points of 0 and 1. The shape of this distribution is not relevant to our model,

so we assume that the priors are uniformly distributed on [0, 1].

The bank can sell loans to the investors at competitive prices, which depend on the

ability of the investors to bear credit risk, represented by k. The bank is regulated and

has a lower ability to bear credit risk, which is represented by k + κ, where κ is set by the

regulator. When the bank sells a loan to the investors, it incurs a signalling cost g (> 0). If

the probability the loan is of high quality is π, then the value of the loan held by the bank

is VI(π) = c
r
− (k+κ)(1−π). The market value of the loan is VS(π) = c

r
− k(1−π) at which

the bank receives net proceeds of VS(π) − g from selling the loan. We assume that κ > g;

thus, some gains from trade can be made for the lowest quality loans. If this assumption

were violated the bank would never sell loans. Thus, there is a trade-off – the bank seeks

to balance the gains from trade against the cost of the loan sale transaction. For high risk

loans the gains from trade will typically dominate the signalling cost, whereas for low risk

loans the reverse will be true.

The bank can continue monitoring the loan using its dynamic monitoring system at

a constant cost m, and this monitoring process results in a posterior probability process

{πt|t ≥ 0, π0}. The monitoring generates an information signal which is represented by xt,

x0 given. This process represents an observable characteristic associated with the loan, which

follows a Brownian motion

dxt = θµdt+ σdBt,

where µ, σ > 0 and θ ∈ {0, 1}. Although the drift rate θµ ∈ {0, µ} is the primary determinant
8Since the date of origination is immaterial to this problem, we normalise by setting t0 = 0 for all loans.
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of loan quality, it is not directly observable. The loan has high credit quality and is risk free

if θ = 1 , and it has low credit quality and is maximally risky if θ = 0. While the drift rate

is not observable, the path of {xt}t is, and this allows the bank to make inferences about

loan quality in real time. Monitoring leads, therefore, to a posterior process {πt|t ≥ 0, π0}.

2.2 Bank’s Optimal Stopping Rules

The solution to the monitoring problem is to make a final decision of whether to hold or

sell the loan at an optimal stopping time t∗. Thus, we are investigating trigger strategies of

the type where if πt∗ = π∗ for some π∗ the bank decides to hold the loan at time t∗, and if

πt∗ = π∗∗ for some π∗∗ ≤ π∗ the bank sells the loan at time t∗. The value of the loan that is

held at π∗ is VI(π∗) = c
r
− (k+κ)(1−π∗). The net value to the bank of the loan that is sold

at π∗∗ is VS(π∗∗)− g = c
r
− k(1− π∗∗)− g. The value of a loan that is monitored VM(πt) is

expressed as follows: For πt ∈ [π∗∗, π∗],

VM(πt) = E
{∫ t∗

0

e−ru(c−m)du+ e−rt∗ max {VS(πτ )− g, VI(πτ )}
}

It is clear from the expression above that the value of a monitored loan satisfies VM(πt) ≥

max {VS(πt)− g, VI(πt)} for πt ∈ [π∗∗, π∗], so by investing in internal monitoring the bank

will always be better off than by sorting loans immediately by naively choosing to keep loans

in-house if VI(π0) ≥ VS(π0) − g and sell loans otherwise.9 The dynamic monitoring system

is described by its cost m and its efficiency as measured by the signal-to-noise ratio µ
σ

(or its

inverse).

The posterior probability process is πt = P(θ = 1|Fx
t ) (with respect to the σ-algebra

generated by {xτ}tτ=0). From Peskir and Shiryaev (2006) we find that the likelihood ratio
9By setting t∗ = 0 we find a lower bound for VM equal to max{VI , VS − g}, and by choosing t∗ freely we

may improve on this valuation.
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process φt, defined by the Radon-Nikodyn derivative, is given by

φt =
d(P1|Fx

t )

d(P0|Fx
t )
,

where P1 is the probability measure for the process xt when θ = 1 and P0 is the probability

measure for the process xt when θ = 0. The process admits the representation

φt = exp
( µ
σ2

(
xt −

µ

2
t
))

,

and we can use this representation to derive the posterior probability process

πt =

(
π0

1− π0
φt

)/(
1 +

π0
1− π0

φt

)
,

where π0 is the prior belief at the time the loan was originated. This process solves the

stochastic differential equation

dπt =
µ

σ
πt(1− πt)dB̃t, π0 = π, B̃t =

1

σ

(
xt − µ

∫ t

0

πsds

)
, (1)

where B̃t is a standard Brownian motion.10

The problem we investigate can be taken to be a problem of optimal stopping in πt

rather than xt because the process xt is not known by the decision maker.11 The time of

origination does not play a role here since the system is Markovian and the history leading

up to a posterior belief πt does not matter. One of the key differences between our model

and Daley and Green (2012) is that in their model the decision maker is informed about

the drift term of the xt process and is waiting for the optimal time when a transaction with

a buyer can take place. In our framework the decision maker is uninformed and invests in
10The derivation of (1) is given in the appendix.
11The sample path leading up to time t from origination is observable, but the drift term in the process

generating this sample path is not.

9



monitoring which leads to better information about the process. This makes the πt process

the natural state variable.

The infinitesimal generator of {πt, t ≥ 0} is

L =
µ2

2σ2
π2(1− π)2

∂2

∂π2
− rI,

which applies to any value function V defined over the cash flow of the loan and the credit

quality πt of the loan, and where I represents the identity operator. Monitoring of the loan

will make xt observable and this leads to changes in πt under the B̃t process. The change

in loan value VM(πt) net of the cost of capital rVM(πt) is captured by the term L(VM(πt)),

and together with the net gain c − m (which we can interpret as a dividend stream), the

optimality condition is that the sum of the two equals zero. For loans that are not monitored

there is no change in the loan value because the bank cannot infer new information about

their loan quality, and the value of these loans is simply VI(π) for loans that are kept in-house

and VS(π) for loans that are sold, when the belief about loan quality is π.

Definition 1: Bank’s optimal stopping rule is a pair (π∗, π∗∗) that satisfies the following

conditions:

(a) The value function VM satisfies L(VM(πt))+(c−m) = 0 for πt ∈ [π∗∗, π∗] and VM(πt) ≥

max{VI(πt), VS(πt)− g};

(b) The trigger point π∗ satisfies VM(π∗) = VI(π
∗) and d

dπ
VM(π∗) = d

dπ
VI(π

∗);

(c) The trigger point π∗∗ satisfies VM(π∗) = VS(π
∗)− g and d

dπ
VM(π∗) = d

dπ
VS(π

∗∗).

Condition (a) follows from standard continuous time techniques, and the only feature to

look out for here is the condition that VM must be greater at any interior point that both

VI and VS − g. This condition impose additional constraints on the value functions, since it
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necessitates that VM is strictly convex at the thresholds π∗ and π∗∗. Conditions (b) and (c)

are value matching and standard smooth pasting conditions.

Lemma 1: The following function satisfies L(VM(πt))+(c−m) = 0, the first of the conditions

in Definition 1 (a) above:

VM(πt) = Āπ
1
2
(1−ξ)

t (1− πt)
1
2
(1+ξ) + B̄π

1
2
(1+ξ)

t (1− πt)
1
2
(1−ξ) +

c−m

r
,

where ξ =
√

1 + 8r (σ/µ)2 and Ā and B̄ are arbitrary real constants.

Lemma 1 is a general solution of the conditions that are imposed on the value function

by condition (a) in Definition 1. The constants Ā and B̄ depend on the boundary conditions

that arise from the other conditions (b) and (c) in Definition 1, and they determine the

option value of deferring the optimal risk management decision for the loan. We expect

that the option value of delaying the optimal risk management is high when the optimal

risk management decision is unclear, i.e. when the credit quality of the loan is such that the

in-house value is close to the sale value net of the sale cost. Define f1(π) and f2(π) by

f1(π) := π
1
2
(1−ξ)(1− π)

1
2
(1+ξ);

f2(π) := π
1
2
(1+ξ)(1− π)

1
2
(1−ξ).

Also define g1(π) and g2(π) by

g1(π) := 1
2
(1− ξ)π−1 − 1

2
(1 + ξ)(1− π)−1;

g2(π) := 1
2
(1 + ξ)π−1 − 1

2
(1− ξ)(1− π)−1.

Note that f1(π), f2(π), g2(π) > 0 and g1(π) < 0, for all π, and f ′(π) = fi(π)gi(π), i = 1, 2.
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Also, it is easy to verify that f ′′
i (π) = fi(π)

[
(gi(π))

2 + g′i(π)
]
> 0, i = 1, 2—so, fi is strictly

convex. Moreover, define the matrices M1 and M2 by

M1 :=

 f1(π
∗)g1(π

∗) f2(π
∗)g2(π

∗)

f1(π
∗∗)g1(π

∗∗) f2(π
∗∗)g2(π

∗∗)

 , M2 :=

 f1(π
∗) f2(π

∗)

f1(π
∗∗) f2(π

∗∗)

 ,

of which we make use in the following result.

Proposition 1: The points π∗ and π∗∗, which are the solutions to the following system:

M−1
1

 k + κ

k

 =

 Ā

B̄

 = M−1
2

 −(k + κ)(1− π∗) + m
r

−k(1− π∗∗)− g + m
r

 , (2)

are the optimal trigger points describing the dynamic monitoring region [π∗∗, π∗], provided

that VM(π) > max {VI(π), VS(π)} for all π ∈ (π∗∗, π∗). A necessary and sufficient condition

for the inequality is that VM is strictly convex over the region [π∗∗, π∗].

The system of equations (2) is essentially standard value-matching and smooth-pasting

conditions, where (a) the bank will stop the monitoring process and sell the loan when both

the value and the marginal value of the loan are the same for either decision, and similarly

(b) the bank will stop the monitoring process and hold the loan when the value of and the

marginal value of the loan are the same for either decision. If the values or the marginal

values were different, it would be profitable to either speed up or defer the decision to hold

or sell the loan. The option value of deferring the decision further, therefore, is exactly zero

at the optimal stopping points.

We now examine the effects of parameters m and κ on the thresholds π∗ and π∗∗.

Proposition 2: Thresholds π∗ and π∗∗ have the following properties.
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(a) π∗ is strictly decreasing and π∗∗ is strictly increasing in m.

(b) π∗ and π∗∗ are both strictly increasing in κ.

Proposition 2 (a) states that the range of monitoring [π∗∗, π∗] is wider when the cost of

monitoring m is lower. Meanwhile, Proposition 2 (b) implies that the bank would keep fewer

low quality loans when the regulatory cost of risk capital κ is higher, since bank would only

keep loans that is equal to or better than π∗∗ on its own balance sheet, and sell out all other

loans. Moreover, Proposition 2 (b) also states the bank would be keener to keep monitoring

the loans when κ is higher. Before proceeding, we make the following comments related to

the model and the optimality conditions.

Mandatory use of credit scoring systems : In an earlier version of the model we operated

with a three-stage monitoring process: an initial screening of borrowers that lead to the

formation of the priors π0; then subsequently the use of credit scoring systems and/or dy-

namic monitoring systems. The optimality conditions would ensure the use of credit scoring

if the cost of the use of credit scoring is sufficiently low. Therefore, the problem becomes

essentially a choice of deciding when to stop the dynamic monitoring process. Therefore,

in the formulation above we have simplified the three-stage process to a two-stage process:

the initial screening process includes the use of credit scoring systems at zero cost. In this

formulation, the investment in a more effective credit scoring system simply influences the

distribution of prior beliefs, putting more probability mass in the regions close to zero or

one. This is of course profitable as it makes it easier for the bank to separate the loans that

can be sold or held immediately from those that require dynamic monitoring, but crucially

the dynamic monitoring problem is still the same as it depends only on the prior belief of

the loan. This simplification is, therefore, taking very little away from the generality of the

model.
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Interpretation of loan sales : The optimal risk management of bad loans in our model is to

sell them. Alternatively, we can interpret loan sales as an intervention policy by the bank

which leads to reduced losses in credit events. If we consider the value of a loan of quality π

kept in-house without any intervention to mitigate losses to be c
r
− (k + κ)(1− π), and the

value of a similar loan with intervention to be c
r
− k(1− π)− g, the net value of intervention

is κ(1 − π) − g, where κ(1 − π) is the value of intervention, and g is the cost. The bank

invests in information, therefore, to separate the loans that need intervention from those

that do not. This interpretation may be more natural for small banks that find it difficult

to invest in signalling technology that enables it to sell loans at a fair value. The model will

not distinguish loan sales from this kind of intervention.

Extreme Stopping Rule Thresholds : It is possible that the equilibrium values of the optimal

stopping problem get close to zero or one, i.e. π∗∗ → 0 or π∗ → 1. These cases are problematic

in the sense that the state variable πt is “arrested” at the boundary points 0 and 1, i.e. the

diffusion term µ
σ
πt(1 − πt) → 0 for πt → 0 or πt → 1. When the state variable is near 0,

therefore, the choice is between VI(0) = c
r
−(k+κ) and VS(0) = c

r
−k−g, and under sensible

parameter values we will always choose VS(0). When the state variable is near 1, the choice

is between VI(1) =
c
r

and VS(1) =
c
r
− g, and we will always choose VI(1). There can be no

economic value associated with a continuation of monitoring. If we try to calculate π∗ or π∗∗

numerically, however, we will easily get into difficulties because extreme values of π∗ or π∗∗

make the matrices M1 or M2 nearly singular, so the optimality condition is badly behaved.

2.3 Steady State

Since we are building a dynamic model we shall assume the bank is operating at steady state

which necessitates, when loans are of infinite duration, that there is some exogenous entry
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of new loans and exit of existing loans that are repaid early.12 We assume that a loan of

any quality π0 ∈ [0, 1] originates randomly at some time s, and conditional on origination

will be repaid at a fair price (and disappear) randomly, with an exponential distribution, at

some time t ≥ s. The advantage of the exponential distribution is that it is a memoryless

distribution in the sense that the probability that the loan will be repaid over the next

instant, conditional on not being repaid up to that time, is independent of the passage of

time since origination. Therefore, for time t > s and ρ1 > 0, we assume the probability that

a new loan (of any kind) arrives is

P(New type-π loan arrives between s and s+ dt) =

∫ s+dt

s

ρ1e
−ρ1(t−s)dt.

Conditional on the likelihood Pπ
s of a loan of type π exists at time s, and that n such loans

exist, the probability that a loan is withdrawn at time s is

P(Existing type-π loan withdrawn between s and s+ dt|Pπ
s , n) =

∫ s+dt

s

nPπ
sρ0e

−ρ0(t−s)dt.

Therefore, the net new arrival of loans of type π is

ndPπ
s =

∫ s+dt

s

(
ρ1e

−ρ1(t−s) − nPπ
sρ0e

−ρ0(t−s)
)
dt.

The system is in steady state when ndPπ
s = 0, and in this case the bank receives an inflow of

capital from the withdrawn loans that exactly matches the outflow of capital into new loans.

Working out the integrals, we find that

ndPπ
s = (ρ1 − nPπ

sρ0) dt = 0,

12This is done for tractability here but this assumption is not without realism even when loans are not of
infinite maturity.
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which implies the steady state condition Pπ
s = ρ1

nρ0
which links the likelihood of any loan

existing to the arrival and withdrawal rates and the number of loans existing. If the arrival

and withdrawal rates are the same, therefore, the steady state condition implies that the

probability that a loan of a given type exists is exactly the inverse of the loans in existence.

We will assume a steady state with nPπ
t = ρ1

ρ0
for the remaining parts of this paper.

Steady State in the Dynamic Monitoring Region: The steady state condition is fairly obvious

for the regions [0, π∗∗] and [π∗, 1] since these loans are never monitored and there is no change

in πt over time. However, for loans in the interior of the monitoring region the state variable

πt will change over time and the steady state condition should recognise this. The number

of new loans of type π̄ at some point in time t equals the new loans arriving plus “old” loans

arriving at π̄ from above, i.e. πt− > πt = π̄, and plus “old” loans arriving at πt from below

i.e. πt− < πt = π̄. The number of withdrawn loans is similarly the withdrawn loans plus

the loans of type π̄ exiting to a type above, i.e. πt− = π̄ < πt, and plus the loans of type πt

exiting to a type below, i.e. πt− = π̄ > πt. With Brownian uncertainty this problem can be

ignored, and we provide some technical details in the appendix to that effect.

3 Regulation and Intermediation Surplus

In this section we extend the model by endogenising κ, the additional cost of risk capital

imposed by the regulator on the bank, and analyse the relationship between bank’s risk

taking behaviour, bank’s intermediation surplus, and regulation.

3.1 Regulation

The bank accumulates risk through its lending operations which is the primary reason the

regulator is concerned with controlling the lending operations of the bank. This risk is asso-
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ciated with the loans the bank is currently keeping—either as loans that are placed in-house

permanently or loans that are currently being monitored and awaiting a risk management

decision of whether to be sold or placed in-house. If the bank holds a lot of risky loans it

may pose a systemic threat to the financial system, which the regulator controls through

imposing costs on the bank for holding risk, i.e. κ in our model.

The natural risk measure for a loan of quality π is the discount of a risky loan relative

to a risk free one. Specifically, the risk free value of the loan is c
r
, and the risky value of

the loan is VS(π) = c
r
− k(1− π), so the risk associated with the loan is simply the discount

c
r
−VS(π) = k(1−π). For a loan portfolio with loans of quality π uniformly distributed over

[π, π], the loan portfolio risk is
∫ π

π
k(1 − π)dπ = k(π − π)

(
1− π+π

2

)
. Since the bank holds

loans of type π varying uniformly from π∗∗ to 1 by assumption, the risk of the bank’s loan

portfolio is k
2
(1− π∗∗)2.

Note that the risk measure k
2
(1 − π∗∗)2 is a market based measure of the need to hold

risk capital, since it depends on the discount of the market value of loans relative to a

corresponding risk free loan, i.e. the risk is measured relative to the market’s risk bearing

ability k. If we made the risk measure based on the internal risk bearing ability k + κ it

would depend on the regulator’s actions and would mean that a more strict regulation of a

bank would itself lead to a higher risk in the bank’s loan portfolio without any action on the

part of the bank. To prevent this from happening we make the risk measure a market based

risk measure, broadly in line with risk assessment models used in practice. An implication of

the risk measure is that the regulator requires higher cost of bearing risk, for instance more

strict capital requirements, to the banks in which the barrier for holding risky loans is low

(i.e. π∗∗ is low).

With the above observation, we assume that the regulator sets κ∗ by the following rule:

Assumption 1: The regulator knows the bank’s optimal stopping rules defined by Definition

1, and sets κ∗ so that ψ(κ∗) = ψ̄ holds for ψ̄ given, where ψ(κ) := k
2
[1− π∗∗(κ)]2.
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The expression π∗∗(κ∗) reflects the fact that the bank chooses π∗∗ in accord with the

optimal stopping rules defined by Definition 1, given κ∗. Namely π∗∗ is really a function

of κ∗, and Assumption 1 assumes that the regulator possesses full knowledge of the bank’s

optimal stopping rules. Under Assumption 1, κ∗ is set so that the risk level is matched with

ψ̄, which has a one-to-one relationship with π∗∗ given k. Thus, setting ψ̄ is equivalent to

setting π∗∗, and we can interpret Assumption 1 that the regulator imposes the regulatory

cost of risk capital κ∗ on the bank so that the bank will set its lower threshold π∗∗ at a level

targeted by the regulator. In other words, π∗∗ is fixed under Assumption 1.

In what follows, we define the intermediation surplus for the bank, which roughly mea-

sures the value-added of the bank through its monitoring capability and its keeping of the

loans in its own book.

3.2 Intermediation Surplus

A loan of quality π has a value of VS(π)− g for the bank, net of signalling costs g. The bank

can improve on the market value in two ways. The bank can either hold the loan in-house

at the value VI(π) or keep the loan under observation in its monitoring system with the aim

of delaying the decision to hold or to sell, at the value VM(π). The former way saves the

signalling cost g, but incurs a higher regulatory cost of risk capital as determined by the

regulator’s choice of κ. The intermediation surplus is, therefore, simply the maximum of

these three values minus the market value, i.e.

V (π) = max{VS(π)− g, VM(π), VI(π)} − [VS(π)− g]

= max{0, VM(π)− [VS(π)− g], VI(π)− (VS(π)− g)}.

In the steady state the bank will have a continuous inflow of new loans of quality π0,
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and we assume that the inflow is uniformly distributed on [0, 1]. Observe however that the

functional form of VI(π) depends on κ, while that of VM(π) depends on κ, m and σ/µ. Hence,

the functional form of V (π) depends on κ, m and σ/µ, too. It follows that the expected

value of intermediation of a loan can be written as a function of κ, m and σ/µ,

EV (π0|κ,m, σ/µ) =
∫ 1

0

V (π0|κ,m, σ/µ)dπ0.

Since the regulator’s choice of κ has a direct influence on the loans that are kept in-house,

and an indirect influence on the loans that are being monitored, the strength of regulation is

the prime determinant of intermediation surplus. However, under Assumption 1, to restrict

the bank’s risk level, the regulator would set κ corresponding to the values of m and σ/µ

given. Hence, we define the following value function that defines the intermediation surplus

for the bank, which is described as a function of m and σ/µ:

W (m,σ/µ) := EV (π0|κ∗(m,σ/µ),m, σ/µ). (3)

The expression κ∗(m,σ/µ) in (3) means that different banks would not necessarily be im-

posed the same regulatory cost of risk capital κ∗. The reason is that the bank’s risk taking

also depends on its internal monitoring activity, which in turn is determined by the param-

eters m and σ/µ.

3.3 Bank’s Incentives and Regulation

We explore what effects a reduction in the cost of monitoring, m, and an increase in the

effectiveness of the learning process, i.e. the inverse of σ/µ, have on regulation and inter-

mediation surplus. A reduction in m is expressing cost savings in the information gathering

process—for instance, through some form of automation of the monitoring process. A de-

crease in σ/µ means a higher quality of the signal/information acquired through dynamic
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monitoring—for instance, the bank invests in systems that can increase the number of sig-

nals gathered, or by combining multiple signals in a better way, so that the learning process

is speeded up. However, before proceeding, we present the following result, which is useful

in understanding the main thrust of the main results reported in Propositions 3 and 4 below.

Lemma 2: Assume Assumption 1. For two distinct pairs of parameter values (m0, σ0/µ0)

and (m1, σ1/µ1), suppose

∂2VM
∂π2

(π|κ∗0,m0, σ0/µ0) >
∂2VM
∂π2

(π|κ∗1,m1, σ1/µ1), ∀π ∈ [π∗∗,min{π∗
0, π

∗
1}], (4)

where π∗
i and κ∗i are corresponding to (mi, σi/µi), i = 0, 1. Then,

(a) V (π|κ∗0,m0, σ0/µ0) ≥ V (π|κ∗1,m1, σ1/µ1) for all π, with > for π > π∗∗.

(b) π∗
0 < π∗

1.

(c) κ∗0 < κ∗1.

Thus, the extent of convexity of VM is closely related to its location – in particular, the

monitoring region and the regulatory cost of risk capital κ∗. It follows that once we can

establish that the VM function for a set of parameter values of (m,σ/µ) is ‘more convex’

than the VM function for another set of parameter values of (m,σ/µ), we can conclude that

the former VM function is located above the latter VM function. Also, we would know that

the upper threshold π∗ is lower for the former set of parameter values than for the latter,

and the same applies to the regulatory cost of risk capital κ∗. By using Lemma 2, we claim

the following result.

Proposition 3: Under Assumption 1, monitoring cost m has the following effects on the

bank’s surplus W (m,σ/µ), the upper threshold π∗ and the regulatory cost of risk capital κ∗
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imposed by the regulator.

(a) W (m,σ/µ) is strictly increasing in m.

(b) π∗ is strictly decreasing in m.

(c) κ∗ is strictly decreasing in m.

Proposition 3 (a) states that the bank’s intermediation surplus will be reduced when the

monitoring cost m is lowered. Also, Proposition 3 (b) implies that the bank stops monitoring

earlier when the monitoring cost is higher. Moreover, by Proposition 3 (c), we now know

that the regulator will impose a higher regulatory cost of risk capital κ∗ when the monitoring

cost m is lower. This means that the bank will be penalised by the regulator for making

investments to lower the monitoring costs through a higher regulatory cost of risk capital.

The intuition behind these results is that when the bank is equipped with a more cost efficient

monitoring process/system, it is capable of monitoring loans of a wider range of quality, and

the regulator will impose a higher κ∗ in order to prevent the bank from holding loans with

a quality lower than π∗∗. A higher regulatory cost of risk capital is a heavy burden to the

bank, and is detrimental to its intermediation surplus.

Next, we present the following result concerning the effects of signal quality σ/µ.

Proposition 4: Under Assumption 1, signal quality σ/µ has the following effects on the

bank’s surplus W (m,σ/µ), the upper threshold π∗ and the regulatory cost of risk capital κ∗

imposed by the regulator.

(a) W (m,σ/µ) is strictly increasing in σ/µ.

(b) π∗ is strictly decreasing in σ/µ.

(c) κ∗ is strictly decreasing in σ/µ.
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Proposition 4 shares the same spirit with Proposition 3. Namely, a bank with a better

monitoring process/system – in this case, a lower σ/µ, will be imposed a higher regulatory

cost of risk capital κ∗ by the regulator, and its intermediation surplus will be lower. Also, the

bank will be monitoring loans of a wider range of quality when it can collect better quality

information through monitoring.

The main implication of Propositions 3 and 4 is that banks would have no incentives

to invest in its monitoring process/system to improve the signal quality the system can

gather, when investment made by a bank can affect m and σ/µ it will face. Moreover, the

predictions of Propositions 3 and 4 are consistent with the observation that larger banks,

who are imposed a higher capital requirement or credit costs, tend to offload more loans from

its balance sheet and rely more on credit scoring systems, but less on dynamic monitoring,

compared to smaller banks.

3.4 Implications for Regulation

The implications for financial regulation from the above results are in some sense straight-

forward. The standard approach to micro-prudential bank regulation is to allocate weights

to the bank’s various risk categories and to arrive at a risk-weighted aggregate risk capital

requirement. In principle, it does not matter to the capital requirement whether the risk

arises from lending activities or non-lending activities. However, our results suggests the

regulator should apply a pecking order approach to regulation. First the regulator should

control non-lending activities of the bank with the aim of satisfying Assumption 1. If this

can be done without increasing the regulatory burden on the bank’s lending activities the

regulator is able to achieve it regulatory objectives at the same time as the bank retains

the competitive advantage in lending that arises from the investment in dynamic monitoring

systems. This leads to a reallocation of risk capital away from non-lending activities and

into lending activities.
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Parameter Value
Coupon flow c 1
Discount rate r 0.05
Diffusion parameter σ 0.30
Market credit cost k 4
Signalling cost g 2

Table 1: The common parameter values used in the numerical examples.

What should happen when Assumption 1 can no longer be satisfied by controlling non-

lending activities is unclear. Our model suggests there is in this case a genuine regulatory

trade off between controlling the risk associated with lending and preventing banks from

investing in competitive advantage arising from superior monitoring technology. This issue

requires rigorous treatment in a dynamic equilibrium model which goes beyond the scope of

this paper.

4 Numerical Examples

In this section, we provide numerical examples to illustrate the analytic results. The param-

eter values in Table 1 are used throughout.

First, we look at numerical solutions to the optimal monitoring region. The first is

how the regulatory cost of risk capital (given by the parameter κ) affects the dynamic

monitoring behaviour – we do not employ Assumption 1 here, and thus, κ is treated as a

parameter. Figure 2 shows the results and uses, in addition to the parameter values above,

drift parameter µ = 0.10; monitoring cost m = 0.30; and the regulatory cost of risk capital

κ varying from 2.5 to 18.5. The monitoring region [π∗∗, π∗] is represented as the grey area

in Figure 2.

We find that the threshold values for making the decision to sell the loan, and for making

the decision to hold the loan, are both increasing in the regulatory cost of risk capital κ,
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1

0
κ = 2.5 κ = 18.5

Figure 2: Illustration of how the bank’s optimal stopping rules change in response to changes
in the regulatory cost of risk capital κ.

confirming Proposition 2 (b). Therefore, the bank holds fewer loans, and sells more loans,

the greater the cost of risk capital κ. The regulator has, therefore, the ability to control

the bank’s behaviour indirectly by influencing the risk management and loan monitoring

decisions.

Next, we investigate the relationship between the monitoring cost and bank risk. We

apply Assumption 1, and look at how monitoring activity and intermediated loan values

vary as we vary the cost of monitoring m. We utilise largely the parameter values in Figure

2. If we take c = 1, k = 4, r = 0.05, and ψ̄ = 0.18, the riskiest perpetual loan trades

at 56bp higher than its risk free counterpart, a 20-year annuity loan will trade at 216bp

higher, and a 10-year annuity loan will trade at nearly 670bp higher.13 Figure 3 shows
13These calculations are based on an average discount ψ̄ = 0.18 which translates into a lower barrier

π∗∗ = 0.7. We then solve the yield to maturity i of the equation measuring the discount at the point π∗∗:

ψ =
1

r

(
1− (1 + r)−T

)
− 1

i

(
1− (1 + i)−T

)
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π

m

1

0
m = 0.17 m = 0.47

Figure 3: Monitoring region with risk constraint ψ̄ = 0.18 (grey) and monitoring region with
κ fixed at 11 (dashed lines) for varying monitoring cost m.

the impact of the restriction that ψ̄ = 0.18 on monitoring activity for drift parameter µ

fixed at 0.10; and monitoring cost m varying from 0.17 to 0.47. The region with dashed

boundary is the corresponding region when κ is fixed at 11, derived for comparison. Under

Assumption 1, regulation will prevent the bank from considering loans to hold or monitor

below a certain threshold, and this limits the risk taking behaviour of the bank but will not

limit the monitoring behaviour for loans of higher quality. In order to discipline the bank the

regulator must impose higher capital requirements through the regulatory cost parameter

κ when the monitoring cost is low, and this parameter can be reduced gradually as the

monitoring cost increases, confirming the predictions of Proposition 3. Also, the dashed

boundary with κ fixed at 11 endorses Proposition 2 (a) – the lower threshold π∗∗ is strictly

When the time to maturity T is large, the discount in the loan value is very responsive to changes in the
yield, and the risk premium of the average loan is small. This suggests that in a more realistic model the
risk measure ψ should be calibrated to the maturity of the loan.
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Figure 4: Monitoring region with risk constraint ψ̄ = 0.18 (grey) and monitoring region with
κ fixed at 11 (dashed lines) for varying levels of monitoring efficiency µ.

increasing and the upper threshold π∗ is strictly decreasing in m.

Next we investigate the relationship between risk and the effectiveness of monitoring as

measured by µ.14 The shaded area in Figure 4 shows the results under Assumption 1 with

ψ̄ = 0.18, for monitoring cost m fixed at 0.30, and drift parameter µ varying from 0.05 to

0.28. The faintly shaded region is the monitoring region derived when the parameter κ is

fixed at 11, for comparison. The results in Figure 4 pretty much mirror those in Figure 3

– the bank will be constrained to limit its monitoring to loans above a certain threshold.

Regulation will therefore have the effect of reducing the risk in the bank’s loan portfolio

by discouraging the monitoring of loans of quality below this threshold. These results are

consistent with Proposition 4.

Next we address the following question. How much should the bank invest in improving
14Since we keep the diffusion parameter σ constant, the variation in µ leads to variation in the signal-to-

noise ratio µ
σ which is the essential parameter influencing monitoring behaviour.
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Figure 5: The figure shows the relationship between the monitoring effectiveness µ (on the
x-axis), the monitoring cost m (on the y-axis), and the aggregate loan value (on the z-axis),
when the bank faces fixed cost of risk capital κ = 11.

its dynamic monitoring systems? In our model, a natural objective function for the bank’s

optimisation problem with regard to this would be the intermediation surplus minus the

cost of investment, where both depend on the choice of monitoring technology, which is

parameterised by the pair (m,µ) with σ fixed. A possible constraint on this problem is

the response from the regulator who can impose changes to the regulatory cost parameter

κ. However, rather than considering a full optimal problem of investment in monitoring

technology, we shall here consider the following two programmes – one where the bank can

maximise the intermediation surplus by choosing freely over the space (m,µ) with constant

κ, and one where the bank maximises over the same space with the constraint that κ is

implied by ψ(κ) = ψ̄.

Figure 5 shows the results for loss parameter κ fixed at 11; the drift parameter µ varying

between 0.10 and 0.28; and the monitoring cost m varying from 0.19 to 0.50. The figure
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shows the bank’s intermediation surplus W (m,σ/µ) for each pair (m,µ). We can see from

the figure that the intermediation surplus is increasing in the µ-dimension, reflecting the

fact that the bank’s loan portfolio becomes more valuable the more effective the monitoring

technology gets. The intermediation surplus is decreasing in the m-dimension, reflecting

the fact that the bank’s loan portfolio becomes more valuable the cheaper the monitoring

technology gets. In either case, an investment into more effective or cheaper monitoring

technology yields a positive payoff, and we expect that there is an interior solution for the

optimal monitoring technology. Thus, depending on the cost of investment that attains each

pair of (m,µ), there may be a trade-off between the increased intermediation surplus and

the increased cost of investment, assuring the existence of an optimal investment level.

Next, we consider the restriction imposed by the regulator that prevents the bank from

acquiring more risk when it gets access to cheaper or more effective monitoring. In this case,

the regulation κ is endogenous, satisfying the restriction ψ(κ) = ψ̄ which we made use of in

the preceding subsection. Figure 6 shows the results for regulatory cost of risk capital κ given

endogenously by setting ψ̄ = 0.18; the drift parameter µ varying from 0.10 to 0.28; and the

monitoring cost m varying from 0.19 to 0.50. The figure shows the the bank’s intermediation

surplus W (m,σ/µ) for each pair (m,µ).

The effects on the intermediation surplus measured in both Figures 5 and 6 are exag-

gerated in the sense that only the top section of the vertical axes are shown. These effects

are, however, comparable across the two figures and we can see that there are greater value

variation in Figure 6 than in Figure 5. More importantly, the effects go in exactly the oppo-

site directions. The intermediation surplus in Figure 6 is increasing in the m-dimension, and

decreasing in the µ-dimension. This means that the bank loses by improving its dynamic

intelligence systems even if the improvement comes at zero cost. The bank will in fact have

an incentive to pay to make its dynamic intelligence systems more expensive or less effective

as it will commit the bank to a risk acquisition strategy that will make the bank’s regulatory

burden lighter.
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Figure 6: The figure shows the relationship between the monitoring effectiveness µ (on the
x-axis), the monitoring cost m (on the y-axis), and the aggregate loan value (on the z-axis),
when the bank must adhere to risk controls given by ψ(κ) = ψ̄.

5 Conclusion

In this paper we have studied the relationship between loan monitoring and bank risk.

We find the counter-intuitive result that banks may fail to invest in dynamic monitoring

systems – systems that aim to “identify and recognise deterioration in loan quality” in the

words of the Basel Committee on Banking Supervision – because these investments may in

fact increase bank risk for which the bank is penalised through regulation. The reason is

that the learning process through dynamic monitoring systems is slow and will increase the

number of risky loans under observation, leading to extra net risk. Even if new and better

monitoring technology is available at zero cost, the bank will be worse off. This raises the

obvious question whether there is a social trade-off between regulating our banking system

such that it can carry out its loan monitoring role efficiently or such that it does not become

systemically risky.
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Banks have increased incentives to hold risky loans when they can monitor the loans

dynamically in real time. What economic implications can we draw from this effect? From

a welfare point of view, this risk is not entirely harmful as it improves loan risk management

of risky loans – and therefore facilitate lending to borrowers who are typically classified as

risky. The question is whether these borrowers are treated in the same way by credit scoring

systems and dynamic monitoring systems. In this sense, the credit scoring systems and

the dynamic monitoring systems may not be perfect substitutes. The credit risk of some

borrowers can be hard to assess with credit scoring systems, the kind of borrowers referred to

in Berger et al (2005) as “informationally challenging” borrowers. Therefore, bank regulation

that focuses on controlling bank risk only is likely to discriminate against dynamic monitoring

systems, and therefore also against the informationally challenging borrowers. The banks

will adapt to risk controls imposed by the regulator by underinvesting in dynamic monitoring

technology, which in turn makes it harder for the informationally challenging borrowers to

obtain bank loans.

Therefore, it is an open question whether the socially optimal lending to these borrowers

is likely to be achieved under a regulatory framework that produces a bias towards credit

scoring. It may be socially optimal to allow higher bank risk for institutions that target the

segment of the loan market where the dynamic monitoring systems are the most effective.

The evidence suggests this may be the case. Smaller banks, for instance, are more likely

than larger banks to carry regulatory slack, i.e. that they can afford to take on extra bank

risk without violating capital requirements than the bigger banks, and they should therefore

afford to make investments in the dynamic monitoring systems that the bigger banks do not

make. Smaller banks are also typically subject to looser bank regulation because they are

less systemic, and therefore more likely to carry regulatory slack. These effects may explain

why the smaller banks are often leading lending to small or young businesses which typically

are seen as an informationally challenging sector of the loan market.
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A Technical Details

A.1 Derivation of the Posterior Process (1):

With Brownian uncertainty, the increments xt − x0 are normal with mean θµt and variance

σ2t, with density function

f(x|θ) = 1

σ
√
2πt

exp

(
−1

2

(
x− θµt

σ
√
t

)2
)
. (A.1)

Normalise x0 = 0, so conditional on observing xt, the likelihood of θ = 1 is πt which according

to Bayes Law is

πt =
f(xt|1)π0

f(xt|1)π0 + f(xt|0)(1− π0)
. (A.2)
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Using the formula for the density functions above, we find

πt =

π0

1−π0
exp

(
1
2

(
xt

σ
√
t

)2
− 1

2

(
xt−µt

σ
√
t

)2)
1 + π0

1−π0
exp

(
1
2

(
xt

σ
√
t

)2
− 1

2

(
xt−µt

σ
√
t

)2) =
π0

1−π0
φt

1 + π0

1−π0
φt

, (A.3)

where we have used the definition of φt.

Using Ito’s lemma and the definition of φt, we work out

dφt =
µ

σ2
φtdxt (A.4.a)

dπt =
µ

σ2
πt(1− πt)dxt −

µ2

σ2
π2
t (1− πt)dt. (A.4.b)

Using the change of probability measure dB̃t = 1
σ
dxt − µ

σ
πtdt, the process πt becomes a

martingale, dπt = µ
σ
πt(1− πt)dB̃t.

A.2 Steady State in the Monitoring Region π∗∗ < πt < π∗:

In steady state the expected number of loans of a given quality π̄ ∈ (π∗∗, π∗) need to remain

constant. We argued in the text that for loans that are being monitored, the number of

loans of any given type π̄ will be the new loans that arrive minus the old loans that are

withdrawn, plus the loans that are drawn to the barrier π̄ from above (i.e. πt− > π̄) and

below (i.e. πt− < π̄), and the loans on the barrier that go higher or lower. This problem

can be posed as a reflecting barrier problem. Consider π̄ a reflecting barrier from below

and above. Then any loan with posterior process πt that hits the barrier from above will

have its sample paths replaced by the sample path 2π̄− πt. Any loan with posterior process

πt that hits the barrier from below will have its sample paths replaced by the sample path

2π̄ − πt. The barrier π̄ absorbs mass from these movements from the amount of time the

reflected loans spend on the barrier itself. However, a diffusion spends no time at a reflecting
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boundary point, a fact that is known in the literature (see, for instance, p.16 of Borodin and

Salminen (2002)). The end points π∗∗ and π∗ are, in contrast, absorbing or killing barrier

points and the diffusions may spend some time on the boundary itself reflecting the time it

takes the bank to transfer the loan from monitored status to being sold (again, see Borodin

and Salminen (2002)).

B Proofs

B.1 Proof of Lemma 1:

The particular solution c−m
r

can be verified directly: since it is a constant we find L c−m
r

=

−(c−m) and it satisfies the ODE implied by L(V ) + (c−m) = 0. The two functions that

span the solution space (i.e. the solutions to the homogeneous part of the ODE LV = 0),

are π
1
2
(1−ξ)

t (−1+πt)
1
2
(1+ξ) and π

1
2
(1+ξ)

t (−1+πt)
1
2
(1−ξ). This can be verified by straightforward

differentiation.

These functions take values in the complex number space. A general solution isAπ
1
2
(1−ξ)

t (−1+

πt)
1
2
(1+ξ) +Bπ

1
2
(1+ξ)

t (−1 + πt)
1
2
(1−ξ) for arbitrary constants A and B, which according to the

problem at hand must take values on the real number line only. We can write a general real

solution, therefore, as

Āi−(1+ξ)i(1+ξ)π
1
2
(1−ξ)

t (1− πt)
1
2
(1+ξ) + B̄i−(1−ξ)i(1−ξ)π

1
2
(1+ξ)

t (1− πt)
1
2
(1−ξ)

= Āπ
1
2
(1−ξ)

t (1− πt)
1
2
(1+ξ) + B̄π

1
2
(1+ξ)

t (1− πt)
1
2
(1−ξ)

where the coefficients Ā and B̄, as well as the sum itself, are real. This builds on the Euler’s

formula eix = cos(x) + i sin(x), which for x = π
2

yields ei
π
2 = cos π

2
+ i sin π

2
= i. Then

ix = ei
π
2
x and i−xix = ei

π
2
(x−x) = 1. □

34



B.2 Proof of Proposition 1:

The system of equations can be directly derived from the value matching and smooth pasting

conditions (b) and (c) in Definition 1. The condition that

VM(π) ≥ max
{c
r
−K(1− π),

c

r
− k(1− π)− g

}
ensures that the value function of the optimal stopping problem is indeed VM(π) for all

π ∈ [π∗∗, π∗]. The functions π
1
2
(1−ξ)(1 − π)

1
2
(1+ξ) and π

1
2
(1+ξ)(1 − π)

1
2
(1−ξ) are both strictly

convex, so it is possible to find coefficients Ā and B̄ such that the function is strictly convex

over the monitoring region, and strict convexity of VM is clearly sufficient for VM to strictly

dominate both VI and VS since the latter two functions are both linear. It is also necessary,

because if VM is not convex over the whole range, it will be non-convex in the neighbourhood

of π∗ or π∗∗, and in this case the value of VM will dip below VS − g if it is non-convex near

π∗∗ or below VI if it is non-convex near π∗. □

B.3 Proof of Proposition 2:

Claim: π∗ is strictly decreasing in m.

Let m1 < m2. The subscript 1 indicates that the variable is corresponding to m1 and 2

corresponding to m2, except for functions fi and gi, i = 1, 2 defined in the main text—e.g.

π∗
1 and π∗

2 correspond to the optimal upper threshold for m1 and m2 respectively. We prove

the claim by contradiction by supposing π∗
1 < π∗

2.

Since the functional form of VM(π) is affected by m, we let VM(π|mi) represent VM(π)

when m = mi, i = 1, 2. The fact that VM(π|m1) and VM(π|m2) are both strictly increasing

and strictly convex in π and the assumption that π∗
1 < π∗

2 imply VM(π∗
1|m1) < VM(π∗

1|m2).
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It follows that

A1f1(π
∗
1) +B1f2(π

∗
1)−

m1

r
< A2f1(π

∗
1) +B2f2(π

∗
1)−

m2

r

< A2f1(π
∗
1) +B2f2(π

∗
1)−

m1

r
.

Thus,

A1f1(π
∗
1) + B1f2(π

∗
1) < A2f1(π

∗
1) +B2f2(π

∗
1). (B.1)

Also, by assumption π∗
1 < π∗∗

2 ; thus, we have ∂VM

∂π
(π∗

1|m1) >
∂VM

∂π
(π∗

1|m2). It follows that

A1f1(π
∗
1)g1(π

∗
1) +B1f2(π

∗
1)g2(π

∗
1) > A2f1(π

∗
1)g1(π

∗
1) + B2f2(π

∗
1)g2(π

∗
1). (B.2)

Then, rearranging (B.1) yields

(A1 − A2)f1(π
∗
1) < −(B1 −B2)f2(π

∗
1). (B.3)

Moreover, (B.2) yields

(A1 − A2)f1(π
∗
1)g1(π

∗
1) > −(B1 −B2)f2(π

∗
1)g2(π

∗
1). (B.4)

From (B.4), if A1 > A2, then B1 > B2 must hold, which contradicts with (B.3). Hence,

A1 < A2 must hold.

We now consider two cases: (i) π∗∗
1 ≥ π∗∗

2 , and (ii) π∗∗
1 < π∗∗

2 . In case (i), there exists π̂

such that ∂VM

∂π
(π̂|m1) =

∂VM

∂π
(π̂|m2), or

A1f1(π̂)g1(π̂) +B1f2(π̂)g2(π̂) = A2f1(π̂)g1(π̂) +B2f2(π̂)g2(π̂).

36



Rearranging the equation, we have

(A1 − A2)f1(π̂)g1(π̂) = −(B1 −B2)f2(π̂)g2(π̂).

Since A1 < A2, and we know that f1, f2, g2 > 0 and g1 < 0, B1 < B2 must hold. Also, strict

convexity of f2(π) in π implies that

f2(π̂)g2(π̂) = f ′
2(π̂) < f ′

2(π
∗
1) = f2(π

∗
1)g2(π

∗
1).

Hence,

(A1 − A2)f1(π̂)g1(π̂) = −(B1 −B2)f2(π̂)g2(π̂) < −(B1 −B2)f2(π
∗
1)g2(π

∗
1).

This combined with (B.4) leads us to

(A1 − A2) [f1(π̂)g1(π̂)− f1(π
∗
1)g1(π

∗
1)] < 0.

However, strict convexity of f1(π) in π implies that f1(π̂)g1(π̂)− f1(π
∗
1)g1(π

∗
1) < 0, which is

a contradiction.

Next, in case (ii), there exists π̂ such that VM(π̂|m1) = VM(π̂|m2). At π̂, we must have
∂VM

∂π
(π̂|m1) <

∂VM

∂π
(π̂|m2), or

A1f1(π̂)g1(π̂) +B1f2(π̂)g2(π̂) < A2f1(π̂)g1(π̂) +B2f2(π̂)g2(π̂).

Rearranging this, we have

(A1 − A2)f1(π̂)g1(π̂) < −(B1 −B2)f2(π̂)g2(π̂).

Since A1 < A2 and f1, f2, g2 > 0 and g1 < 0, B1 < B2 must hold. By a similar argument we
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had for case (i) leads us to a contradiction. This completes the proof of the first part of (a).

Claim: π∗∗ is strictly increasing in m.

Again, let m1 < m2, and we show the claim by contradiction by supposing π∗∗
1 > π∗∗

2 .

The fact that VM(π|m1) and VM(π|m2) are both strictly increasing and strictly convex

in π and the assumption that π∗∗
1 > π∗∗

2 imply VM(π∗
1|m1) < VM(π∗

1|m2). Thus,

A1f1(π
∗∗
1 ) + B1f2(π

∗∗
1 )− m1

r
< A2f1(π

∗∗
1 ) + B2f2(π

∗∗
1 )− m2

r

< A2f1(π
∗∗
1 ) + B2f2(π

∗∗
1 )− m1

r
.

It follows that

A1f1(π
∗∗
1 ) +B1f2(π

∗∗
1 ) < A2f1(π

∗∗
1 ) + B2f2(π

∗∗
1 ),

and rearranging this, we have

(A1 − A2)f1(π
∗∗
1 ) < −(B1 −B2)f2(π

∗∗
1 ). (B.5)

Also, we know that ∂VM

∂π
(π∗∗

1 |m1) <
∂VM

∂π
(π∗∗

1 |m2), or

A1f1(π
∗∗
1 )g1(π

∗∗
1 ) +B1f2(π

∗∗
1 )g2(π

∗∗
1 ) < A2f1(π

∗∗
1 )g1(π

∗∗
1 ) +B2f2(π

∗∗
1 )g2(π

∗∗
1 ),

which is equivalent to

(A1 − A2)f1(π
∗∗
1 )g1(π

∗∗
1 ) < −(B1 −B2)f2(π

∗∗
1 )g2(π

∗∗
1 ). (B.6)

From (B.5), if B1 > B2, then A1 < A2 must hold, which contradicts with (B.6). Thus,

B1 < B2 must hold.

Now recall that π∗
1 > π∗

2 from the first part of part (a). Thus, there exists π̂ ∈ [π∗∗
1 , π

∗
2]

38



such that VM(π̂|m1) = VM(π̂|m2), or

(A1 − A2)f1(π̂) = −(B1 −B2)f2(π̂),

and ∂VM

∂π
(π̂|m1) >

∂VM

∂π
(π̂|m2). Since B1 < B2, A1 > A2 must hold.

Now, π∗
2 < π∗

1 implies that ∂VM

∂π
(π∗

2|m1) <
∂VM

∂π
(π∗

2|m2), since VM(π|m1) and VM(π|m2)

are strictly convex in π. With ∂VM

∂π
(π̂|m1) >

∂VM

∂π
(π̂|m2) for π̂ ∈ [π∗∗

1 , π
∗
2], there must exist π̄

such that ∂VM

∂π
(π̄|m1) =

∂VM

∂π
(π̄|m2), or

(A1 − A2)f1(π̄)g1(π̄) = −(B1 −B2)f2(π̄)g2(π̄),

which contradicts with A1 > A2 and B1 < B2. This completes the proof of the second part

of (a).

Next we prove part (b).

Claim: π∗∗ is strictly increasing in κ.

Let κ1 < κ2, and just like the notation for part (a), all variables with subscript 1 correspond

to κ1, and those with 2 correspond to κ2. We prove the claim by contradiction, so suppose

π∗∗
1 > π∗∗

2 . Moreover, similar to the notation we used for VM(π) function above, we let

VM(π|κi) represent VM(π) when κ = κi, i = 1, 2. Then, there exists π̂ such that VM(π̂|κ1) =

VM(π̂|κ2), or

A1f1(π̂) +B1f2(π̂) = A2f1(π̂) +B2f2(π̂),

which is equivalent to

(A1 − A2)f1(π̂) = −(B1 −B2)f2(π̂).

Thus, A1 > A2 iff. B1 < B2. Also, at π̂, ∂VM

∂π
(π̂|κ1) > ∂VM

∂π
(π̂|κ2), or

A1f1(π̂)g1(π̂) +B1f2(π̂)g2(π̂) > A2f1(π̂)g1(π̂) +B2f2(π̂)g2(π̂),
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and rearranging, we obtain

(A1 − A2)f1(π̂)g1(π̂) > −(B1 −B2)f2(π̂)g2(π̂). (B.7)

Since A1 > A2 iff. B1 < B2, to satisfy (B.7) it must be that A1 − A2 < 0 and B1 − B2 > 0.

However, this requires that

(A1 − A2)f1(π)g1(π) > −(B1 −B2)f2(π)g2(π), ∀π ∈ [π∗∗
1 ,min{π∗

1, π
∗
2}],

or ∂VM

∂π
(π|κ1) > ∂VM

∂π
(π|κ2) for all π ∈ [π∗∗

1 ,min{π∗
1, π

∗
2}]. We know that VM(π∗∗

1 |κ1) <

VM(π∗∗
1 |κ2), however. Contradiction.

Claim: π∗ is strictly increasing in κ.

We prove by contradiction. Suppose π∗
1 > π∗

2. We know that π∗∗
1 < π∗∗

2 . Then, there exists

π̂ such that VM(π̂|κ1) > VM(π̂|κ2) and ∂VM

∂π
(π̂|κ1) = ∂VM

∂π
(π̂|κ2), or

(A1 − A2)f1(π̂) > −(B1 −B2)f2(π̂), (B.8)

(A1 − A2)f1(π̂)g1(π̂) > −(B1 −B2)f2(π̂)g2(π̂). (B.9)

It follows from (B.9) that A1 > A2 iff. B1 > B2. This together with (B.8) leads us to

conclude that A1 > A2 and B1 > B2.

Now, we observe that ∂2VM

∂π2 (π|κ1) < ∂2VM

∂π2 (π|κ2) for some π ∈ [π∗∗
2 , π

∗
2], or

(A1−A2)f1(π)
[
(g1(π))

2 + g′1(π)
]
+(B1−B2)f2(π)

[
(g2(π))

2 + g′2(π)
]
< 0, for some π ∈ [π∗∗

2 , π
∗
2].

However, this inequality contradicts with A1 > A2 and B1 > B2, since f1(π), f2(π) > 0,

(g1(π))
2+ g′1(π) > 0 and (g2(π))

2+ g′2(π) > 0 hold. Contradiction. This completes the proof

of part (b). □
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B.4 Proof of Lemma 2:

Smooth pasting conditions at π∗∗ require the following:

∂VM
∂π

(π∗∗|κ∗0,m0, σ0/µ0) = k =
∂VM
∂π

(π∗∗|κ∗1,m1, σ1/µ1).

It follows from (4) that

∂VM
∂π

(π|κ∗0,m0, σ0/µ0) >
∂VM
∂π

(π|κ∗1,m1, σ1/µ1),∀π ∈ (π∗∗,min{π∗
0, π

∗
1}). (B.10)

Also, value matching conditions at π∗∗ require

VM(π∗∗|κ∗0,m0, σ0/µ0) = VS(π
∗∗) = VM(π∗∗|κ∗1,m1, σ1/µ1).

Hence, we have

VM(π|κ∗0,m0, σ0/µ0) > VM(π|κ∗1,m1, σ1/µ1),∀π ∈ (π∗∗,min{π∗
0, π

∗
1}). (B.11)

We now show that π∗
0 < π∗

1 by contradiction. So, suppose instead π∗
0 ≥ π∗

1. Then, (B.11)

implies

VM(π∗
1|κ∗0,m0, σ0/µ0) > VM(π∗

1|κ∗1,m1, σ1/µ1), (B.12)

and (B.10) leads to

∂VM
∂π

(π∗
1|κ∗0,m0, σ0/µ0) > k + κ∗1 =

∂VM
∂π

(π∗
1|κ∗1,m1, σ1/µ1). (B.13)

Since VM(·|κ∗0,m0, σ0/µ0) is strictly convex, κ∗0 > κ∗1 must hold. It follows that VI(π|κ∗0) <

VI(π|κ∗1) for all π by construction of VI . Strict convexity of VM together with (B.12) and
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(B.13) imply

VI(π|κ∗0) < VI(π|κ∗1) < VM(π|κ∗0,m0, σ0/µ0),

contradicting with the value matching condition at π∗
1. Hence, π∗

0 < π∗
1 must hold, proving

(b).

Next, we show κ∗0 < κ∗1 by contradiction. So, suppose instead κ∗0 ≥ κ∗1. Then, VI(π|κ∗0) ≤

VI(π|κ∗1) for all π < 1. Since we know that π∗
0 < π∗

1,

VM(π∗
0|κ∗0,m0, σ0/µ0) = VI(π

∗
0|κ∗0) ≤ VI(π

∗
0|κ∗1).

Strict convexity of VM however implies that VM(π∗
0|κ∗1,m1, σ1/µ1) > VI(π

∗
0|κ∗1), contradicting

with (B.11). Thus, κ∗0 < κ∗1 follows, completing the proof of (c).

Now, we know that π∗
0 < π∗

1. Thus, VM(π|κ∗0,m0, σ0/µ0) > VM(π|κ∗1,m1, σ1/µ1) for all

π ∈ (π∗∗, π∗
0]. Also, we know that VI(π|κ∗0) > VI(π|κ∗1) for all π < 1 while the value function

for π ≤ π∗∗ does not depend on (m,σ/µ). This establishes (a). □

B.5 Proof of Proposition 3:

We first show that ∂2VM

∂π2 (π|κ(m,σ/µ),m, σ/µ) is strictly decreasing in m, for all σ/µ fixed.

Suppose 0 < m0 < m1. Since ψ̄ = k
2
(1 − π∗∗)2 is fixed by assumption, π∗∗ is fixed for both

m0 and m1. By letting A0 and B0 associated with m0 and A1 and B1 with m1 for every σ/µ

fixed, the optimality conditions outlined in Proposition 1 imply:

A0f1(π
∗∗) +B0f2(π

∗∗) =
m0

r
− k(1− π∗∗)− g

A1f1(π
∗∗) +B1f2(π

∗∗) =
m1

r
− k(1− π∗∗)− g
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which implies that (A0−A1)f1(π
∗∗)+ (B0−B1)f2(π

∗∗) = m0−m1

r
. The optimality conditions

also imply:

A0f1(π
∗∗)g1(π

∗∗) +B0f2(π
∗∗)g2(π

∗∗) = k

A1f1(π
∗∗)g1(π

∗∗) +B1f2(π
∗∗)g2(π

∗∗) = k

which implies that (A0 −A1)f1(π
∗∗)g1(π

∗∗) + (B0 −B1)f2(π
∗∗)g2(π

∗∗) = 0. Combining both

we can find expressions for (A0 − A1) and (B0 −B1):

(A0 − A1) =
m0 −m1

r

1

1 + g2(π∗∗)

1

f2(π∗∗)

(B0 −B1) =
m0 −m1

r

g2(π
∗∗)

1 + g2(π∗∗)

1

f1(π∗∗)

Since fi, i = 1, 2, and g2 are strictly positive, we find that sign(A0 −A1) = sign(B0 −B1) =

sign(m0 −m1), which implies that for m1 > m0, A1 > A0 and B1 > B0. Since fi, i = 1, 2,

are strictly convex, we have for every σ/µ fixed,

∂2VM
∂π2

(π|κ∗0,m0, σ/µ) = A0
∂2f1
∂π2

(π) + B0
∂2f2
∂π2

(π)

< A1
∂2f1
∂π2

(π) + B1
∂2f2
∂π2

(π)

=
∂2VM
∂π2

(π|κ∗1,m1, σ/µ),

or in short, for every σ/µ fixed,

∂2VM
∂π2

(π|κ∗0,m0, σ/µ) <
∂2VM
∂π2

(π|κ∗1,m1, σ/µ). (B.14)

By Lemma 2, (B.14) implies that for every σ/µ fixed, V (π0|κ∗0,m0, σ/µ) < V (π0|κ∗1,m1, σ/µ)

for all π0. By integrating over π0, this implies W (m0, σ/µ) < W (m1, σ/µ) for all σ/µ fixed.

This completes the proof of part (a). Also, by Lemma 2, (b) and (c) directly follow from
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(B.14). □

B.6 Proof of Proposition 4

We will use the same strategy and show that an increase in σ/µ leads to a decrease in the

convexity of the function VM(π). First, since σ/µ enters the equilibrium conditions only

through the parameter ξ, and since an increase in σ/µ leads to an increase in ξ, we will

consider a change in the equilibrium conditions from ξ to ξ + ∆ (where obviously ∆ > 0).

Corresponding to the case above, therefore, we find the following.

A0f1(π
∗∗|ξ) +B0f2(π

∗∗|ξ) =
m

r
− k(1− π∗∗)− g, (B.15)

A1f1(π
∗∗|ξ +∆) +B1f2(π

∗∗|ξ +∆) =
m

r
− k(1− π∗∗)− g, (B.16)

and

A0f1(π
∗∗|ξ)g1(π∗∗|ξ) +B0f2(π

∗∗|ξ)g2(π∗∗|ξ) = k, (B.17)

A1f1(π
∗∗|ξ +∆)g1(π

∗∗|ξ +∆) +B1f2(π
∗∗|ξ +∆)g2(π

∗∗|ξ +∆) = k. (B.18)

We can use the fact that f1(π∗∗|ξ + ∆) = f1(π
∗∗|ξ)π∗∗−∆

2 (1 − π∗∗)
∆
2 and f2(π

∗∗|ξ + ∆) =

f2(π
∗∗|ξ)π∗∗∆

2 (1−π∗∗)−
∆
2 , and also that g1(π∗∗|ξ+∆) = g1(π

∗∗|ξ)− ∆
2π∗∗(1−π∗∗)

and g2(π∗∗|ξ+

∆) = g2(π
∗∗|ξ) + ∆

2π∗∗(1−π∗∗)
. Rewriting (B.16) and (B.18) using these expressions we find

the following.

A1f1(π
∗∗|ξ)

(
1− π∗∗

π∗∗

)∆
2

+B1f2(π
∗∗|ξ)

(
π∗∗

1− π∗∗

)∆
2

=
m

r
− k(1− π∗∗)− g, (B.19)
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A1f1(π
∗∗|ξ)

(
1−π∗∗

π∗∗

)∆
2

[
g1(π

∗∗|ξ)− ∆
2π∗∗(1−π∗∗)

]
+

B1f2(π
∗∗|ξ)

(
π∗∗

1−π∗∗

)∆
2

[
g2(π

∗∗|∆) + ∆
2π∗∗(1−π∗∗)

]
= k. (B.20)

Taking the difference between (B.15) and (B.19) and eliminating terms, we find

[
A0 − A1

(
1− π∗∗

π∗∗

)∆
2

](
1− π∗∗

π∗∗

)ξ

+

[
B0 −B1

(
π∗∗

1− π∗∗

)∆
2

]
= 0. (B.21)

Taking the difference between (B.17) and (B.20) and eliminating terms and using additionally

(B.21), we find

(
1− π∗∗

π∗∗

)ξ
[
A0ξ − A1(ξ −∆)

(
1− π∗∗

π∗∗

)∆
2

]
= B0ξ −B1(ξ −∆)

(
π∗∗

1− π∗∗

)∆
2

. (B.22)

Clearly, for ∆ = 0 the term inside the bracket on the left hand side of (B.22) becomes A0ξ−

A1ξ and the right hand side B0ξ−B1ξ, so we need that A1 = A0 and B1 = B0. We expand,

therefore, the effects on both sides for small changes d∆ around the point ∆ = 0. Taking

the point A1ξ as the starting point we find the expansion ξdA1−A1

(
1− ξ

2
ln 1−π∗∗

π∗∗

)
d∆ = 0.

Rearranging we find that dA1

d∆
= A1

ξ

(
1− ξ

2
ln 1−π∗∗

π∗∗

)
. Taking the point B1ξ as the starting

point we find the expansion ξdB1 − B1

(
1− ξ

2
ln π∗∗

1−π∗∗

)
d∆ = 0. Rearranging again we find

that dB1

d∆
= B1

ξ

(
1− ξ

2
ln π∗∗

1−π∗∗

)
.

Next, we need to look at the effect that a change in σ
µ
, or equivalently, ξ, has on the

functions f1 and f2. We use the same idea as above to study the impact that the change

in ξ has on the convexity of the value function VM . Namely, by showing ∂3VM

∂ξ∂π2 (π; ξ) > 0,

we prove VM(π; ξ0) < VM(π; ξ1) for all π ∈ (π∗∗,min{π∗
0, π

∗
1}] when ξ0 < ξ1. Note that

we are slightly abusing notation to simplify the expression – VM(π; ξ) is more precisely

VM(π|κ∗(m,h−1(ξ)),m, h−1(ξ)), where h−1(ξ) is the inverse function of h(σ/µ) =
√

1 + 8r σ
2

µ2 .

45



A change in the parameter ξ will lead to a change of the second derivative ∂2VM

∂π2 (π; ξ),

∂3VM
∂ξ∂π2

(π; ξ) =
∂A

∂ξ
(ξ)

∂2f1
∂π2

(π|ξ) + ∂B

∂ξ
(ξ)

∂2f2
∂π2

(π|ξ) + A
∂3f1
∂ξ∂π2

(π|ξ) +B
∂3f2
∂ξ∂π2

(π|ξ).

We know from the above that

∂A

∂ξ
(ξ) =

dA

d∆
=
A1

ξ

(
1− ξ

2
ln

1− π∗∗

π∗∗

)
,

∂B

∂ξ
(ξ) =

dB

d∆
=
B1

ξ

(
1− ξ

2
ln

π∗∗

1− π∗∗

)
.

We now need to work on the last two terms. By straightforward differentiation we find

∂3f1
∂ξ∂π2

(π|ξ) =
f1(π|ξ)

2
ln

1− π

π

(
ξ2 − 1

4

)[
1

π(1− π)

]2
+
f1(π|ξ)

2
ξ

[
1

π(1− π)

]2
,

∂3f2
∂ξ∂π2

(π|ξ) =
f2(π|ξ)

2
ln

π

1− π

(
ξ2 − 1

4

)[
1

π(1− π)

]2
+
f2(π|ξ)

2
ξ

[
1

π(1− π)

]2
.

Using these results, some mechanical calculations will lead us to the following:

∂3VM
∂ξ∂π2

(π; ξ) = [Af1(π|ξ) +Bf2(π|ξ)]
3ξ2 − 1

4ξ

[
1

π(1− π)

]2
> 0.

Since an increase in σ
µ

leads to an increase in ξ, the results follow immediately by applying

Lemma 2. □
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