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Abstract 

Recent empirical studies have shown that firm growth rate distribution is not Gaussian but closely 

follows a Laplace distribution. This robust feature of the growth rate distribution challenges existing 

models based on Gibrat’s model because it predicts a Gaussian distribution. First, we analyze more 

than 100,000 Japanese firms and empirically show that the Laplace shape can be observed for the 

Japanese firms. Then, by using the theory of stochastic processes, we theoretically show that the 

absence of jumps causes the discrepancy between Gibrat’s model and the Laplace shape. In particular, 

based on the Laplace shape and the law of proportionate effect, we show that the firm growth process 

is a jump process. In other words, firm growth cannot be explained by the consequence of many small 

shocks but is determined by a few large jumps. The widely observed Laplace distribution reflects this 

jump property of firm growth dynamics. 
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1 Introduction

How do firms grow? Is there any empirical law governing firm growth patterns? Empirical growth paths
are very complicated and, at first glance, there appears to be no law governing the dynamics. For example,
Ashton (1926), who studies British textile firms, writes, “In their growth they obey no one law. A few
apparently undergo a steady expansion ... . With others, increase in size takes place by a sudden leap”
(pp.572–573). However, although it is difficult to predict individual firms’ growth, a series of empirical
studies have shown that there are several statistical regularities in firm size and growth dynamics (see,
e.g. Sutton (1997); Coad (2009); Dosi et al. (2016)). One of the most important regularities is firm size
distribution, which is rightly skewed and fat-tailed. A cornerstone in the literature to explain this regularity
is Gibrat’s model (Gibrat (1931)), in which firm size and its growth rate are assumed to be statistically
independent of each other (known as the law of proportionate effect). In this model, firm size is the result
of independent multiplicative shocks and, by taking the logarithm, the distribution of the log of firm size
converges to a Gaussian distribution by the central limit theorem (CLT). Although Gibrat’s main concern
is to explain the right skewness of the firm size distribution, his model also makes a prediction about the
growth rate distribution because firm size is the cumulative result of the underlying growth dynamics. To
be precise, since firm growth is the product of successive shocks within a given interval, his model predicts
that growth rates defined by the log difference of firm size follow a Gaussian distribution.

However, although it has been empirically shown that the law of proportionate effect itself, that is,
the independence between firm size and growth rate, is a good working hypothesis,1 recent studies have
shown that the prediction of a Gaussian growth rate distribution is not empirically supported. Since Stanley
et al. (1996), subsequent studies have revealed that the growth rate distribution is not Gaussian but closely
follows a Laplace distribution, which is sharply peaked around the center and has a fatter tail than a Gaussian
distribution. Amaral et al. (1997) analyze all publicly traded US manufacturing firms and find significant
departure from Gaussian distribution. Bottazzi et al. (2002) and Bottazzi and Secchi (2003) analyze Italian
firms and show that the growth rate distribution is very close to a Laplace distribution (see also Dosi (2007);
Coad (2009); Dosi et al. (2016)).2 More interestingly, the same distribution shape can be observed at a
more disaggregated level. Bottazzi et al. (2007) show that this distribution shape is invariant across Italian
manufacturing subsectors. Lunardi et al. (2014) develop a statistical test to check whether the distribution
shape is due to the intrinsic feature of firm growth dynamics or the aggregation effect of heterogeneous
firms, showing that firms belonging to the same subsector are sufficiently homogeneous and their growth
rate distributions at the individual level can be well approximated by a common Laplace distribution. These
results imply that the underlying growth process generating the Laplace distribution is totally different from
Gibrat’s model. Therefore, the observed Laplace shape challenges existing models based on Gibrat’s model
as well as our understanding of firm growth dynamics.

The aim of our study is to explore the observed Laplace shape by using a stochastic approach. In
particular, we take a different approach from previous studies in that we do not provide a micro-foundation
for firm growth or its optimization problem but rather spell out a set of properties that such a model must
satisfy to be consistent with the empirical evidence. Beginning with the generalization of Gibrat’s model, we
show that a stochastic process consistent with the two empirical facts, that is, the law of proportionate effect
and Laplace distribution, is unique and a pure jump process (the variance Gamma process). This process is

1For a survey of empirical results about the law of proportionate effect, see Santarelli et al. (2006), who conclude that “[o]ne
cannot conclude that the Law is generally valid nor that it is systematically rejected” (p.43). For example, several empirical
studies reject the law of proportionate effect by showing that smaller firms grow faster than larger firms (e.g., Hall (1987);
Dunne and Hughes (1994); Audretsch et al. (1999); Calvo (2006)) and that the growth dynamics of large firms are less volatile
than those of smaller firms (e.g., Bottazzi and Secchi (2006b); Secchi et al. (2018)). On the other hand, some researchers (e.g.,
Lotti et al. (2003, 2009); Fotopoulos and Giotopoulos (2010)) argue that the law of proportionate effect holds for the population
of mature firms over the minimum efficient scale. Related to this literature, Daunfeldt and Elert (2013) examine in which
industries this law is likely to hold.

The aim of our study is not to decide this long-term controversy, that is, whether the law of proportionate effect is empirically
valid or should be rejected. The point is that, as the controversy suggests, the law of proportionate effect can be used for the
description of firm growth dynamics, at least, as a first approximation, by excluding start-up firms or by focusing on particular
industries.

2Related to these works, Alfarano et al. (2012) and Mundt et al. (2015) show that profit rates also follow a Laplace
distribution. In their studies, a statistical equilibrium is considered to explain the distribution shape. Although the relationship
between these two distributions is worth exploring in future research, our study focuses on growth rate distribution and examines
the implications for the distribution shape.

2



completely characterized by discrete changes (i.e., jumps) without any continuous changes, and in particular,
mostly determined by a few large jumps. Put differently, firm growth is not the consequence of many small
shocks but determined by a few big successes (or big failures). The observed Laplace shape reflects this
jump property. This is sharply contrast with Gibrat’s model because Gibrat’s model implicitly assumes a
continuous process as the underlying firm growth process and excludes the possibility of jumps. We show
that the discrepancy between Gibrat’s model and the observed Laplace distribution is due to the absence
of jumps, and that the jump property is an indispensable feature of firm growth dynamics. The robustness
of this jump property is further examined by considering cases in which the growth rate distribution has a
fatter tail than a Laplace distribution, as suggested by Bottazzi et al. (2011) and Buldyrev et al. (2007a,b).
Our analysis shows that the jump property of the firm growth process holds even in these cases, that is, that
a small number of large jumps have disproportional impacts on firm growth.

The study most closely related to ours is Bottazzi and Secchi (2006a), which introduces a success brings
success type of dynamics to explain the Laplace shape: a successful firm has higher probability of achieving
future success. This positive feedback mechanism generates big leaps and the resulting distribution con-
verges to a Laplace distribution. However, their model relies on a questionable assumption: “the process of
opportunity assignment is repeated anew each year, i.e., that no memory of the previous year’s assignment is
retained when the new year’s opportunities are assigned” (p.251). In other words, their model assumes that
on the one hand, growth opportunities are correlated within a year, but on the other hand, this feedback
is abruptly cut off at the end of the year. This assumption is crucial in their model because otherwise, a
single lucky firm would end up gaining all the opportunities and eventually diverge in size as time passes.
By contrast, we show that by considering the jump property, our generalized model based on the law of pro-
portionate effect becomes consistent with the observed Laplace distribution without relying on the feedback
assumption. Put differently, it is not the absence of a feedback mechanism but that of the jump property that
is responsible for the failure of Gibrat’s model. In particular, our model is the minimum and straightforward
generalization of Gibrat’s model, being consistent with the observed Laplace distribution and leaving the
essential parts unchanged.

The absence of the jump property is not unique to Bottazzi and Secchi (2006a) but can be found in various
fields of the literature. For example, in Klette and Kortum (2004), a firm consists of many independent
divisions and firm growth is the sum of independent innovations of each division.3 As in Gibrat (1931),
their model implicitly assumes a continuous movement of firm growth dynamics because the effect of each
innovation is very small relative to the size of large firms. By contrast, our analysis suggests that if firm
growth is the result of innovations, radical innovation corresponding to large jumps is of crucial importance for
firm growth, as emphasized in the management literature (see Ettlie et al. (1984); Chandy and Tellis (2000);
Leifer et al. (2000)).4 Such granularity of shocks has received increasing attention in recent years (e.g., Gabaix
(2011)).5 The granular hypothesis, which is originally developed for the explanation of aggregate fluctuations,
means that if firm size is very heterogeneous (e.g., Zipf’s law), idiosyncratic shocks to firms are not averaged
out but shocks to large firms generate non-trivial aggregate fluctuations. This idea can be applied to firm
growth dynamics in a similar manner; if a firm does not entirely consist of many small components but
contains some granular components, the impact of a shock to each component is not homogeneous, and firm
growth is largely explained by shocks to a handful of such granular components. Although our derivation
does not assume granular components but is based only on two empirical facts (i.e., the law of proportionate
effect and Laplace distribution), the jump property is consistent with the granular hypothesis in that firm
growth cannot be divided into many small shocks. Another possible interpretation of the jump property is
the lumpiness of firm investment. For example, in labor economics, Elsby and Michaels (2013) and Kaas
and Kircher (2014) show that firms do not adjust their workforces immediately owing to sunk costs and
would make adjustments only if the gain from doing so were sufficiently large. In the literature on capital
investment, the lumpiness of investment activity at the plant level is a stylized empirical fact (e.g., Doms and

3Klette and Kortum (2004) write, “. . . the evolution of the entire firm is obtained by summing the evolution of these
independent divisions, each behaving as a firm starting with a single product would” (p.995).

4In the management literature, it is emphasized that radical innovation, which is defined as the development or application
of something fundamentally new that creates a wholly new industry or causes a complete transformation of the market structure,
is crucial to the long-term growth of firms. Leifer et al. (2000) note that once a radical innovation has been introduced into the
existing market, “products based on one technology were undermined by radically new ones — and incremental improvement
to the old technology has done little more than delay the eventual rout” (p.3).

5The connection of our analysis to this literature was kindly suggested by an anonymous referee.
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Dunne (1998); Cooper et al. (1999); Thomas (2002)). Although we cannot identify which mechanism causes
the jump property of firm growth dynamics and the complete description of the growth process with all these
features is beyond the scope of this study, our analysis suggests that considering such discrete movement in
models is indispensable for further understanding of firm growth dynamics. This is a key contribution of our
study to the literature.

The remainder of this paper is organized as follows. Section 2 analyzes Japanese firms, showing that
the growth rate distribution is different from a Gaussian distribution but is close to a Laplace distribution.
Section 3 reviews Gibrat’s model and develops a general framework for firm growth processes. Section 4
discusses the robustness of the jump property by analyzing cases in which the growth rate distribution is
fatter tailed than a Laplace distribution is. The conclusions are summarized in Section 5. Mathematical
definitions and concepts are summarized in the Appendix.

2 Empirical Evidence

This section provides empirical evidence of the Laplace shape of the growth rate distribution by analyzing
Japanese firms. Our dataset consists of annual observations of firms over 2003–2009 and 2012–2017, compiled
by the Teikoku Data Bank (TDB).6 The TDB database is one of the most comprehensive firm-level surveys
in Japan, covering more than 100,000 firms with at least 40 employees across all sectors. We separate the
database into manufacturing and non-manufacturing sectors. In what follows, the definition of firm size is
the total sales of a firm. Let St be the sales of a firm at time t and growth rate gt be the log differences of St,
that is, gt := logSt+1− logSt.

7 Tables 1 and 2 report the number of observations and descriptive statistics.8

Figure 1 shows the kernel density estimates of the growth rate distribution for manufacturing firms in
2003 (i.e., g2003). For comparison, fitted Gaussian and Laplace densities are plotted; a Laplace distribution
(denoted by µLap) is given by

µLap(dx) :=
1

2a
exp(−|x− γ|

a
)dx. (1)

As previous studies have found, the growth rate distribution clearly shows marked departure from a Gaussian
distribution and displays a tent-shaped form which is sharply peaked around the center and has a fatter tail.9

This distribution can be well described by a Laplace distribution. Figures 2 and 3 show the kernel density
estimates for manufacturing and non-manufacturing firms over 2003–2008 and 2012–2016. As shown in these
figures, this tent-shaped form is stable over the entire period. Furthermore, this tent-shaped form can be
observed at a more disaggregated level. Figure 4 shows the kernel density estimates for six manufacturing
subsectors (chemicals, iron & steel, fabricated metal, general-purpose machinery, electrical machinery, and
transportation equipment), which are totally different from a Gaussian distribution but close to a Laplace
distribution.10

To explore this distribution shape further, we consider a wider class of distributions called the Subbotin

6The sample periods of the global financial crisis and subsequent great recession are excluded from our sample. Although
the effect of the financial crisis on the distribution is another important issue, this study focuses on the stable feature of the
growth rate distribution.

7Interestingly, the Laplace distribution emerges across different measures of firm size such as the number of employees or
value added. See Bottazzi et al. (2007).

8Since the TDB database is based on survey, a non-negligible proportion (around 10%) of firms do not report their correct
sales values but approximate values (e.g., “it is almost at the level of the previous year”). For such firms, the value of the
previous year is used as the current value in the dataset. To confirm that the Laplace shape is unrelated to this data problem,
we exclude from our sample those firms whose sales are the same in three successive years.

9Indeed, this significant departure can be checked by the Kolmogorov–Smirnov test. The null hypothesis of normality is
rejected at the 1% significance level.

10One might consider that this distribution shape and a fatter tail are not due to internal growth, such as innovations, but
due to external factors, such as mergers and acquisitions. However, previous studies have shown that the distribution shape is
due to an internal growth process. For example, Bottazzi and Secchi (2006a) build superfirms, which are a union of entities
undertaking such external changes, and show the Laplace shape of the growth rate distribution of these superfirms. In Appendix
A.1.1, we reconfirm this point and show that internal growth is related to the observed Laplace distribution.
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Figure 1: Kernel density estimation and fitted density functions.
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Figure 2: Kernel density estimation of the growth rate distributions in 2003–2008.
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Figure 3: Kernel density estimation of the growth rate distributions in 2012–2016.
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Figure 4: Kernel density estimation for six manufacturing subsectors in 2016.

0.1

1

−0.25 0.00 0.25

growth rate

d
e
n
s
it
y

sector Chemical Iron & Steel Fabricated metal

0.1

1

−0.25 0.00 0.25

growth rate

d
e
n
s
it
y

sector General−purpose mach. Electrical mach. Trans. equip

Note: In the left panel, the kernel density estimates for chemicals, iron & steel, and fabricated metal are shown. In the

right panel, the kernel density estimates for general-purpose machinery, electrical machinery, and transportation equipment are

shown. The estimation method is the same as in Figure 1.

6



family, which is introduced by Bottazzi et al. (2002).11 The Subbotin family is defined as follows:

µSub(dx) :=
1

2ab1/bΓ(1/b+ 1)
exp(−1

b
|x− γ

a
|b)dx, (2)

where Γ is the Gamma function. The Subbotin family includes Gaussian and Laplace distributions as special
cases; when b = 2 (b = 1), µSub corresponds to a Gaussian (Laplace) distribution. Intuitively, µSub is more
sharply peaked around the center and has a fatter tail as the shape parameter b becomes smaller.

By using our dataset, we estimate the parameters a and b in Equation (2) by the maximum likelihood
method. Tables 1 and 2 report the estimation results, showing that the shape parameter b in all cases is
significantly lower than 2 (the Gaussian case) and is close to 1 (the Laplace case), especially for manufacturing
firms. In particular, Table 2 shows that this property can be observed at the subsectoral level. Consistent
with previous studies, a Laplace distribution can well approximate the growth rate distribution for Japanese
firms. For non-manufacturing firms, the shape parameter b is significantly lower than 1, suggesting that the
tail of the growth rate distribution is fatter than the tail of a Laplace distribution. This point is further
discussed in Section 4.

Table 1: Descriptive statistics and maximum likelihood estimates in 2003–2008 and 2012–2016.

# obs. mean s.d. â s.e. of â b̂ s.e. of b̂

Manufacturing

2003 27, 276 −.0090 .155 .0965 .00078 .839 .0090
2004 27, 136 .0294 .149 .100 .00077 .952 .0099
2005 29, 573 .0404 .147 .102 .00073 .989 .0098
2006 30, 010 .0301 .144 .0942 .00069 .913 .0089
2007 30, 331 .0390 .141 .0946 .00068 .946 .0092
2008 30, 553 .0179 .139 .0888 .00066 .880 .0086
2012 30, 121 .0152 .153 .0985 .00074 .885 .0089
2013 30, 008 −.0100 .148 .0910 .00070 .829 .0083
2014 29, 862 .0232 .141 .0889 .00067 .871 .0086
2015 29, 913 .0218 .134 .0843 .00063 .872 .0085
2016 29, 863 .0009 .132 .0750 .00062 .735 .0079

Non-manufacturing

2003 65, 996 .0001 .145 .0707 .00043 .600 .0046
2004 65, 946 .0164 .145 .0826 .00044 .770 .0050
2005 75, 317 .0232 .151 .0863 .00042 .770 .0046
2006 76, 790 .0273 .148 .0851 .00041 .783 .0046
2007 77, 856 .0275 .151 .0871 .00042 .782 .0046
2008 79, 487 .0175 .151 .0824 .00040 .726 .0043
2012 88, 993 .0165 .146 .0790 .00037 .723 .0040
2013 91, 053 .0198 .140 .0758 .00034 .736 .0039
2014 92, 349 .0344 .139 .0807 .00035 .808 .0042
2015 93, 971 .0168 .137 .0722 .00033 .706 .0037
2016 95, 306 .0129 .138 .0692 .00032 .665 .0035

Note: The fourth and sixth columns represent the maximum likelihood estimates of the parameters in Equation
(2) and the fifth and seventh columns represent the standard errors of the estimated parameters. Observations of
|gt| ≥ 0.7 are removed as outliers. We confirm that the conclusion of our analysis does not depend on outlier criteria.

Although the Laplace shape of the growth rate distribution is remarkable, one of the concerns about the
usage of stochastic models to explain this distribution shape is that a stochastic model implicitly assumes that

11This distribution family can be generalized to asymmetric cases. See Bottazzi and Secchi (2011), who examine the properties
of this distribution family’s maximum likelihood estimates and apply them to electricity market, foreign exchange market, and
stock market data.
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Table 2: Descriptive statistics and maximum likelihood estimates for six manufacturing subsectors in 2016.

# obs. mean s.d. â s.e. of â b̂ s.e. of b̂

Chemicals 1, 632 .0051 .123 .0696 .0024 .762 .032
Iron & steel 1, 397 −.0437 .125 .0900 .0029 1.05 .048
Fabricated metal 3, 468 −.0090 .127 .0810 .0018 .878 .026
General-purpose machinery 4, 334 .0145 .161 .1046 .0021 .891 .024
Electrical machinery 3, 221 −.0057 .154 .1003 .0024 .878 .029
Transportation equipment 1, 895 .0066 .136 .0815 .0025 .800 .032

Note: See the explanation in Table 1.

Table 3: Descriptive statistics and maximum likelihood estimates for six subsamples.

# obs. mean s.d. â s.e. of â b̂ s.e. of b̂

Manufacturing

log10(St) < 2.5 1, 730 −0.0417 0.166 0.103 0.0032 0.854 0.033
2.5 ≤ log10(St) < 3.0 8, 280 −0.00652 0.135 0.0754 0.0012 0.732 0.014
3.0 ≤ log10(St) < 3.5 10, 668 0.00672 0.130 0.0815 0.0010 0.855 0.014
3.5 ≤ log10(St) < 4.0 5, 552 0.0109 0.121 0.0757 0.0013 0.859 0.020
4.0 ≤ log10(St) < 4.5 2, 348 0.00757 0.131 0.0765 0.0021 0.801 0.027
4.5 ≤ log10(St) 1, 285 0.00170 0.121 0.0736 0.0027 0.840 0.039

Non-manufacturing

log10(St) < 2.5 9, 473 −0.0129 0.162 0.0684 0.0011 0.555 0.0089
2.5 ≤ log10(St) < 3.0 29, 940 0.0112 0.135 0.0619 0.00053 0.606 0.0056
3.0 ≤ log10(St) < 3.5 29, 817 0.0177 0.139 0.0746 0.00060 0.712 0.0068
3.5 ≤ log10(St) < 4.0 16, 354 0.0204 0.131 0.0743 0.00079 0.767 0.010
4.0 ≤ log10(St) < 4.5 6, 564 0.0171 0.125 0.0736 0.0012 0.804 0.016
4.5 ≤ log10(St) 3, 158 0.0155 0.123 0.0686 0.0017 0.756 0.022

Note: St is firm size measured by sales (in million yen). See the explanation in Table 1.

growth rates for all firms are drawn from a common probability distribution across firms. Put differently,
one can argue that the observed Laplace shape may be due to the aggregation of heterogeneous firms.
Indeed, previous studies (e.g., Bottazzi and Secchi (2006b); Secchi et al. (2018)) show that the growth rate
distribution is not independent from firm size but the variance of growth rates is negatively correlated with
firm size. In other words, the firm growth dynamics of larger firms are less volatile than those of smaller
firms. Figure 5 plots the standard deviation and firm size by decomposing our samples into six parts by firm
size, showing the negative relationship between firm size and variance.12 Therefore, it is unlikely that the
growth rates of all firms follow a common distribution.

However, Figure 6 shows that the growth rate distribution for each bin has a tent-shaped form. This
point can be confirmed by the maximum likelihood estimates of a and b reported in Table 3. In other words,
although the growth rate distributions for different size classes are not described by a common distribution,
they can be well described by a common functional form with different parameters. In particular, this finding
suggests the possibility that if the growth rate is properly standardized for each firm, the standardized growth
rate across firms may follow a common distribution.

To check this possibility formally, we perform a statistical test proposed by Lunardi et al. (2014). This test

12Secchi et al. (2018) show that the relationship is described by log(σgt ) = −β log(St), where β ≈ 0.18 for most of the
countries analyzed. However, according to Secchi et al. (2018), Japan is an exceptional case in that the slope of this relationship
β is relatively flat and not significantly different from zero.
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Figure 5: Standard deviation and firm size.
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Figure 6: Kernel density estimations for the six subsamples.
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can be used to discriminate whether the Laplace shape of the growth rate distribution is due to the intrinsic
feature of the firm growth process or the aggregation of heterogeneous firms. The null hypothesis is that the
standardized growth rate gstdi,t :=

gi,t−mi

σi
is drawn from a common distribution across firms, where mi and

σ2
i are the mean and variance of firm i’s growth rates. Namely, firm idiosyncrasy of growth rate is captured

by the first two moments under the null hypothesis. Then, we check whether the empirical distribution of
gstdi,t pooled together for all i is statistically different from the null distribution. For comparison between the

two distributions, we use four test statistics: D (Kolmogorov), A2 (Anderson-Darling), W 2 (Cramer-Von
Mises), and U2 (Watson).13

We apply this test to the six major manufacturing subsectors for 2003-2008 and 2012-2016 (T = 11).14

As the null distribution, we consider µSub with b = 2 (Gaussian), b = 1 (Laplace), and b = b∗ at which test
statistics takes the lowest value. In other words, at b = b∗, the empirical distribution is relatively more similar
to the null distribution than at other values of b. Table 4 reports the results of this test. First, it shows that
for all subsectors, the Gaussian hypothesis is rejected at the 1% significance level. As expected, the growth
rate distribution is statistically different from a Gaussian distribution even when the mean and variance of
growth rate for each firm are controlled. For the Laplace case, the null hypothesis is rejected for all subsectors
except chemicals. However, this result is largely due to the fact that the number of our observations is large
enough to detect small deviation of the actual distribution from the null distribution rather than due to
firms’ heterogeneity. Indeed, at b = b∗, the null hypothesis is not rejected for four out of six subsectors.
In other words, at b = b∗, we cannot detect the heterogeneity of the growth rate distributions for the four
subsectors. This result implies that, although there are differences across subsectors, the standardized growth
rate distributions for firms belonging to the same subsector, as a rule, can be viewed as homogeneous. Note
that b∗ for all subsectors are within the range of [1.0, 1.3] and relatively close to the Laplace case. At least as
long as the population of firms is considered at the subsector level, the distribution shape cannot be reduced
to the aggregation effect of heterogeneous firms, and therefore, it is meaningful to analyze the (standardized)
growth rate distribution as a Laplace distribution based on the homogeneous assumption.15 In the following
section, we develop our stochastic model based on this assumption.

3 Firm Growth Model

3.1 Gibrat’s model

Let us begin with reviewing Gibrat’s model. Gibrat (1931) assumes that firm size St evolves over time
according to the following equation:

St+1 = (1 + εt)St = (1 + εt)(1 + εt−1)...(1 + ε1)S1, (3)

where {εs}s=1,...,t are independent shocks to the firm. In other words, firm size St is the product of
multiplicative shocks εs and the initial size. By taking the logarithm, Equation (3) can be written as
logSt+1 =

∑t
s=1 log(1 + εs) + logS1 ≈

∑t
s=1 εs + logS1. If t is sufficiently large and logS1 becomes neg-

ligible, the distribution of logSt becomes Gaussian given that the CLT conditions are satisfied. Therefore,
the firm size distribution is a lognormal distribution. Similarly, the growth rate over some time period gt

13If the four empirical test statistics are significantly larger than a critical value calculated under the null hypothesis, it
suggests that the empirical distribution is statistically different from the null distribution, and therefore, we reject the null
hypothesis.

14Here, we combine the two sample periods (2003-2008 and 2012-2016) and focus on firms surviving the entire sample period
because if the time span of panel data (i.e., T ) is too short, the power of this test becomes very weak. The number of firms
analyzed is given in Table 4.

15In Appendix A.1.2, we apply Lunardi et al. (2014) test to 4-digit industries. Results show that, one the one hand, the
Gaussian hypothesis (b = 2) is rejected for about 75% of the 4-digit industries, but on the other hand, the Laplace hypothesis
(b = 1) is not rejected for about 60% of the 4-digit industries. These results suggest that at this disaggregated level, firms in
each 4-digit industry are more homogeneous, and therefore, the hypothesis that standardized growth rates follow a common
Laplace distribution is more likely to hold.
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Table 4: Results of Lunardi et al. (2014) test.

b = 2 (Gaussian) b = 1 (Laplace) b = b∗

statistics empirical 1% empirical 1% empirical 1%

Chemicals D 0.0399 0.0100 0.00767 0.0118 0.00753 0.0118
Number of firms = 1008 A2 38.126 0.673 0.336 1.137 0.260 1.120
b∗ = 1.04 W 2 5.969 0.179 0.0886 0.292 0.0617 0.278

U2 5.969 0.168 0.0880 0.241 0.0610 0.228

Iron & steel D 0.0262 0.0107 0.0190 0.0127 0.00709 0.0116
Number of firms = 865 A2 12.798 0.583 5.460 1.051 0.111 0.766
b∗ = 1.29 W 2 2.031 0.177 1.024 0.285 0.0638 0.222

U2 2.030 0.165 1.023 0.234 0.0622 0.193

Fabricated metal D 0.0259 0.00720 0.0165 0.00863 0.00569 0.00786
Number of firms = 1940 A2 36.444 0.835 9.197 1.315 1.175 1.076
b∗ = 1.24 W 2 5.662 0.178 1.598 0.286 0.155 0.233

U2 5.657 0.167 1.586 0.233 0.145 0.204

General machinery D 0.0291 0.00639 0.0210 0.00757 0.00716 0.00705
Number of firms = 2469 A2 41.643 0.908 16.119 1.384 2.168 1.098
b∗ = 1.26 W 2 6.559 0.180 2.681 0.293 0.279 0.221

U2 6.525 0.167 2.607 0.233 0.229 0.194

Electric machinery D 0.0297 0.00692 0.0119 0.00816 0.00499 0.00768
Number of firms = 2126 A2 51.312 0.878 5.982 1.341 1.086 1.199
b∗ = 1.17 W 2 7.884 0.182 1.040 0.285 0.102 0.247

U2 7.873 0.171 1.019 0.231 0.0858 0.209

Transportation equipment D 0.0310 0.00956 0.0170 0.0116 0.0170 0.0110
Number of firms = 1077 A2 27.342 0.688 5.034 1.179 2.533 1.016
b∗ = 1.18 W 2 4.549 0.179 1.026 0.291 0.584 0.253

U2 4.493 0.168 0.905 0.239 0.484 0.214

Note: Each entry in the “empirical” column (1%) reports the observed value (critical value at the 1% significance level)
of four test statistics: D (Kolmogorov), A2 (Anderson-Darling), W 2 (Cramer-Von Mises), and U2 (Watson). Entries
printed in boldface mean no rejection of the null hypothesis, that is, the observed value of test statistics is smaller
than the corresponding critical value at the 1% significance level. For fabricated metal at b = b∗, Anderson-Darling
statistic A2 rejects the null but other statistics do not.
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defined by the log difference of firm size can be written as the sum of independent shocks:

gt := logSt+1 − logSt =

n∑
i=1

log(1 + εit) ≈
n∑
i=1

εit, (4)

where the time interval between t+ 1 and t is divided into n parts. By using the same argument, the growth
rate distribution converges to a Gaussian distribution when n is large.

In short, the basic assumptions of Gibrat’s model are summarized as follows.

1. The growth rate of a firm is independent of its initial size.
2. The successive growth rates of a firm are independent of each other.16

3. The growth rate of a firm consists of many small shocks that satisfy the CLT conditions.

The law of proportionate effect refers to Assumptions 1 and 2. Although it is empirically shown that the law
of proportionate effect does not strictly hold in every case, it can be viewed as a good working hypothesis
and well describe the growth dynamics, especially for larger and mature firms. By contrast, as discussed in
the previous section, the Laplace shape is widely observed both for smaller and larger firms, and at different
disaggregated levels, even when the growth rate is standardized by individual firms’ mean and variance. This
empirical fact clearly contradicts Gibrat’s model, and suggests that the observed Laplace distribution is due
to the violation of Assumption 3 rather than the violation of the law of proportionate effect. In the following
subsection, we generalize Gibrat’s model by relaxing Assumption 3, keeping the law of proportionate effect
unchanged.

3.2 Generalization

Let Xt be the log of firm size (Xt := logSt) and growth rate gt be the difference of Xt (gt := Xt+1 −
Xt). Suppose that firm size satisfies the law of proportionate effect and evolves according to Equation (3).
For generalization, we separately consider two related aspects of Gibrat’s model: the firm growth process
(stochastic process) and growth rate distribution. In Gibrat’s model, the growth rate distribution is Gaussian.
As a mirror image of this distribution, the process Xt in Gibrat’s model is a Brownian motion in the
continuous time scale. Therefore, it is necessary to generalize both Brownian motion and the CLT.

Table 5 summarizes our strategy, which consists of three steps. First, by generalizing the CLT, we
show that under the law of proportionate effect (i.e., Assumptions 1 and 2), the growth rate distribution
does not necessarily converge to a Gaussian distribution but to a member of a distribution family called
infinitely divisible distributions. This family includes both Gaussian and Laplace distributions as special
cases. Second, we introduce Lévy processes, which are a class of stochastic processes with independent
and stationary increments. Brownian motion is one of the Lévy processes. In our analysis, Brownian
motion and Gaussian distribution in Gibrat’s model are generalized to Lévy processes and infinitely divisible
distributions, respectively. Finally, by using the relationship between infinitely divisible distributions and
Lévy processes, we identify the Lévy process corresponding to a Laplace distribution, which is the variance
Gamma process. Therefore, the firm growth dynamics can be explored by examining the property of the
variance Gamma process.

Let us begin with the generalization of the CLT by relaxing Assumption 3. Suppose that firm growth
consists of independent random shocks (Assumptions 1 and 2) but does not satisfy the CLT condition
(Assumption 3). Intuitively, this means that in our model, a firm grows by various reasons such as the
introduction of new products, quality improvements, and effective advertising, and their impacts on firm
growth may differ. Some shocks may have a disproportional impact, and therefore, the CLT cannot be
applied because random shocks are not identically distributed. A more general limit theorem on the sums
of independent but not necessarily identically distributed random variables, as in our case, is proven by
Khintchine (1937) (Theorem 2 in A.2). This theorem shows that the distribution of sums does not necessarily

16We assume that the independence of multiplicative shocks holds for every time scale; εit and εjt for i 6= j in Equation (4)
are independent of each other for any n. This assumption is stronger than the simple independence between firm size and
growth rate. However, this assumption is a natural extension in the continuous time scale and can be found in the literature;
for example, Bottazzi et al. (2002) says, “[t]his is indeed a straightforward conjecture” (p.710).
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Table 5: One-to-one correspondence.

<Firm growth process> <Growth rate distribution>

Brownian motion ⇐⇒ Gaussian distribution

Lévy processes ⇐⇒ Infinitely divisible distributions

Variance Gamma process ⇐⇒ Laplace distribution

Note: The first row represents Gibrat’s model, in which the underlying process is Brownian motion in a continuous
scale and the resulting growth rate distribution is Gaussian. The second row is our generalized model; under the law
of proportionate effect, Brownian motion and a Gaussian distribution are generalized to Lévy processes and infinitely
divisible distributions, respectively. The last row shows that by using the one-to-one correspondence between infinitely
divisible distributions and Lévy processes, we can identify the Lévy process corresponding to a Laplace distribution.
This process is the variance Gamma process, representing the firm growth dynamics.

converge to a Gaussian distribution but rather to an infinitely divisible distribution (see Definition 1 in A.2).
Put differently, if firm growth is composed of a large number of independent but not necessarily identically
distributed shocks, the resulting growth rate distribution is an infinitely divisible distribution. The CLT can
be seen as a special case of this theorem in which an additional assumption (Assumption 3) is imposed such
that the resulting distribution of sums converges to a particular subclass of infinitely divisible distributions,
i.e., Gaussian distribution.

Each infinitely divisible distribution can be fully characterized by using the Lévy–Khintchine formula.
Let µ̂ be the characteristic function of a distribution µ, that is, µ̂(z) := E[eizX ] =

∫
R e

izxµ(dx), z ∈ R. The
Lévy–Khintchine formula means that the characteristic function of infinitely divisible distributions can be
represented as follows:

µ̂(z) = exp

[
−1

2
Az2 + iγz +

∫
R

(eizx − 1− izx1D(x))ν(dx)

]
, z ∈ R, (5)

where A is a non-negative constant, ν is a measure on R (called a Lévy measure), and γ ∈ R.17 The
point is that an infinitely divisible distribution is fully characterized by three components {A, ν, γ}, called a
generating triplet. In other words, given a generating triplet {A, ν, γ}, the corresponding infinitely divisible
distribution with {A, ν, γ} is uniquely determined. For example, if ν = 0, µ̂ corresponds to the characteristic
function of a Gaussian distribution with mean γ and variance A. This means that the Gaussian growth rate
distribution is not the direct consequence of the law of proportionate effect (Assumptions 1 and 2) because
a Gaussian distribution is a special case of infinitely divisible distributions with ν = 0. Without Assumption
3, the growth rate distribution may converge to an infinitely divisible distribution with ν 6= 0. Therefore, the
departure of the growth rate distribution from Gaussian does not contradict the law of proportionate effect
and, as we see in the remainder of this subsection, a Laplace distribution is indeed an infinitely divisible
distribution.

We show some properties of a Laplace distribution relevant to our analysis. One such property is that a
random variable X drawn from a Laplace distribution can be decomposed into positive and negative parts,
Y 1, Y 2 ≥ 0, that is, X = Y 1 − Y 2, where Y 1, Y 2 follow a common exponential distribution µexp. This
property can be shown as follows. Let µ̂Lap be the characteristic function of a Laplace distribution with
γ = 0. The characteristic function µ̂Lap can be explicitly written as18

µ̂Lap(z) =
1

1 + a2z2
=

1

(1 + iaz)(1− iaz)
. (6)

Note that µ̂Lap(z) is the product of (1 − iaz)−1 and (1 + iaz)−1, which means that a random variable
drawn from µLap can be represented by the sum of two independent random variables whose characteristic
functions are given by (1− iaz)−1 and (1 + iaz)−1, respectively, because of the property of the characteristic

17ν satisfies ν(0) = 0 and
∫
R(|x|2 ∧ 1)ν(dx) <∞. In Equation (5), 1D is an indicator function and D is the closed unit ball.

18See, for example, Sato (1999), p.98.
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function E[eiz(X
1+X2)] = E[eizX

1

]E[eizX
2

] when X1 and X2 are independent of each other. It is known that
(1− iaz)−1 is the characteristic function of an exponential distribution µexp:

µexp(dx) := 1[0,∞)
1

a
exp(−x

a
)dx. (7)

Therefore, by using the fact that if the characteristic function of a random variable Y is given by (1− iaz)−1,
the characteristic function of −Y is given by (1 + iaz)−1, we can show that X = Y 1−Y 2, where Y 1, Y 2 ≥ 0
follow µexp. If a random variable X represents the growth rate, this means that Y 1, Y 2 represent positive
and negative growth, respectively.

Next, we consider the Lévy–Khintchine representation of a Laplace distribution µLap. Since a Laplace
distribution can be represented as the convolution of two exponential distributions, the Lévy–Khintchine
representation of µLap is uniquely determined by that of an exponential distribution µexp. The characteristic
function µ̂exp has the following representation:19

µ̂exp(z) =
1

(1− iaz)
= exp

[∫ ∞
0

(eizx − 1)
e−

x
a

x
dx

]
, (8)

where A = 0, ν(dx) = 1(0,∞)(x)x−1e−
x
a dx in Equation (5).20 Therefore, the generating triplet of a Laplace

distribution is given by A = 0, ν(dx) = 1(0,∞)(x)x−1e−
x
a dx + 1(−∞,0)(x)|x|−1e x

a .21 This is in contrast to
the Gaussian case, in which A > 0 and Lévy measure ν is identically equal to zero. The meaning of this
difference becomes clear in the next subsection.

From here, we consider the generalization of Brownian motion under the law of proportionate effect (the
left-hand side of Table 5). Recall that Xt := log(St) in our analysis and the growth rate Xt+1 − Xt =
log(St+1) − log(St) is the sum of independent shocks. In the literature on stochastic processes, such an
independent additive process is called a Lévy process (see Definition 3 in A.3). To be precise, Lévy processes
are a class of stochastic processes characterized by the stationary independent increment property: if {Xt}t≥0
is a stochastic process, for an arbitrary choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn, the random variables
Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.22 This property is equivalent to the law of proportionate
effect. Indeed, the Brownian motion in Gibrat’s model is a Lévy process because an increment Xt+1 −Xt is
an independent random variable. An important feature of Lévy processes is that the sample path of a Lévy
process can be discontinuous, that is, jump processes are also considered. To provide a rough idea of the
jump property, let us consider a compound Poisson process defined by

Xt :=

Nt∑
i=1

Ji,

where Nt is a Poisson process with intensity λ > 0 and Ji is an independent random variable with distribution
function σ. In other words, jumps arrive randomly at the Poisson rate λ > 0 and Xt jumps by Ji. See Figure
7, in which a typical sample path of the compound Poisson process is shown. Note that Xt can be written
as follows:

Xt = Xs +

Nt∑
i=Ns+1

Ji.

This equation means that, given the lack of memory of Poisson processes, Xt can be considered as the sum

19See, for example, Sato (1999), p.45.
20The term

∫
R(−izx1D(x))ν(dx) becomes irrelevant because

∫
|x|≤1 |x| ν(dx) <∞ in our case.

21Here, we use the fact that the Lévy measure of a Laplace distribution is the sum of the Lévy measures of two exponential
distributions because a Laplace distribution is the convolution of the two exponential distributions.

22Because of the stationary independent increment property, growth rate Xt+1 −Xt has the same distribution as X1 −X0.
Note that in Definition 3 of Lévy processes in the A.3, X0 is set to 0 without loss of generality and therefore X1 −X0 = X1

a.s. Put differently, Xt = Xt−X0 can be considered as the growth rate over t periods as well as the logarithm of firm size at t.
In the following analysis, we explore the distribution properties of Xt and X1, which are interpreted as the growth rates over t
and one period as well as the logarithm of firm size at t and 1, respectively.
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of Xs and an independent copy of Xt−s. In other words, Xt−Xs is a stationary independent increment, and
therefore, the compound Poisson process is a Lévy process. The characteristic function of the compound
Poisson process is given by23

µ̂Xt
(z) := E[eizXt ] = exp

[
tλ

∫
R

(eizx − 1)σ(dx)

]
. (9)

Note that since the compound Poisson process satisfies the stationary independent increment property, this
jump process is consistent with the law of proportionate effect. In other words, the law of proportionate effect
itself does not exclude the possibility of discrete movements like jumps. In light of this fact, Assumption 3 in
Gibrat’s model is a strong a priori restriction on the underlying firm growth process because it excludes jump
processes and considers only continuous processes (i.e., Brownian motion). By considering the possibility of
jumps in the process, we can broaden the scope of possible candidates for firm growth dynamics.

Figure 7: Sample path of the compound Poisson process.

Note: The stochastic process Xt jumps by Ji at the time of the shock, and stays constant until the occurrence of the next

shock.

Finally, we discuss the one-to-one relationship between infinitely divisible distributions and Lévy pro-
cesses. It can be shown that if an infinitely divisible distribution µ is given, there uniquely exists a cor-
responding Lévy process {Xt}t≥0 such that the probability distribution of X1 is µ.24 For example, as in
Gibrat’s model, when a Gaussian distribution is given, Brownian motion is the corresponding Lévy process.
Similarly, when a Laplace distribution is given, there uniquely exists a Lévy process generating the Laplace

23

E[eizXt ] =
∞∑
n=0

P [Nt = n]E[eiz
∑n

j=1 Jj ]

=
∞∑
n=0

e−λt(n!)−1(λt)nσ̂(z)n

= exp(λt(σ̂(z)− 1))

= exp

[
tλ

∫
R

(eizx − 1)σ(dx)

]
Here, we used the independence property of Jj .

24See Corollary 11.6 in Sato (1999).
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distribution. This process is called the variance Gamma process in the financial literature.25 Because this
relationship is one-to-one, there is no Lévy process generating the Laplace distribution other than the vari-
ance Gamma process. Put differently, under the law of proportionate effect (i.e., Lévy process), the variance
Gamma process is a unique process consistent with the observed Laplace distribution. This means that the
properties of firm growth dynamics can be revealed by examining the properties of the variance Gamma pro-
cess. In particular, since an infinitely divisible distribution is determined by the generating triplet {A, ν, γ},
the variance Gamma process is also characterized by {A, ν, γ}.

3.3 Variance Gamma process

This subsection shows sample path properties of the variance Gamma process. For this purpose, we use
the Lévy–Itō decomposition (for details, see Theorem 4 in A.3), which states that a Lévy process Xt can be
decomposed into a jump part X1

t and a continuous part X2
t , and Xt can be represented as the sum of these

two parts Xt = X1
t +X2

t . The characteristic function of the jump part X1
t is given by

µ̂X1
t
(z) := E[eizX

1
t ] = exp[t

∫
R

(eizx − 1)ν(dx)].

In particular, if ν(R) <∞, the jump part X1
t is a compound Poisson process with ν = λσ (see Equation (9)).

In other words, the sample path of X1
t is characterized by discrete movements as in Figure 7, and the jump

structure of X1
t is completely determined by the Lévy measure ν. For example, the frequency of jumps larger

than x∗ is given by ν(x∗,∞) = λσ(x∗,∞).
By contrast, the characteristic function of the continuous part X2

t is given as follows:

µ̂X2
t
(z) := E[eizX

2
t ] = exp[−1

2
tAz2 + itγz].

This is the characteristic function of a Brownian motion with drift γ, which is a continuous stochastic process,
that is, X2

t has no jumps and its value changes continuously. A Lévy process Xt is the sum of these two
processes.

Let us return to the variance Gamma process. Suppose that Xt is the variance Gamma process corre-
sponding to the observed Laplace distribution. Since a Laplace distribution can be expressed by the con-
volution of two exponential distributions, Xt can be represented as the difference between two independent
and identically distributed processes Y 1

t and Y 2
t :

Xt = Y 1
t − Y 2

t ,

where the characteristic function of Y it ≥ 0, i = 1, 2 is given by (see Equation (8))

µ̂Y i
t

:= E[eizY
i
t ] = exp

[
t

∫ ∞
0

(eizx − 1)
e−

x
a

x
dx

]
, i = 1, 2. (10)

In other words, firm growth can be divided into two components, a positive growth process Y 1
t and a negative

one Y 2
t . Since Y 1

t and Y 2
t are independent and identically distributed, we focus on Y 1

t and denote it by Yt
in the following.

Note that Equation (10) shows that for Yt, A = 0 and ν(dx) = 1(0,∞)(x)x−1e−
x
a dx in the Lévy-Khintchine

representation, suggesting that Yt has no continuous part by the Lévy–Itō decomposition. Namely, the growth
process Yt is completely determined by jumps as in Figure 7. This is in sharp contrast to Brownian motion
in Gibrat’s model (A 6= 0, ν = 0), which has only a continuous part (see Table 6). This shows a qualitative
difference between Gibrat’s model and our models described by Equation (10), and in this sense, the variance
Gamma process can be seen as the opposite end of Brownian motion. By way of illustration, imagine that
firm growth is the result of sales growth of the firm’s n (� 0) products. In Gibrat’s model, there are many
products among n products whose sales grow but the growth of each product is very small relative to the

25The variance Gamma process was first introduced in option pricing theory by Madan and Seneta (1990). The mathematical
properties of the process and its generalization, pure jump processes, are explored by Ferguson and Klass (1972).
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growth of total sales. In other words, there are no particular products that greatly contribute to the growth
of total sales. Because of this nature, the CLT can be applied, and the firm growth process is characterized
by gradual changes without any jumps. By contrast, in our model described by Equation (10), the impact
of the growth of each product is heterogeneous, and some hit products account for most of the growth of
total sales, leading to discrete changes in firm size, i.e., jumps. The observed Laplace distribution suggests
that such jumps rather than continuous changes are crucial in firm growth dynamics.

Finally, we characterize the jump property of the variance Gamma process by a series of compound
Poisson processes. Consider a compound Poisson process Yt,n represented by the following characteristic
function:

µ̂Yt,n
(z) := E[eizYt,n ] = exp

[
t

∫ ∞
εn

(eizx − 1)
e−

x
a

x
dx

]
, εn > 0, (11)

This process consists of jumps of Yt larger than εn.26 To be precise, Yt,n is expressed as follows:

Yt,n =

Nt∑
i=0

Ji, (12)

where Nt is a Poisson process with intensity λ =
∫∞
εn
x−1e−

x
a dx and Ji is an independent random variable

with probability density given by λ−1 e
− x

a

x dx on [εn,∞) (see Equation (9)). We can calculate the intensity
λ of Yt,n, that is, the frequency of jumps larger than εn, by using the estimate â = .0965 in Table 1. For
example, a positive growth shock larger than 2.5% has intensity ν(0.025,∞) = 1.06, which means that
such a shock occurs, on average, once a year. For shocks ≥ 8% (≥ 10%), the intensity ν(0.08,∞) = 0.295
(ν(0.1,∞) = 0.207). Firms frequently experience such large shocks comparable to annual growth rates, and
a handful of such large jumps mostly determine firm growth. This is the property of firm growth dynamics
represented by the observed Laplace distribution.

Table 6: Lévy–Itō decomposition.

Jump part X1
t Continuous part X2

t

Brownian motion X1
t = 0 (ν = 0) X2

t = Xt

Variance Gamma process X1
t = Xt X2

t = 0 (A = 0)

Note: A Lévy process Xt is represented as the sum of jump and continuous processes, that is, Xt = X1
t + X2

t .
Brownian motion has only a continuous part X2

t and the variance Gamma process has only a jump part X1
t .

4 Robustness of the jump property

In the previous section, we show that firm growth dynamics are characterized by jumps, given that the
growth rate distribution is a Laplace distribution. One might be concerned about the robustness of this
property, that is, whether this property holds in cases in which the growth rate distribution slightly deviates
from a Laplace distribution. Indeed, our empirical analysis in Section 2 shows that in some cases, the tail of
the growth rate distribution is fatter than that of a Laplace distribution. In particular, the shape parameter
b for non-manufacturing firms is substantially lower than 1 for all the years. In the remainder of this section,
by using the tail equivalence of Lévy processes (for details, see A.4), we show that these fatter tails are
consistent with and further support the jump property.

First, define the right tail of a measure µ by µ(x) := µ(x,∞).27 For the Laplace distribution, this can

26Indeed, comparing Equations (10) and (11), we observe that Yt,n converges to Yt as εn goes to zero.
27The analysis developed in this section can also be applied to the left tail of distributions in the same manner.
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be written as

µLap(x) = e−cx.

Here, c is some constant and we omit the normalization constants irrelevant to our analysis. We consider
two fatter-tailed distributions than this tail. One is the distribution exhibiting power law behavior (e.g.,
Buldyrev et al. (2007a,b)):

µpow(x) = x−α, for x > x∗,

where x∗ is some large value. The other is the so-called Weibull distribution:

µWei(x) = e−cx
b

, for x > x∗,

where 0 < b < 1. Note that the Weibull distribution with 0 < b < 1 is very similar to the Subbotin

family. Since the density function is given by e−cx
b

for the Subbotin family and xb−1e−cx
b

for the Weibull
distribution, it is practically difficult to distinguish these distributions by using empirical data. The decay of

the distribution is largely determined by e−cx
b

, especially when b is close to 1. Note that both distributions
converge to the Laplace distribution as b→ 1. Since the Weibull distribution is more tractable, we consider
the Weibull distribution with 0 < b < 1 as the class having a fatter tail than the Laplace distribution, instead
of the Subbotin family.

The question to address here is the following: do the Lévy processes corresponding to these distributions
have a similar jump property to the variance Gamma process? Since only the tail of the distribution is
specified, the sample path properties of the corresponding Lévy processes cannot be fully identified. However,
the frequency of large jumps can be identified solely by the tail of the distribution. In other words, the tail of
the Lévy measure ν can be identified by the tail of the distribution, as shown by Theorem 6 and Proposition
7 in the Appendix A.4.

Specifically, A.4 shows that µpow (µWei) and νpow (νWei) decay at almost the same rate, that is,
limx→∞ µpow(x)/νpow(x) = 1 (limx→∞ µWei(x)/νWei(x) = 1), where we denote by νpow (νWei) the Lévy
measure of µpow (µWei). Recall that the frequency of the jumps of a Lévy process is fully determined by its
Lévy measure. Thus, we can estimate the rate at which large jumps occur by the tail of the observed growth
rate distribution; a frequency of jumps larger than some large value x∗, ν(x∗,∞), can be approximated by
µ(x∗,∞). Therefore, a fatter tail of the growth rate distribution suggests the existence of large jumps in the
underlying growth process. In particular, in light of the fact that b = 1 corresponds to a Laplace distribution,
the Laplace case can be considered as a boundary case. As long as the growth rate distribution is described
by a Laplace distribution or distributions with fatter tails, we can conclude that large jumps are crucial for
firm growth dynamics. Therefore, the recent finding that a growth rate distribution has a fatter tail than a
Laplace distribution is consistent with and further supports the importance of large jumps.

5 Conclusions

Firm growth is an engine for economic growth and has been a central topic in economics. The importance
of statistical regularities cannot be overemphasized because they reflect some robust properties and provide
clues for better understanding of firm growth dynamics. In recent years, a series of empirical studies about
growth rate distribution has opened a new field of inquiry, showing that growth rate distribution is quite
different from Gaussian distribution but close to Laplace distribution. Indeed, our analysis showed that the
growth rate distribution for Japanese firms is also well described by a Laplace distribution. This empirical
fact is totally inconsistent with Gibrat’s model and challenges our understanding of firm growth dynamics.
The present study tackled this problem.

Our analysis starts with the law of proportionate effect but does not impose the CLT condition that
random shocks constituting firm growth are identically distributed (Assumption 3). In other words, we
allow for the possibility that there are some shocks having disproportional impact on the firm growth. In
this general setting, the growth rate distribution does not necessarily converge to a Gaussian distribution
but to a member of a more general distribution family called infinitely divisible distributions. Indeed, a
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Laplace distribution belongs to this distribution family. This means that the law of proportionate effect
itself does not contradict the observed Laplace distribution, and it is the CLT condition that leads to a
discrepancy between Gibrat’s model and the Laplace shape. The same is true for the underlying firm growth
process because the growth rate distribution and firm growth dynamics are two sides of the same coin. If
we assume the CLT condition and a Gaussian distribution, it is equivalent to assuming that the underlying
growth process is continuous without jumps. However, without this condition, an independent additive
stochastic process with jumps is also an eligible candidate for the firm growth process. Indeed, the unique
process corresponding to the Laplace distribution is a pure jump process without any continuous changes.
In particular, this process is mostly determined by a few large jumps. Our analysis showed that the CLT
condition is not innocuous but strong a priori assumption, and that the jump property is an indispensable
feature of firm growth dynamics.

The jump property of firm growth dynamics has several economic interpretations. If firm growth is
explained by innovations, our finding suggests that the impact of each innovation is not homogeneous.
There are major innovations that contribute greatly to firm growth while the contribution of many others
innovations is negligible. This interpretation is consistent with the role of radical innovation, as discussed in
management literature (e.g., Ettlie et al. (1984); Chandy and Tellis (2000); Leifer et al. (2000)). In contrast
to increment innovations, a few radical innovations determine long-term firm growth. The jump property can
also be interpreted in a different context; especially in the macroeconomic literature, the granular hypothesis
initiated by Gabaix (2011) has received increasing attention in recent years. Consistent with the granular
hypothesis, our analysis suggests that the assumption that a firm consists of many small components cannot
be justified but granularity must be considered. Another possible explanation consistent with the jump
property is lumpy behavior; the workforce adjustment (e.g., Elsby and Michaels (2013); Kaas and Kircher
(2014)) and the lumpiness of capital investment activity at the plant level (e.g., Doms and Dunne (1998);
Cooper et al. (1999); Thomas (2002)) have become stylized facts in the literature.

The complete description of the growth process with all these features is beyond the scope of this study,
and we cannot identify the main mechanism generating jumps. However, what we showed in this paper
is that such a mechanism generating jumps is crucial for further understanding of firm growth dynamics.
The observed Laplace distribution can be viewed as evidence of this fact. By using Ashton’s terminology
presented in the Introduction, we conclude that sudden leaps are fundamental for firm growth dynamics.

A Appendix

A.1 Additional empirical evidence

A.1.1 External and internal growth

In this section, we provide additional evidence on the Laplace shape of the growth rate distribution.
We show that this distribution shape can be observed even when we exclude firms that expand their size
by external activities, such as acquisitions. Consistent with the findings of previous studies (e.g., Bottazzi
and Secchi (2006a)), this result suggests that the distribution shape is closely related to the internal growth
process, as opposed to the external growth process.

The database used in this section covers publicly traded Japanese firms over 2000–2008 and has infor-
mation on whether a firm changes the scope of consolidation.28 Here, the definition of firm size is the total
sales of a consolidated firm. We exclude from our analysis firms that undertake changes in the scope of con-
solidation. Table 7 summarizes the descriptive statistics of the growth rates of the remaining firms. Figure
8 shows the kernel density estimates of the growth rate distribution. Consistent with the findings in Section
2, the empirical distribution in Figure 8 is tent-shaped. As in Section 2, we use the Subbotin family and
estimate its parameters by adopting the maximum likelihood method. The results in Table 7 show that the
shape parameter b is close to 1, that is, a Laplace distribution. In addition, by using the log-likelihood ratio
test, we find that the null hypothesis of b = 2, that is, a Gaussian distribution, is rejected for all cases at
the 1% significance level. Therefore, we conclude that the distribution shape approximated by a Laplace
distribution reflects an important aspect of internal growth.

28This database is compiled by Nikkei NEEDS.
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Figure 8: Kernel density estimation of the growth rate distribution in 2000–2007.
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Note: The estimation method is the same as in Figure 1.

Table 7: Descriptive statistics and maximum likelihood estimates in 2000–2007.

# obs. mean s.d. â s.e. of â b̂ s.e. of b̂

2000 791 −.0310 .125 .0865 .0039 .977 .062
2001 780 −.0040 .112 .0746 .0034 .927 .059
2002 807 .0261 .114 .0784 .0034 .986 .059
2003 795 .0516 .115 .0841 .0036 1.070 .066
2004 814 .0509 .111 .0773 .0033 1.006 .059
2005 858 .0583 .109 .0758 .0032 1.002 .058
2006 932 .0424 .111 .0712 .0030 .896 .049
2007 922 −.0450 .138 .1067 .0042 1.171 .069

Note: See the explanation in Table 1.
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A.1.2 Lunardi et al. (2014) test for 4-digit industry level

In Section 2, we apply Lunardi et al. (2014) test to six major manufacturing subsectors (2-digit industry
level). In general, heterogeneity across firms is mitigated at a more disaggregated level, and we can obtain, by
further disaggregation, additional evidence suggesting that the observed Laplace shape is not a consequence
of aggregation but an intrinsic feature of firm growth dynamics. To be concrete, we consider the 4-digit
industry level and apply Lunardi et al. (2014) test to 64 4-digit industries, each of which has at least 50
firms. Results are given in Tables 8 and 9, showing that the Gaussian hypothesis (i.e., b = 2) is rejected for
48/64 (= 75.0%) 4-digit industries, that is, all of the four test statistics (i.e., D (Kolmogorov), A2 (Anderson-
Darling), W 2 (Cramer-Von Mises), and U2 (Watson)) reject the null hypothesis. Only for 6/64 (= 9.4%)
4-digit industries, the four test statistics do not reject the Gaussian hypothesis. Note that the power of this
statistical test is strong enough to reject the null hypothesis with our small sample size. On the other hand,
the Laplace hypothesis (b = 1) is rejected for 11/64 (= 17.2%) 4-digit industries and not rejected for 39/64
(= 60.9%) 4-digit industries by the four test statistics. In other words, for these 39/64 4-digit industries,
we cannot find any statistical departure from the hypothesis that growth rate for each firm follow a Laplace
distribution.

As easily found, there are differences across different industries, and there may be subsectors or 4-
digit industries that are not well described by a Laplace distribution. However, these results suggest that
the Laplace shape is widely observed even at this disaggregated level and cannot be reduced to a simple
aggregation effect. Therefore, as a benchmark model for firm growth dynamics, the Laplace hypothesis based
on the homogeneity assumption can be a good alternative to the Gaussian hypothesis at this disaggregated
level.

A.2 Infinitely divisible distributions

Definition 1 A probability distribution µ on R is infinitely divisible if for any positive integer n, there is
a probability distribution µn on R such that µ = µnn, where µn is the n-fold convolution of the probability
distribution µ with itself.

The infinite divisibility of µ means that a random variable drawn from µ can be expressed by the sum of an
arbitrary number of independent and identically distributed random variables drawn from the distribution
µn. This family of distributions includes, for example, Gaussian and stable distributions.

Next, we introduce a generalization of the CLT. A fundamental limit theorem on the sums of independent
random variables is proven by Khintchine (1937).

Theorem 2 Let {Znk} be a null array29 on R with row sums Sn =
∑rn
k=1 Znk. If, for some bn ∈ R, n =

1, 2, ..., the distribution of Sn−bn converges to a distribution µ, then µ is infinitely divisible (see Sato (1999),
p.47).

It is not assumed that the random variables composing the sum Sn are identically drawn from some common
distribution. This theorem means that if a random variable is composed of a large number of independent
random variables and has a limiting distribution, this distribution must be infinitely divisible.

A.3 Lévy processes and Lévy–Itō decomposition

Let (Ω,F , P ) be a probability space.

Definition 3 A stochastic process {Xt}t≥0 on R is a Lévy process if the following conditions are satisfied.

1. X0 = 0 a.s.

2. Independent increment property: For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn, the random
variables Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1

are independent.

3. The distribution of Xt+s −Xt does not depend on t.

29A double sequence of random variables {Znk : n = 1, 2, ...; k = 1, 2, ..., rn; rn → ∞} on R is called a null array if for each
fixed n, Zn1, Zn2, ..., Znrn are independent, and for any ε > 0, limn→∞ max

1≤k≤rn
P [|Znk| > ε] = 0.
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Table 8: Results of Lunardi et al. (2014) test for 4-digit industry level.

4-digit industry # firms b = 2 b = 1

Chemicals Miscellaneous industrial inorganic chemicals (2819) 79 All None
Plastics (2826) 54 D,W 2, U2 None
Miscellaneous industrial organic chemicals (2829) 51 All None
Paints and printing ink (2851) 85 All D
Soaps and miscellaneous oil and fat products (2852) 72 None U2

Drugs and medicines (2870) 241 All All
Cosmetics, perfumes and fragrances (2891) 102 All None
Miscellaneous chemical and allied products (2899) 112 All None

Iron & steel Steel materials, except made by smelting furnaces and
steel works with rolling facilities (3313)

131 All A2,W 2, U2

Iron castings (3320) 112 All None
Steel castings, secondary forgings and steel forgings (3331) 83 All All
Miscellaneous iron and steel (3339) 90 All D,W 2, U2

Non-ferrous die castings (3372) 99 All None
Electric wire and cable (3380) 89 All None

Fabricated metal Tableware, cutlery, hand tools and hardware (3420) 130 All U2

Heating apparatus and plumbing supplies (3430) 123 W 2, U2 A2, U2

Fabricated construction-use metal products (3441) 138 All None
Fabricated architectural metal products, except structural
hardware (3442)

181 All None

Fabricated plate work, sheet metal work and pallets (3443) 162 All All
Heat treated metal (3451) 53 None None
Coating metal products, galvanized and other hot-dip
coated metal products, engraving on metal and miscel-
laneous treatment of metal surface (3452)

288 All None

Stamped and pressed aluminum products and aluminum
alloys (3453)

92 All None

Stamped and pressed metal products, except aluminum
and aluminum alloys (3454)

416 All None

Fabricated wire products (3470) 60 All None
Bolts, nuts, rivets, machine screws and wood screws (3480) 131 None All
Metallic springs (3491) 69 W 2, U2 None
Miscellaneous fabricated metal products (3499) 50 D,W 2, U2 None

Note: The name of 4-digit industries are shown in the first column (4-digit TDB industry classification code is in the parenthesis).
The third (b = 2) and fourth (b = 1) columns show the Gaussian and Laplace hypothesis, respectively. D (Kolmogorov), A2

(Anderson-Darling), W 2 (Cramer-Von Mises), and U2 (Watson) in the elements show the test statistics that reject the hypothesis
at the 1% level. None (All) means that none (all) of the four test statistics reject the null hypothesis.
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Table 9: Results of Lunardi et al. (2014) test for 4-digit industry level.

4-digit industry # firms b = 2 b = 1

General-purpose ma-
chinery

Agricultural machinery and equipment (3520) 70 All A2,W 2

Machinery and equipment for construction and mining
(3530)

105 All All

Metal machine tools and metal working machinery (3541) 196 All All
Parts and accessories for metal working machines and ma-
chine tools, except machinists’ precision tools, molds and
dies (3543)

60 All None

Machinists’ precision tools, except powder metallurgy
products (3544)

129 All None

Food processing machinery and equipment (3561) 60 None None
Printing, bookbinding and paper converting machinery
(3564)

56 W 2, U2 None

Miscellaneous special industry machinery (3569) 185 All D,A2

Pumps and pumping equipment, air compressors, gas com-
pressors and blowers (3571)

100 A2,W 2, U2 All

Conveyors and conveying equipment (3573) 135 W 2, U2 A2, U2

Oil hydraulic and pneumatic equipment (3574) 79 All None
Mechanical power transmission equipment, except ball
and roller bearings (3576)

121 All D,U2

Chemical machinery and its equipment (3578) 127 All All
Miscellaneous general industry machinery and equipment
(3579)

58 All None

Refrigerating machines and air conditioning apparatus
(3582)

56 All None

Office machines, miscellaneous office, service industry and
household machines (3589)

112 All None

Valves and fittings (3591) 99 None All
Ball and roller bearings (3592) 79 All None
Molds and dies, parts and accessories (3595) 235 All None
Packing machines (3596) 53 None None
Machine shops (jobbing and repair) (3599) 151 All None

Electrical machinery Wiring devices and supplies (3611) 99 All None
Generators, motors, power and distribution transformers,
and electrical control equipment (3613)

346 All A2,W 2, U2

Auxiliary equipment for internal combustion engines
(3614)

60 W 2, U2 None

Miscellaneous industrial electrical apparatus (3619) 63 All None
Household electric appliances (3620) 69 W 2, U2 None
Electric bulbs and lighting fixtures (3650) 87 D,W 2, U2 A2,W 2, U2

Communication equipment and related products (3661) 236 All None
Electronic parts and devices (3662) 640 All All
Electron tubes, semiconductor devices and integrated cir-
cuits (3663)

104 All None

Electric measuring instruments (3670) 138 All None
Computer and electronic equipment (3680) 251 All A2,W 2, U2

Transportation
equipment

Motor vehicles bodies and trailers (3712) 62 All None

Internal combustion engines for motor vehicles (3713) 150 All U2

Motor vehicles drive and control equipment (3714) 221 All None
Motor vehicles parts and accessories (3719) 401 All All
Shipbuilding and repairing (3731) 66 All None

Note: See the explanation in Table 8.
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4. It is stochastically continuous.30

5. There is Ω0 ∈ F with P [Ω0] = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-continuous in t ≥ 0 and
has left limits in t > 0.

Theorem 4 Lévy–Itō decomposition: let {Xt}t≥0 be a Lévy process on R with a generating triplet {A, ν, γ}.
Let {J(B) : B ∈ B(H)} be a Poisson random measure defined by

J(B,ω) =

∫
B

J(ds× dx, ω) := #{s : (s,Xs(ω)−Xs−(ω)) ∈ B}, for ω ∈ Ω,

where H := (0,∞)× (R \ {0}) and B(H) is the Borel σ-algebra of H. Suppose that the Lévy process satisfies∫ 1

0
|x| ν(dx) <∞. Then, there exists Ω1 ∈ F with P [Ω1] = 1 such that for any ω ∈ Ω1,

X1
t (ω) :=

∫
(0,t]×(R\{0})

xJ(ds× dx, ω) (13)

is defined for all t ≥ 0. The process is a Lévy process on R such that

µ̂X1
1
(z) := E[eizX

1
1 ] = exp[

∫
R

(eizx − 1)ν(dx)].

Define

X2
t (ω) := Xt(ω)−X1

t (ω), for ω ∈ Ω1.

There exists Ω2 ∈ F with P [Ω2] = 1 such that for any ω ∈ Ω2, X2
t (ω) is continuous in t and {X2

t } is a Lévy
process on R such that

µ̂X2
1
(z) := E[eizX

2
1 ] = exp[−1

2
Az2 + iγz]. (14)

The two processes {X1
t } and {X2

t } are independent (see Sato (1999), p.121).

Note that J(B) counts the number of jumps, that is, discontinuous points s such that Xs(ω) 6= Xs−(ω)
whose size is within B. Thus, the integral in (13) is the weighted sum of these jumps and therefore, X1

t is
a jump process as shown in Figure 7. By contrast, the characteristic function in (14) tells us that X2

t is a
Brownian motion with drift γ, which is a continuous stochastic process. This theorem means that a Lévy
process can be decomposed into these two processes.

A.4 Tail equivalence

Let us begin with some notations used in the following. We denote the η-exponential moment of µ by
µ̃(η) :=

∫∞
−∞ eηxµ(dx), where η ≥ 0. f(r) ∼ g(r) means that limr→∞ f(r)/g(r) = 1. The convolution of

distributions µ and ρ is denoted by µ∗ρ. We introduce two classes of distributions L(η) and S(η) as follows.

Definition 5 Let µ be a distribution on R. Suppose that µ(r) > 0 for all r ∈ R.

1. µ ∈ L(η) if µ(r + a) ∼ eaηµ(r) for all a ∈ R.

2. µ ∈ S(η) if µ ∈ L(η), µ̃(η) <∞, and µ ∗ µ(r) ∼ 2µ̃(η)µ(r).

If µ ∈ L(0), the tail of µ shows slower decay than the tail of a Laplace distribution; limx→∞ eεxµ(x) = ∞
for µ ∈ L(0) and each ε > 0 (see Embrechts et al. (1997), p.41; Pakes (2004)).

30A stochastic process {Xt}t≥0 on R is called stochastically continuous if for every t ≥ 0 and ε > 0,

lim
s→t

P [|Xs −Xt| > ε] = 0.
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There is a close relationship between S(η) and Lévy processes. We denote the Lévy measure of an
infinitely divisible distribution by ν. Let νc(dx) denote the jump (larger than c) distribution for ν(c) > 0:

νc(dx) :=
1

ν(c)
1(c,∞)(x)ν(dx), c > 0.

Watanabe (2008) proves the following theorem (see also Pakes (2004, 2007)).

Theorem 6 Let η ≥ 0. Let µ be an infinitely divisible distribution on R. Then, the following are equivalent:

1. µ ∈ S(η);

2. ν1 ∈ S(η);

3. ν1 ∈ L(η), µ̃(η) <∞, and µ(x) ∼ µ̃(η)ν(x).

This theorem characterizes the class S(η) of infinitely divisible distributions and shows that the tail of a
distribution is determined by the tail of the Lévy measure.

Let us return to the relationship between this theorem and the firm growth rate distribution. In Section 4,
we propose two classes of distributions having a fatter tail: the power law tail and Weibull distributions. Let
µWei be a Weibull distribution with 0 < b < 1. Define µ+

Wei(dx) := 1[0,∞)(x)µWei(dx) + µWei(−∞, 0)δ0(dx),

where δ0 is a Dirac measure. In other words, µ+
Wei is a distribution with support [0,∞) and a right tail

identical to that of µWei. Corollary 2.1 in Pakes (2004) implies that for η ≥ 0, µWei ∈ S(η) if and only if
µ+
Wei ∈ S(η). Example 1.4.3 in Embrechts et al. (1997) shows that distributions with a right tail decaying at

the same rate as a Weibull distribution are in S(0). Therefore, µ+
Wei ∈ S(0) and µWei ∈ S(0).

Next, we consider the distributions with a power-law tail and apply the same argument. Corollary 1.3.2
in Embrechts et al. (1997) states that distributions with a power-law tail on [0,∞) are in the class S(0).
Given Corollary 2.1 in Pakes (2004), this result implies that µpow ∈ S(0). Therefore, we reach the following
proposition.

Proposition 7 Both classes of distributions (µWei(x) = e−cx
b

, 0 < b < 1 and µpow(x) = x−α) are included
in S(0).

Therefore, in either distribution (i.e., µpow and µWei), we can apply Theorem 6 with η = 0. Since η = 0
implies that µ̃ = 1, we find that µ(x) ∼ ν(x), that is, limx→∞ µ(x)/ν(x) = 1. Thus, the empirical distribution
µ and Lévy measure ν decay at almost the same rate. In other words, we can estimate the frequency of large
jumps by estimating the tail of the empirical growth rate distribution.
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