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Abstract 

 

Total factor productivity (TFP) is considered as a good measure of productivity. However, empirical 

TFP, often calculated from ordinary least squares (OLS) residuals from production function estimates, 

normally includes demand shocks as well as productivity shocks. The appropriate policy differs 

depending on which factor is the main cause. Konishi and Nishiyama (2013, KN hereafter) attempt to 

provide a method in this direction to decompose the TFP shock into demand and supply shocks using 

the Current Survey of Production and Census of Manufacture. They do not consider a demand side 

model and implicitly assume that the difference in the production capacity and the realized production 

identifies the demand shock. This note extends their approach to model explicitly the demand side 

structure and its shock. Assuming a log-linear demand function, we allow a demand shock of a 

constant shift as well as a slope change. We show that different quantities identify the demand shock 

in the two cases. The KN method works in the case of additive demand shocks, but not for slope 

changes under perfect competition. We further discuss the case of monopolistic competition and find a 

qualitatively similar result.1 
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1 Introduction

Estimation of production function is one of an important issues in empirical economics. Least

squares method is a simple and common way to estimate production function. Cobb-Douglas

production technology Y = AKβkLβl is often used as a parametric model since Cobb and

Douglas (1928), where Y , K, and L are the output level, labor input, and capital input,

respectively. βk, βl, and A, are unknown constants. We transform it to log-linear form, add

an error component u and apply OLS to

y = α+ βkk + βll + u

given observations of (Y,K,L). Here y = log Y , k = logK, l = logL, α = logA. Translog

function is also often used as a generalized version of Cobb-Douglas technology. Since Solow

(1957), a common method is to estimate this equation by OLS and compute TFP. As pointed

out by Marschak and Andrews (1944) and subsequent papers, there can exist an endogeneity

problem in the least squares estimation. Each �rm can observe its own u at least in part

because it is likely to include �rm's technological shock. It should maximize the pro�t using

the observation of a part of u and thus the optimal inputs must depend on u. Therefore u

and the optimal inputs K, L are correlated. This endogeneity causes bias in OLS estimates.

Ackerberg, Caves and Frazer (2006), Ichimura, Konishi, and Nishiyama (2011, IKN hereafter),

Levinsohn and Petrin (1999, 2003), Olley and Pakes (1996), Wooldridge (2009), and some

other papers propose several methods to estimate the parameters consistently using panel

data. These papers consider a model splitting error term u into two components as follows :

yit = β0 + βllit + βkkit + ωit + εit.

Here, i indicates a �rm or a plant and t is time. ωit is considered as the �rm-speci�c productiv-

ity or technological shock, which �rms can, but econometricians cannot, observe. This causes

a bias in OLS regression. εit denotes the ordinary error term independent of the system. We

refer to Doraszelski, U. and J. Jaumandreu (2007), Fukao et.al. (2006, 2007), Kim (2008) and

many others for empirical research in this line.

After obtaining consistent estimates of production function from one of the above methods,

we can calculate TFP of each �rm and many empirical studies attempt to decompose the
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TFP into entry/exit/change of share/technological shock factors. IKN focuses on another

decomposition for TFP, because they are more interested in abstracting the technological

productivity from TFP, they encounter a di�culty in decomposing ωit and εit. They make

use of the fact that ωit is correlated with the inputs to obtain the estimate of ωit, but this

captures only some part of ωit. Konishi and Nishiyama (2013, KN hereafter) proposes a

method of decomposing supply and demand shocks in TFP. They employ IKN method to

estimate production function. Furthermore, they use an additional dataset of Current Survey

of Production that reports the production capacity and the operational rate of labor in order to

decompose the shock. They construct a model to describe the capacity and realized production

under a Cobb-Douglas technology and suppose the di�erence comes from demand shocks.

Using such a model, they attempt to compute the two shocks separately. Log-production

capacity ȳit is determined using technology and present log-inputs k̄it, l̄it as follows:

ȳit = α+ βkk̄it + βl l̄it + ωit. (1)

Applying IKN to (1) and inserting the estimates of α, βk, βl in it, it is convenient, unlike

in IKN, in that we can estimate ωit directly by

ω̂it = ȳit − α̂− β̂kk̄it − β̂l l̄it

because (1) does not include εit.

Next, they consider how much �rms produce in fact, given this production capacity. Firms

decide their production amounts (say, monthly) looking at the inventory and the economic

situation or demand. Suppose �rms use only 100∆it% ∈ (0, 100) of labor input and 100∆ν
it%

of capital input in general; namely, (∆ν
itKit,∆itLit). Here, ν is introduced to allow for di�erent

rates of operation for capital and labor. The realized production level is represented as follows:

yit = α+ βk(ν log ∆it + k̄it) + βl(log ∆it + l̄it) + ωit + εit (2)

= α+ (νβk + βl)δit + βkk̄it + βl l̄it + ωit + εit, (3)

where δit = log ∆it and εit are idiosyncratic errors independent of the inputs and ωit. Given

observations (ȳit, yit, δit, k̄it, l̄it), we can estimate both equations (1) and (2).

KN uses (2) in the next step to identify and estimate the idiosyncratic shock. Subtracting
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(2) from (1), they have

yit − ȳit = (νβk + βl)δit + εit.

They have the estimates of βk, βl and the data on δit, the operation rate of labor input. Then,

we can estimate ν simply using OLS without constant because εit is the idiosyncratic error

from the regression:

yit − ȳit − β̂lδit = ν(β̂kδit) + εit. (4)

Given these estimates, we can estimate εit by the residual:

ε̂it = yit − ȳit − β̂lδit − ν̂β̂kδit.

Therefore, we can compute all the shocks from this model using the parameter estimates.

Finally, given all these estimates, we can compute the demand shock as

ξ̂it = (ν̂β̂k + β̂l)δit.

In the empirical study, KN apply this method to two industries, machinery (2110) and

die-cast (2560). They show the decomposition results as in Figure 1 and Figure 2. They

found no negative productivity shocks but severe demand shocks during the �nancial crisis of

2007-2008.

<Insert Figures 1 and 2 here>

KN assumed that the di�erence of production capacity and realized production is caused by

the demand shock. This is intuitively appealing, however, demand shocks should be formally

de�ned as shocks in demand function parameters. If we would like to quantify the demand

shocks, their approach does not su�ce. In order for this purpose, this paper speci�es demand

function in a simple log-linear form and explicitly introduce demand shocks in either the

intercept or the slope. This enables us to carefully investigate what is identi�ed by KN, or

quantify the demand shocks.

Section 2 explains how we can identify shocks under perfect competition, while the case

of monopolistic competition is discussed in Section 3. Section 4 concludes and addresses the

possible future research.
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2 Economic Models under perfect competition

2.1 Static model without shocks

We �rst present a simple static model of producers' and consumers' behavior under perfect

competition, that one can �nd in any microeconomics textbook. We later allow shocks in both

demand function and production function. Suppose a number of �rms produce an identical

good and a number of consumers purchase it. Let P be the price of the product and p = logP .

A common demand speci�cation is log-linear,

p = α0 − α1y (5)

where α1 > 0, and y is the log-quantity. This demand function is obtained under Cobb-

Douglas utility function where α0 depends on the income and the parameters of the utility

function, and α1 = 1 in theory. In empirical framework, we do not stick to α1 = 1 and allow

for any a negative price elasticity.

Firms determine the inputs and output given a production function. We assume a Cobb-

Douglas technology,

Y = f(K,L) = AKβkLβl , βk + βl ≤ 1

where K and L are capital and labor inputs respectively, or

y = logA+ βkk + βll

in log-form. Here k and l are the natural logarithm of K and L. Pro�t maximizing input

levels are characterized by,

max
K,L

PY − rK − wL s.t. Y = AKβkLβl

where w and r are prices of labor and capital. Under the above parameter restriction, this

yields,

K = (
w

PAβl
)

1
βk+βl−1 (

wβk
rβl

)
βl−1

βk+βl−1 , (6)

L = (
r

PAβk
)

1
βk+βl−1 (

rβl
wβk

)
βk−1

βk+βl−1 , (7)
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and the optimal output is, as a result,

Y = A(
w

PAβl
)

βk
βk+βl−1 (

wβk
rβl

)
βk(βl−1)

βk+βl−1 (
r

PAβk
)

βl
βk+βl−1 (

rβl
wβk

)
βl(βk−1)

βk+βl−1

= {A(
βl
w

)βl(
βk
r

)βk}
1

1−βk−βl P
βk+βl

1−βk−βl . (8)

Thus, the log-supply function is,

p =
1− βk − βl
βk + βl

y −
log{A(βlw )βl(βkr )βk}

βk + βl
(9)

= κ0 + κ1y (10)

where

κ0 = −
log{A(βlw )βl(βkr )βk}

βk + βl

κ1 =
1

βk + βl
− 1.

2.2 Demand and production functions with shocks.

Total factor productivity (TFP) is often regarded as a productivity measure, where large

TFP indicates high productivity. It may be a simple and straightforward way of studying the

productivity or technology. However, based on the model above, we can look at the shocks

more carefully and identify the demand shocks and technological (or supply) shocks.

A common way to introduce shocks is to include additive components like regression errors.

Namely, we consider a shock ξ in demand function as,

p = α0 − α1y + ξ, (11)

and a shock ω in production function

y = logA+ βkk + βll + ω. (12)

The demand shock ξ indicates a shock in the intercept of the demand function, and ω is a shock

on TFP. (12) is the common model assumed in Ichimura, Konishi and Nishiyama (2012, IKN

hereafter), Konishi and Nishiyama (2013), Levinsohn and Petrin (1999, 2003, LP hereafter),
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Olley and Pakes (1996, OP hereafter) and many others. (11) is also a typical setting, that is

implicitly assumed by Konishi and Nishiyama (2012) as shown later. The model of (11) and

(12) is certainly one reasonable setting to describe demand and supply structure with shocks.

Demand shock, however, could be a slope change, not intercept shift. Also, technological shock

may not be on the TFP, or A, but a change in parameters βk, βl. In such a case, it may be

better to specify the model as, for example,

p = α0 − (α1 + ξ)y,

y = logA+ (βk + ω)k + βll,

instead of (11) and (12). The speci�cation of the second equation above is an interesting

topic which we should examine, but our main interest is how to identify demand shocks under

di�erent demand speci�cations in this paper. We do not consider the case of slope shocks in

supply side any further in this paper.

2.3 Firms' decision in the case of additive demand shock

We �rst consider the simplest additive shock model of (11) and (12). We suppose �rms observe

a part of shocks in demand and production, and make an input decision as the following order.

It is natural to consider that �rms cannot change the capital and labor inputs in short term,

so that we also suppose that there is a time lag between the input decision and production.

1. Firms input optimal levels of K and L based on the present information and prediction.

This input levels determine the production capacity. We call shocks observed up to or at this

stage as �long-run� shocks.

2. Firms observe further shocks and decide an optimal amount of products applying a

suitable operation rate. Shocks here are called �short-run� shocks.

3. Final production level is realized where an idiosyncratic shock is added.

Figure 3 shows this �ow of shock observation and the �rm's decision.

We can now formally describe the pro�t maximization of �rm i as follows. Denoting ωLi

be the long-run technological shock, �rm i observes its log-production function

yi = β0 + βkki + βlli + ωLi
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and maximizes its pro�t given (P,w, r). To compute the optimal level of inputs, we only need

to replace A by exp(β0 + ωLi ) in (6) and (7), that yields

Ki = { w

P exp(β0 + ωLi )βl
}

1
βk+βl−1 (

wβk
rβl

)
βl−1

βk+βl−1 ,

Li = { r

P exp(β0 + ωLi )βk
}

1
βk+βl−1 (

rβl
wβk

)
βk−1

βk+βl−1 ,

and the resulting output is, from (8),

Yi = {exp(β0 + ωLi )(
βl
w

)βl(
βk
r

)βk}
1

1−βk−βl P
βk+βl

1−βk−βl

or the log-output

yi =
β0 + ωLi + log{(βlw )βl(βkr )βk}

1− βk − βl
+

βk + βl
1− βk − βl

p

Summing up with respect to all the n �rms, we obtain the total output in the market as

n∑
i=1

Yi = {exp(β0)(
βl
w

)βl(
βk
r

)βk}
1

1−βk−βl P
βk+βl

1−βk−βl

n∑
i=1

exp(
ωLi

1− βk − βl
)

and its logarithm

y =
βk + βl

1− βk − βl
p+

β0 + log{(βlw )βl(βkr )βk}
1− βk − βl

+ log{ 1

n

n∑
i=1

exp(
ωLi

1− βk − βl
)}+ log n.

Then the total log-supply function is

p =
1− βk − βl
βk + βl

y−
β0 + log{(βlw )βl(βkr )βk}

βk + βl
−1− βk − βl

βk + βl

[
log{ 1

n

n∑
i=1

exp(
ωLi

1− βk − βl
)}+ log n

]
.

Assuming ωLi are i.i.d., the term in the square bracket is approximately equal to

θ = log{E exp(
ωLi

1− βk − βl
) + log n}

when n is large, which is a constant depending on βk, βl, n. Rewriting the total log-supply

function as,

p = κ′0 + κ1y (13)

8



where κ′0 = −β0+log{(βl
w
)βl (

βk
r
)βk}

βk+βl
− 1−βk−βl

βk+βl
θ.

Given an additive long-term demand shock ξL, the predicted (or ex-ante) demand function

is

p = α0 − α1y + ξL.

The ex-ante equilibrium price that clears the market is,

p =
κ1α0 + κ′0α1

κ1 + α1
+

κ1
κ1 + α1

ξL.

Given this price, �rm i plans to produce

ȳi =
β0 + ωLi + log{(βlw )βl(βkr )βk}

1− βk − βl
+

βk + βl
1− βk − βl

(
κ1α0 + κ′0α1

κ1 + α1
+

κ1
κ1 + α1

ξL)

This ȳi determines the production capacity of �rm i, which satis�es

ȳi = β0 + βkk̄i + βl l̄i + ωLi (14)

where the optimal log-inputs are,

k̄i =
κ1ξ

L

(1− βk − βl)(κ1 + α1)
+

ωLi
1− βk − βl

+ ck (15)

l̄i =
κ1ξ

L

(1− βk − βl)(κ1 + α1)
+

ωLi
1− βk − βl

+ cl,

and ck and cl are constants. After this input decision, �rms observe the short-run demand

shock ξS and know that the ex-post optimal input level is,

k∗i =
κ1(ξ

L + ξS)

(1− βk − βl)(κ1 + α1)
+

ωLi
1− βk − βl

+ ck (16)

l∗i =
κ1(ξ

L + ξS)

(1− βk − βl)(κ1 + α1)
+

ωLi
1− βk − βl

+ cl.

Because �rms cannot change the capital and labor inputs in short term, the �rm adjusts the

short-term shock by changing the log-operation rate by

δ =
κ1

(1− βk − βl)(κ1 + α1)
ξS (17)
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or

(βk + βl)δ =
ξS

κ1 + α1
.

We easily see that δ is the log-operation rate as follows. Letting ∆ be the operation rate, we

have, for a capital level K, log(∆K) = log(∆) + log(K). From (15), (16), (17), k∗ = δ + k̄

holds. Therefore, δ is the log-operation rate. As a result, the realized production level turns

out

yi = β0 + βkk
∗
i + βll

∗
i + ωLi + εi (18)

where εi is an idiosyncratic error.

We do not consider short-run technological shocks ωS . What we want to capture is the

technological improvement that a�ects the optimal input levels. Because �rms cannot adjust

capital and labor inputs in short term by assumption, even if there exist short-run technological

shocks, �rms cannot change their technology. They will only adjust it in the future, and thus

present production should not be a�ected by ωS . If ever ωS is a shock that a�ects the present

output level, we can absorb it in ε at present because it cannot change the input levels and

thus does not cause endogeneity. This technological improvement will be used for the future

production.

2.4 Identi�cation of shocks in the case of additive demand shock

We carefully examine how we can identify shocks ωL and ξL, ξS in the additive case. We have

observations of (y, ȳ, k̄, l̄, δ,m, e) from Current Survey of Production and Census of Manufac-

ture. In view of (14), ωLi is identi�ed as,

ωLi = ȳi − β0 − βkk̄i − βl l̄i

given β0, βk, βl. Obviously, k̄, l̄ are correlated with ω and ξL as computed in the above section.

KN propose to estimate (14) by IKN estimation in the �rst stage. It is still a valid method

because we only use the moment condition E(η|m−1, e−1) = 0 that holds even if the inputs

depend on both ωLi and ξL. Then we obtain the estimates of β0, βk, βl and the residuals must

be reasonable estimates of ωLi .

Because of a favorable relationship (17), we can identify ξS up to scale using the operation
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rate data.

ξS = (κ1 + α1)(βk + βl)δ (19)

= {1− (βk + βl)(1− α1)}δ.

We now show that this model is consistent with an implicit assumption of KN that yi − ȳi

consists of the demand shock and the idiosyncratic shock in fact as follows. From (14) and

(18), we have

yi − ȳi =
βkκ1ξ

S

(1− βk − βl)(κ1 + α1)
+

βlκ1ξ
S

(1− βk − βl)(κ1 + α1)
+ εi (20)

=
(βk + βl)κ1ξ

S

(1− βk − βl)(κ1 + α1)
+ εi

=
ξS

κ1 + α1
+ εi (21)

Here di�erent �rms may employ di�erent operation rates δi. Also operation rate of capital

and labor could be di�erent in practice. Thus, substituting (19) into (21) and making these

modi�cations, we obtain an estimation model

yi − ȳi = (νβk + βl)δi + εi.

This model is equivalent to KN. Therefore, we may understand that KN implicitly assumes

additive shocks under perfect equilibrium. Once this model is estimated, we can identify the

idiosyncratic shocks as

εi = yi − ȳi − (νβk + βl)δi.

Therefore, ωL, ξS , ε are identi�ed.

2.5 Shock in the slope of demand function and its identi�cation

Now we consider the case when the shock appears in the slope of the demand function. The

demand function is speci�ed as,

p = α0 − (α1 + ξL)y. (22)
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We suppose the production shock is additive as in the previous section here again, then the

total log-supply function remains the same as (13). (13) and (22) yield the ex-ante log-price,

p = κ′0 +
κ1(α0 − κ′0)
α1 + κ1 + ξL

so that the production capacity of �rm i becomes

ȳi =
β0 + ωLi + log{(βlw )βl(βkr )βk}

1− βk − βl
+

βk + βl
1− βk − βl

{κ′0 +
κ1(α0 − κ′0)
α1 + κ1 + ξL

}

=
β0 + ωLi + log{(βlw )βl(βkr )βk}

1− βk − βl
+
κ′0
κ1

+
α0 − κ′0

α1 + κ1 + ξL
.

Just before production, �rms observe a short-run demand shock ξS in the slope, namely the

demand function of

p = α0 − (α1 + ξL + ξS)y.

They adjust it through the operation rate. The ex-post or realized equilibrium price is

p = κ′0 +
κ1(α0 − κ′0)

α1 + κ1 + ξL + ξS

and the corresponding output level of �rm i turns out

yi =
β0 + ωLi + log{(βlw )βl(βkr )βk}

1− βk − βl
+
κ′0
κ1

+
α0 − κ′0

α1 + κ1 + ξL + ξS
+ εi.

If we mechanically apply KN method to compute yi − ȳi, we obtain

yi − ȳi =
α0 − κ′0

α1 + κ1 + ξL + ξS
+ εi −

α0 − κ′0
α1 + κ1 + ξL

which does not identify ξS . If we would like to extract ξS , one possible way is to compute

1

yi − vi − εi
− 1

ȳi − vi
=

ξS

α0 − κ′0

where vi =
β0+ωLi +log{(βl

w
)βl (

βk
r
)βk}

1−βk−βl +
κ′0
κ1
. Construction of its empirical counterpart may need

some more considerations and/or assumptions. This expression should be convenient because

it does not involve ξL which does not look easy to identify. Also, εi may be a nuisance
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component, then we may �rst take an expectation conditional on ξS to remove it, or

1

E(yi − vi|ξS)
− 1

E(ȳi − vi|ξS)
=

ξS

α0 − κ′0
.

This identi�es ξS up to scale.

3 The case of monopolistic competition

We consider a simple model of monopolistic competition that may be more realistic than

perfect competition in some industries. Suppose there are n �rms producing similar but not

identical goods. Also assume that entry is not free, thus n < ∞ is �xed. A representative

consumer has CES utility function

U(Y1, · · · , Yn) =

(
n∑
i=1

Y ρ
i

)1/ρ

, 0 < ρ < 1.

The elasticity of substitution between two goods is the same for any pairs, and it is σ = 1
1−ρ >

1. S/he maximizes the utility function under the budget constraint of
∑n

i=1 PiYi ≤ I where

Pi are the output prices and I is the income. Then we obtain the demand function for good i

as,

Yi =
I

P σi P̄
1−σ

where P̄ = (
∑n

i=1 P
1−σ
i )

1
1−σ . The log-demand function is

yi = log I − (1− σ) log P̄ − σpi

= δ0 − δ1pi,

where δ0 = log I − (1− σ) log P̄ , δ1 = σ.

Supposing the cost function is

Ci = cYi + F,

the pro�t for �rm i is

πi = PiYi − (cYi + F ) = (Pi − c)Yi − F.

Each �rm behaves like a monopoly �rm, namely they decide the price and output level such
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that the pro�t is maximized, or

dπi
dPi

=
d

dPi
{(Pi − c)

I

P σi P̄
1−σ − F} = 0. (23)

When n is su�ciently large and P̄ does not move for a small change in Pi, the optimal price

is approximately

Pi ≈
cσ

σ − 1

and the corresponding output level is

Yi ≈
I

( cσ
σ−1)σP̄ 1−σ =

exp(δ0)

( cδ1
δ1−1)δ1

. (24)

This is the ex-ante output level, or the production capacity and its logarithm is

ȳi = δ0 − δ1{log c+ log δ1 − log(δ1 − 1)}.

Under the symmetric equilibrium of P = P1 = P2 = · · · = Pn, Y = Y1 = Y2 = · · · = Yn, we

obtain from (23),

P =
c{(n− 1)σ + 1}
(n− 1)(σ − 1)

.

Because the demand function is Y = I
Pσ

∑n
j=1 P

1−σ , the production capacity is

Y =
I

nP
=

I(n− 1)(σ − 1)

nc{(n− 1)σ + 1}
. (25)

We are now ready to examine the e�ect of ξS , demand shock observed after the input or

capacity decision. As in the competitive case we consider the cases of intercept shock and

slope shock in the demand function. We do not include ξL explicitly here because it does not

play an essential role as in the case of perfect competition. Also note that we put subscript i

here in ξSi because each market can have its own demand shock. The demand function of the

intercept shock case is

yi = δ0 − δ1pi + ξSi .

Replacing δ0 by δ0 + ξSi in (24), we easily see that the realized output becomes

yi = δ0 + ξSi − δ1{log c+ log δ1 − log(δ1 − 1)}+ εi
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and thus, we have,

yi − ȳi = ξSi + εi

Interestingly, approach of KN perfectly suits in this case, even better than the case of perfect

competition in the sense that (20) determine ξS only up to the scale.

On the other hand, in the case of slope shock, the realized demand function is

yi = δ0 − (δ1 + ξSi )pi.

Then, the realized output is

yi = δ0 − (δ1 + ξSi ){log c+ log(δ1 + ξSi )− log(δ1 + ξSi − 1)}+ εi.

It is not easy to nicely identify the short-term demand shock in this case because yi is highly

nonlinear in ξSi . When ξSi is small, we could approximate the simple output di�erence in KN

as

yi − ȳi ≈ ξSi {
1

δ1 − 1
− 1− log c− log(δ1) + log(δ1 − 1)}+ εi.

Then we may regard that the di�erence approximately identi�es ξSi up to scale. However, this

may be of very limited use because there is no reason why we believe ξSi is small.

Under the symmetric equilibrium, the demand function is

y = log(
I

n
)− p = δ0 − p

so that we cannot consider the slope shock in theory because the price elasticity of demand

always equals to unity. When there exists intercept shock, which can be regarded as the

income shock or shock in the number of �rms, the realized demand function is

y = δ0 + ξS − p

and the ex-ante optimal output is

Y =
I exp(ξS)(n− 1)(σ − 1)

nc{(n− 1)σ + 1}
.
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Therefore, the log-di�erence is

yi − ȳi = ξS + εi.

4 Concluding remarks and future research

Total factor productivity (TFP) has been widely adopted as a measure of productivity in both

economic theory and empirical analysis. After examing the TFP, when policy makers observe

a low TFP or low TFP growth, they often claim the productivity is low so that we should

implement policy which promotes �rms' R&D investment, for example. However, empirical

TFP, often calculated from OLS residuals from production function estimates, normally in-

cludes not only the productivity shocks but also demand shocks. Appropriate policy will be

di�erent depending on which factor is the main cause. Therefore, it is of some help if we

know which causes the low TFP, the demand side factor or supply side factor, in determining

economic policy.

IKN propose an estimation method of production function under endogeneity and KN uses

it to decompose technological shocks and demand shocks using the data of realized production

and production capacity. KN consider that the di�erence of the two comes from demand shocks

and use this information to estimate demand shocks. It may be one reasonable approach, but

demand shocks occur in various ways. We specify demand function as a log-linear function

and consider two types of demand shock. One is intercept shock and the other is slope shock.

We examine how we can identify such demand shock under two market clearing mechanism of

perfect competition and monopolistic competition.

We found that the di�erence yi − ȳi considered in KN can identify the intercept demand

shock up to scale under the perfect competition. Interestingly, yi − ȳi identi�es intercept

demand shock itself, not up to scale, under monopolistic competition. In the case of slope

demand shock, the structure becomes nonlinear and the di�erence yi − ȳi does not work well

for the identi�cation both perfect and monopolistic competition. Under perfect competition,

we found a reciprocal di�erence could provide us good estimates. On the other hand, no simple

identi�cation seems possible in the case of monopolistic competition with slope demand shocks

due to the high non-linearity. We only provide a simple case when a linear approximation is

applicable, though it may not be useful in practice. Once such quantities are estimated, they

provide a reasonable foundation to quantify a suitable level of policy variables to stimulate
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demand side.

There are some topics that should be considered in the future. We only consider how we

can identify the shocks in this paper. Needless to say, unidenti�ed quantities are impossible

to estimate in principle. Identi�ability, however, does not guarantee the estimability. In order

for the practical use, we must consider feasible ways of estimation under suitable econometric

models. Also, we would like to apply such methods to real data. One possible di�culty is that

the above models explicitly consider the demand function, that involves additional parameters

to IKN or KN estimation models. If we attempt to estimate such demand side parameters,

we will require further instruments which is orthogonal to the explanatory variables in the

demand function.

We, as well as many articles in this line including OP, LP and many others, have considered

technological shocks in only the TFP. However, technological shocks may occur in, say, capital

productivity, namely in the parameter of βk, as in the industrial revolution in 20th century.

Such kind of technological shocks might not be able to capture correctly if we only look at the

TFP. Research toward this direction must be necessary. This may not be easy in view of the

highly nonlinear structure of the optimal inputs and output with respect to the parameters.

Also, given production data, we should provide econometric tools to test or select a suitable

model. Speci�cally, we need to know which type of shock occurs in fact, slope shocks or

intercept shocks in both demand and supply sides. Also, as shown above, the identi�cation

strategy becomes di�erent depending on how market clears.

An interesting topic in a slightly di�erent line of research is the data envelope analysis

(DEA) that is used to estimate the production frontier. In traditional DEA, researchers

do not pay attention to the possible endogeneity problem. Recently, Cordero, Santin and

Sicilia (2013) show that there can exist severe bias in the DEA estimates under the presence

of endogeneity by Monte Carlo simulation. Our analysis of production capacity could be

regarded as an estimate of production frontier under endogeneity. These two approaches

could be complimentary and we can investigate how DEA should be modi�ed to cope with

the problem.
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Figure 1: Product 2110

Figure 2: Product 2560
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Figure 3: Shocks and �rm's decision
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