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Abstract 

 
This paper analyzes the life-cycle inventive productivity of Japanese industrial inventors, based 

on panel data of 1,731 inventors matched with firm data. We focus on two issues: whether 

inventors with PhD degrees perform better, even taking into account the late start in their 

business careers, and if those with PhD degrees based only on dissertation (PhDs (DO)), for 

which a university performs only a certification function, are similarly as productive as the 

regular PhD holders. Our main findings are the following. Inventors with regular PhD degrees 

have significantly higher annual productivity than those with other education levels in terms of 

both patent and forward citation counts, and they can easily compensate for the late start in their 

business careers. This is the case even after controlling for workplace, research stage, and 

inventor ability. PhDs (DO) also have high patent productivity (rising more rapidly with 

experience), although their level is lower than that of regular PhD holders. They work in 

independent laboratories and in projects involving basic research as frequently as do the regular 

PhD holders. Furthermore, the exits of PhDs (DO) from inventions are significantly late even 

when controlling for project type and inventor ability, so that they work longer as inventors. 
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1. Introduction 
  It is widely recognized that higher education is essential for strengthening the 

innovative capacity of domestic industry, especially for those countries at the technology 

frontier1. PhD trained scientists and engineers would help a firm to enhance absorptive 

power of industry for exploiting recent scientific advances (see Cohen and Levinthal 

1989 for the importance of absorptive power). In addition, hiring a PhD may serve as a 

direct path of technology transfer from universities to industries (Stephan 2011)2. 

Recognizing these, many countries have expanded higher education systems and have 

increased the supply of highly skilled scientists and engineers. The enrollment of 

doctoral programs have been rapidly increasing among OECD countries (OECD 2010), 

including Japan, by 40 per cent from 1998 to 2008.  

In Japan, PhD inventors are still a small minority (only a little more than 10% of the 

inventors), compared to the US where almost half of the inventor are PhDs, according to 

the RIETI Inventor Survey implemented in 2007 focusing on triadic patents. Moreover, 

as explained later in more detail, only half of the PhD inventors in Japan have obtained 

their degrees through attending the formal doctoral course work. To put it in another 

way, half of them have obtained their PhDs only by submitting their dissertations, 

based on their research within their firms (“PhD (dissertation only)” or merely "PhD 

(DO)" hereafter). At the same time, there are many regular PhD holders who cannot be 

employed after attaining a PhD degree3. Many Japanese firms seem to be reluctant to 

hire PhDs. They often point out that they are narrow-focused and not flexible, while 

recognizing the importance of building the technological basis of their firms. In addition, 

since it takes at least additional three years for completing PhDs from the time of the 

award of a master degree (or at least five years from the award of the bachelor degree), 

PhD inventors are late in starting business careers. In Japan, inventors start invention 

careers early4 and also exit early into managerial jobs, so that the average inventor age 

is significantly lower than that of the US. This career pattern as well as the availability 

                                                  
1 Agihon et al. (2009) emphasizes that highly skilled workers who acquired higher level education are 
the engine of economic growth for the countries which have already reached technological frontier, and 
empirically validated this view, exploiting US state level data on economic growth and patenting. 
Some studies, however, find that only basic education has a positive effect on the economic growth 
from a global perspective (Kruger and Lindahl 2001). 
2 Chapter 4 of Stephan (2011) discusses comprehensively how PhDs working in industry contribute 
economic growth. It quotes the statement of former President of the National Academy of Sciences that 
“the real agents of technology transfer from university laboratory were the students who took jobs in 
the local biotech industry.” 
3 See Cyranoski et al. (2011). 
4 Almost 80% of the Japanese inventors have first patent application years below 30, but only lees 
than 30% of the US inventors (see Walsh and Nagaoka 2009). 
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of PhD (DO) may make attending a formal PhD program more costly in Japan. 

These observations suggest the following questions. Do corporate inventors with 

PhDs perform better in life-cycle framework, that is, even taking into account their late 

start in business careers? That is, can their presumably higher annual productivity 

compensate the loss of starting early in a firm? Secondly, are the inventors with PhDs 

(DO) similarly productive as regular PhD inventors? If they are, the system of awarding 

PhDs (DO) may be evaluated as an efficient complement to a formal education program. 

In such system a university essentially specializes in the certification function for 

scientific contribution of an industrial engineer. Since these PhDs write their 

dissertations based on their industrial research, their unemployment cannot be an issue. 

PhDs (DO) is quite unique in Japan and its assessment may have important 

implications for the other countries. 

In order to inquire these issues, we will assess how the invention productivity varies 

by educations of the inventors from a life-cycle perspective. In particular, we will assess 

whether a regular PhD inventor can compensate his late start by generating more 

number of inventions or higher quality inventions and/or by jumpstarting their 

invention activities and maintaining invention activities late in their work careers. We 

also compare how PhD (DO) inventors compare with regular PhD inventors in order to 

understand how a PhD grant system focusing on certification works. In such 

assessments we control for the type of workplace where the inventor works as well as 

the type of the R&D project where he pursues. Furthermore, we control for inventor 

ability by using an indicator variable (T-score) of the quality of the university from 

which he/she graduated, which is a standardized score of the difficulty of university 

entrant examination. Furthermore, we employ Hausman-Taylor estimation in panel 

data analysis, to control for unobserved inventor ability or the other characteristics. To 

the best of our knowledge, there are no much studies which investigate life-cycle 

inventive productivity for industrial workers (see section 2 for literature review) and, 

moreover, they do not control for the ability of inventors.  

Our main findings are the following. Regular PhDs have significantly higher annual 

productivity than inventors with other education level in terms of both patent and 

forward citation counts, and they can easily compensate for their late start of business 

activity. This is the case even after controlling for workplace, research stage and 

inventor ability. One source of higher annual productivity of regular PhDs is short 

intervals between the first job year and the first invention year. PhDs (DO) have also 

high patent productivity (more rapidly rising with experience), the overall level of which 

are not significantly lower than those of regular PhDs. They work in an independent 
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laboratory and in the project involving basic research as frequently as regular PhDs. In 

addition, PhD (DO) holders exit from inventive activity significantly late even if we 

control for project type and inventor ability.  

The rest of the paper is organized as follows. Section 2 reviews relevant literature. 

Section 3 explains the data construction and patent application activities of Japanese 

industrial inventors. Section 4 explains the estimation models and methodology. Section 

5 presents the estimation results and section 6 concludes. 

 

 

2. Literature review 
Empirical studies on corporate inventors are limited. One of the pioneering works is 

Narin, and Breitzman (1995), which confirmed the finding by Lotka (1926) that 

scientist’s productivity is highly skewed. The four recent studies based on a large scale 

data which are also most relevant prior works for our research are listed in the 

following Table 1. All these studies use individual patent application or grant data, 

matched with firms. Only one study (Kim, Lee and Marschke 2004) uses panel data 

(inventors by application/grant years), as ours. All of these studies estimate the 

coefficients of PhDs or those of higher leanings. Mariani and Romanelli (2007) find a 

fairly significant coefficient of a PhD inventor. Such inventor generates on average 21% 

more patents than an inventor with a high school degree, while there is no significant 

difference in the level of citations per patent. Kim, Lee and Marschke (2004) also find 

that a PhD inventor has significantly more number of patent applications. Furthermore, 

Hoisl (2007) find that a PhD inventor has no more number of patent applications over 

its life-cycle, when the productivity measure takes into account the loss of invention 

period above age 25. Schettino, Sterlacchini and Venturini (2008) find that patent 

quality increase by 17% with higher level of education (university of PhD relative to 

non-university degree). Note that these studies differ in choosing the base for a 

comparison (high school vs. on-PhD), which prevents direct comparison.  

 

(Table 1) 

 

One substantive reason of the variations of the effect between these findings is 

whether a study takes into account the delay in starting inventions caused by an 

inventor attending higher educational institutions. Taking into account such delay 

requires us to measure life-cycle patent applications and to assess how cumulative 

applications by inventors differ by educational levels, controlling for cohorts or age. 
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Only Hoisl (2007) does that among the studies in Table 1. Thus, the other studies may 

overestimate the effect of higher education on life-cycle productivity. The problem of the 

delay in starting inventions may have become more serious with the increase of “the 

burden of knowledge” (Jones 2008). Due to the increasing burden of knowledge, 

increasingly longer period might have been required for a new PhD to absorb past 

accumulated knowledge, but at the same time, the negative effect of late entry into 

inventive work may be compensated by late exit. Thus, adopting a life-cycle perspective 

is very important and we will explicitly analyze the delay of starting invention works by 

an inventor attending a PhD program, as well as how the exit decision from inventive 

work is influenced by educational levels.  

The second substantive reason is different level of controls over omitted variables 

which have correlations with education or ability. No studies in Table 1 controls for the 

inventor ability. Hoisl (2007) controls for inventor knowledge sources, which is likely to 

be correlated with level of education and ability (an inventor with PhD has better access 

to external knowledge disclosed in literature). In fact, according to her study, this is one 

of the few sources of the advantage of a PhD inventor. In addition, she also controls for 

mobility which has a significantly positive coefficient for inventive productivity and a 

PhD inventor is more likely to move.  

The existing studies do not control for the type of the workplace: an independent 

laboratory, laboratory attached to a manufacturing division, manufacturing division, 

and software development division. The existing studies do not control for the stage of 

the research: basic research, applied research, development, technical service and the 

other. However, the workplace and the project type are likely to affect significantly the 

productivity. The laboratory dedicated to research is more likely to provide assets 

conducive to inventions and patenting. In additions, basic research is likely to generate 

more patents than development, while a PhD inventor is more likely to be employed in 

such stage of research. We take into account the characteristic of workplace and the 

research stage.  

There are many empirical literatures on research productivity of scientists. Although 

some of the basic findings from these literatures would be relevant to corporate 

inventors, it is important to note that they work in the environment quite different from 

that for university scientists. One of the basic findings from the research on scientists’ 

productivity is that the research productivity is highly skewed, with a relatively small 

number of scientists accounting for a significant share of the publications. One 

important source for such skewedness is cumulative advantage due to “Matthew effect” 

or preferential attachments (see Merton 1968, Allison and Stewart 1974). 
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Second, as human capital theory predicts, the scientist’s productivity initially rises 

but then declines with age/experience. Diamond (1984) investigates relationship 

between age and the number of research publication among mathematician, and find 

inverted U-shape relation over the life-cycle. Levin and Stephan (1991) also find that 

inverted U-shape over the life-cycle are observed among Physics and Earth Science 

except particle physics. Oster and Hamermesh (1998) and Baser and Pema (2004) find 

that publications increase with age or experience at the early stage but sharply decline 

with them among economists. Recently, Turner and Mairesse (2005) investigate the 

relationship age and publications in French physician and find inverted U-shape is 

observed in their academic life-cycle5. We employ a similar econometric model which 

accommodates inverted U-shape relation over the life-cycle. However, in the context of 

corporate inventors, the decline of productivity with age may be caused by the changes 

of the main tasks of an inventor within a firm from invention to management, so that 

we cannot adopt the human capital theory for interpreting the results.   

An alternative to estimating patent production function is to use wage as 

performance measures, following the tradition of Becker (1965) and Mincer (1974) 

traditions. Some recent surveys on the relationship between education and wage 

suggest that MA degree and PhD degrees holders earn more 10% to 30% higher wage 

than undergraduate (Card 1999, and Deere and Vesovic 2006). In Japanese case, 

Morikawa (2012) find the workers who have MA holders or more get approximately 20% 

higher wage premium than the worker who have BA or less. However, corporate 

inventors are not directly rewarded through wages for their inventive outputs. 

Employee inventors receive more or less fixed salaries while transferring the ownership 

to the companies. In addition, there are significant intrinsic benefits to the inventive 

work, which makes wage undervalue the inventive performance. Thus, wage may not be 

very informative on invention performance.  

 
3. Data description 
3.1 Data 

We focus the industrial inventors who responded to the RIETI Inventor Survey in 

2007, which surveyed the Japanese patent inventors selected by quasi-random 

sampling6. The questionnaire of this survey covered not only inventive process and the 

                                                  
5 It is important to note, however, that identifying the age effect requires strong prior assumptions on 
cohort and year effects, as clarified by Hall, Mairesse and Turner (2007). 
6 A large part of the focal patents are selected in triadic patents, which somewhat skewed for high 
quality patents, and this indicate that respondent inventors also are skewed for potentially high ability. 
For sampling method in more detail, please see Nagaoka and Tsukada (2007). 
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use of the patents but also the inventor profiles: year of birth, gender, the first employed 

year, highest education and the graduate year. The number of inventors who effectively 

responded this survey is 5,278. We gathered all patents which include respondent 

inventor names in the inventors name list, in order to obtain the life-cycle inventive 

profile of these inventors. We use IIP patent database, for Japanese patent bibliographic 

data, as offered by Institute of Intellectual Property, which cover patent applications 

from 1964 to 2009.  

  We have then identified which patents are truly invented by the respondents. Our 

name matching method is basically manual inspect, as follow7. First, we collected the 

patents whose inventors’ name appears in our inventors’ data and we collected 386,828 

patents with matched names by this procedure. In order to avoid treating the different 

inventor as the same person, we use only the patent applications whose inventor 

belongs only to one particular company (His name appears only under one particular 

company name and under no others over his life time). This is a very exact name 

matching strategy because the probability which the different persons who have the 

same name appears only in the same particular company (and nowhere else) is quite 

low8. While this procedure makes us to lose all inventors who moved from one company 

to another, this introduces no serious bias for us to evaluate the effects of educations on 

life cycle invention performance. Rather it is suitable to our analysis because we focus 

on the inventors which stayed in the same company until his retirement, which has 

been also quite typical in Japan9. This has additional advantage for defining the 

experience of an inventor clearly and to treat the impact of firm characteristics largely 

by fixed effects. 

We have 1,978 inventors and their corresponding patents after this screening. We 

further screened by the condition (the sample size was reduced to 96.3 % of the above 

sample) the first invention age is no younger than the age when the inventor was 

employed first time. We can offer some evidence that our matching worked reasonably 

                                                  
7 Generally, name matching of inventors is a serious obstacle for undertaking a research based on life 
cycle invention performance. Fortunately, Japanese names have a lot of variety both in family name 
and in the first name, compared to the other Asian countries. For example, the most frequently used 
name is Minoru Tanaka in the overall Japanese telephone directory database in 2001 (This directory 
covers 40 million names which amounts to about 1/3 of overall Japanese population. In addition, the 
telephone directory covers a worker and a man more intensively.), and his frequency is only 2,620 in 
30,552,849 people. Even though, the distribution of the frequency of name is highly skewed, almost all 
names have low probability for covering different persons under the same name. This is an advantage 
for Japanese researchers to do name-matching. 
8 To identify whether an inventor belong to one company or not, we use patent applicant database 
provided by Onishi et al. (2012). 
9 Since inventor mobility is larger in smaller firms, our sample is somewhat biased to large companies. 
Our sample of inventors is skewed to the inventors belonging to a large company (91% of our inventors 
have more than 500 employees). 
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well. We collected the first application years by the additional survey and 480 inventors 

responded in our selected samples. 86% of them are roughly consistent with the 

patenting record (3 years before or after the stated application year). Some gap is not 

surprising because patent application procedure is not inventors’ task but that of an IP 

office or a patent attorney, and this survey is a retrospective survey which may pick up 

some errors.  

 

3.2 Explanations of output indicators 

We use the number of application as an indicator of each person’s innovative output. 

However, almost all patent applications involve multiple inventors, and a whole patent 

count which attributes each patent to each inventor regardless of the number of 

inventors inflates a team oriented output. In order to cope with this problem, we use 

fractional counts as one patent divided by the number of inventors as our main 

indicator10. 

In addition, we construct the number of forward citations which each patent received 

from the other patents, so as to build the data on quality-adjusted outputs. The number 

of forward citations is correlated with patent quality (For example Haroff, Scherer and 

Vopel 2003, Hall, Jaffe and Trajtenberg. 2005). In Japan, there was no need for an 

applicant to report the prior art only until 2000, so that we use only the citation count 

by examiner, so as to ensure consistency of our indicator over time. Lastly, to cope with 

the truncations of forward citations, we count the number of forward citations which the 

patent received within five years after the applications.  

As shown in Figure 1, the life-cycle number of patents per an inventor (fractional 

counts) follows almost a log-normal distribution. That is, it has a highly skewed 

distribution where most inventors have a relatively small number of patent applications, 

as pointed out by Narin and Breitzman (1995) for industrial inventors in a few firms. 

The average is 9.1 patents. Similarly, the number of citations received from the date of 

applications also follows an almost a log-normal distribution (in Figure 2). The average 

for an inventor is 16.8 times in total for all his patent applications. 

 

(Figure 1 and 2) 

 

 

4. Estimation models and methodology 
 4.1 Cross section estimation based on cumulative outputs 

                                                  
10 We show the results based on whole counts in appendix tables. 
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We first use cross sectional data, with the cumulative counts of the patents and their 

forward citations (within the first 5 years) for each inventor as dependent variables. The 

estimation equation is as follow: 

 

ln	ሺݐ݊݁ݐܽ݌௜	ݎ݋	݊݋݅ݐܽݐ݅ܿ௜ሻ ൌ ∑ ௜௦ݕ݉݉ݑ݀	݊݋݅ݐܽܿݑ݀݁ ൅ ௞ܺ௞௜ߚ ൅ ௜ߝ
ହ
௦ୀଶ                       (1) 

 

  Here the dependent variables are the natural logarithm of the number of patent 

applications or the number of forward citations received by inventor i, and these two 

variables are constructed by whole or fractural counts. The dependent variables are 

transformed into natural logarithmic forms because the distributions of these variables 

follow approximately log-normal distributions. Education dummies indicate each 

inventor’s level of education. X is a vector of control variables (see the following 

explanations). To control for inventor ability, we introduce a T-score of a university from 

which the inventor graduated. It is a normalized score measuring the difficulty of 

university entrance examination. Equation (1) does not introduce the length of an 

inventor’s active span, so that the coefficient of an explanatory variable (such as an 

education dummy) reflects both its effect on annual productivity as well as that on the 

length of inventive time span. We control for cohort years (our sample’s main cohorts 

cover from 1946 to 1975 birth years), technology areas and firms (see the following 

explanations in more detail). 

  In order to measure annual productivity, we utilize the following equation: 

   

௜݊݋݅ݐܽݐ݅ܿ	ݎ݋	௜ݐ݊݁ݐܽ݌
ൗ݊ܽ݌ݏ	݁ݒ݅ݐ݊݁ݒ݊݅

௜
ൌ ∑ ௜௦ݕ݉݉ݑ݀	݊݋݅ݐܽܿݑ݀݁ ൅ ௞ܺ௞௜ߚ ൅ ሺ2ሻ																								௜ߝ

ହ
௦ୀଶ                

We use the following two measures of the denominator (inventive span); the first one is 

from the year in which the inventor got employed to the last year when he invented in 

our dataset11, the other is from eighteen years old to the last year when he invented. 

The former measures inventors’ productivity in terms of their actual employment spans. 

The latter is a life-cycle productivity, taking into account the opportunity cost of 

attending to the schools for BA degrees or more.  

 

  Educational level: This is our key variables which are composed of the BA degree 

dummy, the MA degree dummy, regular PhD degree dummy and PhD degree with 

dissertation only dummy, which is assigned according to the questionnaire which asked 

                                                  
11 Last year of inventive span is truncated by the patent data limitation. In order to control for this, 
we use cohort dummy as independent variables as explained bellow. 
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the highest degree at the time of the invention12. The reference group is high school 

diploma or two year college degree. We will investigate how different levels of 

educations as measured by these variables contribute to inventive productivity after 

controlling for the characteristics of workplace, inventor motivations, technological 

areas and inventor ability. One of our main focuses is the comparison between regular 

PhD and PhD (DO) degree. If two types of PhDs perform similarly as corporate 

inventors, it would suggest that university education does not significantly matter, 

except for its screening role. If PhD (DO) performs significantly worse than regular PhD, 

it would imply that additional graduate education effectively compensate for late of 

beginning of invention by an inventor with a regular PhD13. 

 

  Next, we explain control variables, and these variables consist of the characteristics 

of workplace, firm characteristics, personal motivations and profiles, and technology.  

 

Workplace: We use workplace variables to indicate which type of a unit in the firm the 

inventor belonged to when they invented the focal patent, which are categorized as 

follow; independent laboratory, laboratory attached to manufacturing division, software 

development division, manufacturing division, and other division. We use 

manufacturing unit as the reference group. These variables give us important 

information on how much an inventor can devote his time on invention and how much 

complementary assets he has for his inventive work. We assume (somewhat boldly) that 

an inventor does not significantly change the type of workplace over his career.  

 

 Research stage: The research stage of the project subject to our survey are also 

employed as control variables. The questionnaire asked the inventor to identify the 

research stages, which are categorized as basic research, applied research, development, 

technical service and others (multiple choices are allowed). We assume (somewhat 

boldly) that an inventor does not significantly change the stage of his research project 

over his career.  

 

 Firm fixed effects and firm patent applications: We control for the firm characteristics 

extensively by firm dummies or firm fixed effects, which cover the complementary 

                                                  
12 To identify these two types of PhDs, we used Doctoral Dissertation Bibliographic Database which is 
provided by National Diet Library and National Institute of Informatics. 
13 Another potential interpretation is low standard for PhD (DO). However, there seems to exist no 
unanimous view on the level of standard for PhD (DO) vs. that for regular PhD.  
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assets, the internal knowledge stock etc. In addition, we introduce the natural 

logarithm of the number of patent applications by the firm each year. This variable 

controls for firm size change as well as the changes of patent application propensity 

over time.  

 

 Motivation: The questionnaire asked the inventors about the importance of their 

motivations for invention; taste of scientific contributions, challenges, contribution to 

firm performance, career step, better working conditions, and pecuniary motivation. 

This was assessed by five points Likert scale (very important, important, indifferent, 

not important, absolutely not important). If their answer is very important or important, 

this variable is one, and otherwise zero. 

 

 Gender: We use gender of inventor as independent variables, and if the inventor is 

male, it is given one and otherwise zero. 

 

Technological dummies and cohort dummies: to control for time-invariant 

characteristic of technological areas, we include technological area dummies, which is 

determined by the most frequent IPC class of the patent applications by each inventor14. 

Lastly, to control for cohort effect on patent productivity, including truncation effects of 

our data set, we include cohort dummies in our estimation equation. 

 

T-score: We use T-score of a university as an indicator variable of inventor ability15. 

Unfortunately, our sample is reduced when we use this variable because T-score is 

available only for the inventors with higher than university degree. We obtained this 

data offered by Kawai-jyuku which is one of the largest preparatory school in Japan16. 

 

Table 2 provides the descriptive statistics of these variables. The length of average 

inventive span based on the first employed year as the initial year is 20 years, and this 

is quite long period, compared to the data used in previous similar analysis. 98 per cent 

of our sample is male, and 70 per cent of inventors belonged to independent research 

laboratory and worked for development.  
                                                  
14 We construct dummy variables in accordance with IPC sub-class. As the results, the number of 
technological dummies is 258. 
15 This variable may be partly education quality indicator for university education because high 
T-score university is also high research university. Therefore, the effect of level of education on patent 
outputs may be underestimated with T-score variable. 
16 We deduct 5 points from T-scores with private universities because T-scores with private university 
which imposes fewer exam subjects on examinees tend to higher than their originals compared to 
national university 
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(Table 2) 

  

Table 3 shows the means of major variables by educational level. There are significant 

mean differences between levels of educations with regard to all of four patent outputs. 

Both types of PhD holding inventors largely belong to independent laboratory (84% for 

inventors with regular PhDs and 95% for inventors with PhD (OD)). Their projects often 

cover basic research (46% for inventors with regular PhDs and 48% for inventors with 

PhD(OD)), compared to other education level. In these two respects two PhDs are very 

similar. On the other hand, the average length of the inventive span is around 7 years 

longer for inventors with PhD(OD)) than for those with regular PhDs (25 years vs. 18 

year). Since the difference of birth years is only 2 years, longer inventive span of the 

inventors with PhD (DO) is due to later exits of the inventors with PhD (DO) from 

inventions. While cumulative patent outputs are similar between the two types of PhD 

holding inventors, the annual productivity of the inventors with regular PhDs is 

significantly higher than those with PhD(OD)17 . Furthermore, PhD (DO) holders 

graduated from the universities with the highest T-score, indicating that that these 

inventors have high potential ability. 

 

 (Table3) 

 

4.2 Panel estimation 

  Next, to investigate the determinants of life-cycle inventive profile within a firm, we 

estimate a panel estimation model. This also has a merit of allowing us to control for 

unobserved heterogeneity (such as ability) among inventors. Even though fixed effect 

model is suited for this, this model does not allow us to estimate the effect of 

time-invariant education level. In order to cope with this problem, we employ 

Hausman-Tayler random effect model (Hausman and Talyer 1981). We can identify the 

effect of the variables which are potentially correlated with unobserved individual effect 

by using exogenous variable as instruments after fixed effect estimation. That is, 

instrumental variables are composed of the exogenous time-variant and time-invariant 

variables in the equation, but which are not correlated with unobserved individual 

                                                  
17 While means of the annual productivity of PhD(DO) holders are same as those of BA holders, 
differentiation of both inventors are much larger after controlling technological dummies in the 
estimation results as bellow mentioned. This reason is that PhD(DO) holders in the sample often 
belong to chemical or medical science area which are fewer patent applications compared to IT or 
electronics area.  
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effect. We estimate inventor’s life-cycle productivity profile as follows: 

 

ln	ሺݐ݊݁ݐܽ݌௜௧	ݎ݋	݊݋݅ݐܽݐ݅ܿ௜௧ሻ ൌ ∑ ௜௦ݕ݉݉ݑ݀	݊݋݅ݐܽܿݑ݀݁ ൅ ௜௧݁ܿ݊݁݅ݎ݁݌ݔଵ݁ߛ ൅ ௜௧݁ܿ݊݁݅ݎ݁݌ݔଶ݁ߛ
ଶ ൅ହ

௦ୀଶ

௞ܺ௞௜ߚ ൅ ݐ ൅ ௜ߤ ൅  ௜௧ሿ                                         (3)ߝ

 

  Here the dependent variables are the natural logarithm of fractional patent and 

forward citation counts for inventor i in year t where t represent year dummies18. In 

this equation, we assume that level of education and experience are independent. 

However, it may be unlikely that an inventor with only high school diploma has the 

same experience curve as the workers with PhD degrees. Thus, our second specification 

is as follow: 

 

ln	ሺݐ݊݁ݐܽ݌௜௧	ݎ݋	݊݋݅ݐܽݐ݅ܿ௜௧ሻ ൌ ∑ ௜௦ݕ݉݉ݑ݀	݊݋݅ݐܽܿݑ݀݁ ൅ ∑ ௦௜ݕ݉݉ݑ݀	݊݋݅ݐܽܿݑ௦݁݀ߙ ∗
ହ
௦ୀଵ

ହ
௦ୀଶ

௜௧௦݁ܿ݊݁݅ݎ݁݌ݔ݁ ൅ ∑ ௜௦ݕ݉݉ݑ݀	݊݋݅ݐܽܿݑ௦݁݀ߛ ∗ ௜௧௦݁ܿ݊݁݅ݎ݁݌ݔ݁
ଶହ

௦ୀଵ ൅ ௞ܺ௞௜ߚ ൅ ௟ߚ ௟ܺ௜௧ ൅ ݐ ൅ ௜ߤ ൅

                                               (4)																										௜௧ߝ

 

In this equation, we can differentiate inventive productivity profiles between each 

educational level by experiences. We treat level of education, experience and its square 

as endogenous variables in Equation (3) and (4). While our control variables are 

basically the same as Equation (2), the number of patent applications by each firm in 

year t becomes time variant variable in Equation (3) and (4). 

 

4.3 Estimation of exit of inventive activity  

  Finally, we will analyze how the personal and workplace characteristic as well as 

levels of education are associates with an exit of an inventor from inventive activity. We 

employ Cox Proportional Hazard model to estimate the hazard of exit from inventive 

activity, to take into account the truncations. We prepare the duration data starting 

with the year which the focal patent was applied for, since there can be no observations 

of exit before that year. We need to distinguish the exit and right side truncation of 

patent data. Figure 3 gives the distribution of the last year when an inventor applied for 

the patent. This indicates that the peaks of the distribution occur after 2005, and a lot of 

inventors are truncated simply because their inventive activities have not yet been 

reflected into the patent data (publication of patent applications and incorporation into 

database). We decide to use the last year before 2004 as the actual exit year. In our view 

this criteria is a conservative one.           

                                                  
18 In order to cope with zero count of patents, we add one in all dependent variables. 
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(Figure 3) 

 

We specify the hazard function h(t) as follow: 

 

݄ሺݐሻ ൌ ݄଴݁݌ݔ	ሺ∑ ௦௜ݕ݉݉ݑ݀	݊݋݅ݐܽܿݑ݀݁ ൅ ଵܽ݃݁௜௧ߛ ൅ ଶܽ݃݁௜௧ߛ
ଶ ൅ ௞ܺ௞௜ߚ ൅ ௟ߚ ௟ܺ௜௧ ൅ ௜ߤ ൅ ௜௧ߝ

ହ
௦ୀଶ    (5) 

 

  Here, ݄ሺݐሻ	is	the exit rate at time t when the inventors stopped their inventive activity, 

and ݄଴  is the baseline hazard. All of covariates in exponential parts are shift 

parameters of the hazard rate. We include education level, workplace, research stage, 

motivation, gender, technological dummies and cohort dummies as time invariant 

covariates. Furthermore, we also treat inventor's age and the age square as time 

variant covariates. Since Japanese companies traditionally have implemented seniority 

system, age might be important factor of exit. The other time variant covariates are the 

average number of co-inventors with whom the inventor invented in his inventive span, 

the number of patent applications by each firm in year t and year dummies. 

 

 

5. Estimation results 
5.1 Estimation results of cross sectional analysis 

First we explain the major estimation results based on cross section cumulative 

life-cycle outputs. Here the observations are individuals. Table 4 reports the regression 

results from Equation (1) and (2), based on fractional counts19. The first year of 

inventive activity is defined as the first employment year in these estimations. Columns 

1 to 4 of Table 4 are the results without including the variables for workplaces and 

research stages, and columns 5 to 8 are the results with all these variables. 

 

(Table 4) 

 

  All coefficients of the levels of educations are significantly positive for the number of 

patent applications and the forward citations, and the coefficients increases with the 

level of education in all estimations. These results indicate that higher level of 

education is indeed significantly associated with more patent and forward citation 

counts. In particular, cumulative life-cycle patent applications and forward citations 

                                                  
19 The results of these estimations bases on whole counts of patent outputs are quite similar, as 
reported in Appendix Table 1. 
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productivity of inventors with regular PhD is 80% and 70% higher than those inventors 

with master degrees, according to columns 5 and 620. The annual productivity of 

inventors with regular PhD is also higher by 72% and 63 % respectively. In addition, 

these differences are statistically significant in all equation21. 

If we compare the inventors with regular PhDs and those with PhDs (DO), the 

cumulative life-cycle productivity of the former group is 39% and 35% higher than those 

of the latter in terms of patent applications and forward citations respectively (column 5 

and 6) though these differences are statistically insignificant22. The annual productivity 

of the former group are also higher than PhD (DO) inventors by around 42% for patent 

applications and 38% for forward citations, according to column 7 and 8 though these 

differences are not significant again23. The fact that the difference in cumulative 

outputs in favor of inventors with PhDs is smaller than that in annual outputs indicates 

that the active inventive span is longer for inventors with PhD (DO). 

As for research stage, the coefficients of basic research are significantly positive for 

patent outputs. Inventors who engage in basic research have 35% more patents and 

28% more citations in terms of cumulative output and 31% more patents and 23% more 

forward citations in terms of annual productivity. The difference between cumulative 

output and annual productivity in favor of basic research suggests that an inventor 

working in basic research tends to have a longer active life as an inventor (we will 

confirm this more directly in the following estimation focusing on exit). Conversely, 

technical service dummy is significantly negative for forward citations (a reduction by 

25% for annual productivity).  

  The independent laboratory variable is also significantly positive for all output 

variables. Similarly to basic research, inventors who work in independent research 

laboratory have higher patent productivity in terms of both patent counts and citation 

counts (90% and 71% respectively for life-cycle productivity and 100% and 66% 

respectively for annual productivity). Thus, working in an independent research 

laboratory significantly enhances research productivity.  

  As shown in Table 3, both types of PhDs significantly more work on the research 

                                                  
20 These results on education dummies are affected by the composition of cohorts in the sample since 
the effects of the delay of inventive activity due to attending additional school years are stronger for 
young inventors. To check this possibility, we estimated the interaction terms between cohort and 
education level. As a result, we obtained that the coefficient of regular PhD is still larger than the 
inventors with lower education levels even among younger inventors. The reason seems to be that 
inventive span is around ten years even for the youngest inventors who were born in 1971-1975. 
21 F test for differences in coefficients between regular PhD and MA are 7.4 and 4.7 in columns 5 and 6, 
and 7.2 and 4.2 in columns 7 and 8. 
22 F test for differences in coefficients between two PhDs are 0.9 and 0.6, respectively. 
23 F test for differences in coefficients between two PhDs are 1.3 and 0.8, respectively. 



15 
 

project involving basic research and in an independent laboratory. Thus, as shown in 

the comparison between columns 1 to 4 and columns 5 to 8, the coefficients of level of 

educations in column 1 to 4 are larger than that of them in column 5 to 8 of Table 4 

(around 20% higher in the case of a regular PhD). This suggests that we will 

significantly overestimate the effect of education on patent outputs, without controlling 

for the characteristics of research stages and workplaces, since a PhD (or PhD (DO)) 

inventor works more in the place favorable for doing research and in the type of project 

generating more inventions. 

  Concerning individual characteristics, the male variable is significantly positive for 

patent quantity in term of fractional counts (but not in whole counts). This gender 

variable reflects unobservable effects such as childcare, maternity leaves, which are 

associated with overestimate of male variable.  Taste for challenging is significantly 

positive for patent outputs in column 1 to 4. This may indicate that an inventor with 

such taste is more likely to engage in a project at research frontier. A reputation 

variable also is significantly positive for patent outputs. This may indicate that 

inventors who want to get a positive reputation prefer explicit outputs such as patent 

application. 

  Table 5 presents the result of estimating Equation (2) with the beginning year of 

inventive activity set at eighteen years old in order to count the delay due to higher 

level of educations as opportunity costs in years. The coefficient of regular PhD 

decreased most, so that they are much close to the level as that of PhD (DO). This 

indicates that the delay of starting inventive work due to attending higher education is 

significant but also shows a relatively high productivity of an inventor with a PhD (DO). 

This result is consistent with Jones (1998).  

 

(Table 5) 

   

  The effect of education level may be also overestimated in the above estimations since 

they do not control for inventor's ability. An inventor with higher ability is more likely to 

choose higher education. In order to address this possibility, we estimate Equation (1) 

and (2) with adding a T-score variable as a control variable of inventor ability. In this 

estimation we lose inventors with less than two year college from our sample. Columns 

1 to 4 in Table 6 are the results with a T-score variable and columns 5 to 8 are those 

without T-score variable. The coefficients of T-score are significant and positive for 

patent outputs. This confirms the importance of inventor ability on patent productivity. 

The comparison between two groups of the estimates suggests that the difference of 
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the coefficients of PhD and MA do not significantly change after including a T-score 

variable, even though the size of the coefficients (with BA as the base) declines. These 

results indicate that there is no significant inventor ability difference between MA and 

PhD, while there are such difference between BA and MA. While the coefficients of 

regular PhD remain significant and positive in all columns, the coefficients of PhD (DO) 

are no longer significant except in column 5. However, the difference of the coefficients 

between the two types of PhDs does not significantly change (slightly larger, with 

T-score variable). These results indicate that controlling for the ability of inventors does 

not significantly affect the difference between graduate degrees, while it reduces the 

difference between the BA degree and graduate degrees.  

 

(Table 6) 

 

5.2 Estimation results based on panel data 

  Before estimating Hausman-Taylor random effect model, we regressed Equation (3) 

and (4) with using Fixed effect model, and the results are shown in column 1 to 4 of 

Table 7. The coefficients of experience are significantly positive while the coefficients of 

square terms are significantly negative for both outputs in column 1 and 2. 

Furthermore, these results have remained, after allowing for interactions between the 

level of education and experience in column 3 and 4 while the interaction terms with the 

square of experience are not significant at highest education levels. This result presents 

that a simple inverted U-shape relationship between experience and patent 

productivity is observed in each education level, especially in lower education level.  

  Using the estimation results, the experience yearly profile of patent and citation 

counts by level of educations are shown in Figure 4 and 5. The slope of the PhD (DO) is 

steeper than the other education levels24. This indicates a strong within-firm learning 

curve for those who seek for a PhD while working and/or their increasing deployment to 

the jobs dedicated to inventions. 

 

(Table 7) 

 

(Figure 4 and 5) 

 

  Table 8 shows that the results of Equation (4) with using Hausman-Taylor random 

                                                  
24 While we estimate Equation (4) with additional time variant dummy variable which is one if 
inventor obtains PhD (DO) degree and otherwise zero, this variable is not significant in any 
specifications. 
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effect model. As mentioned above, this method can estimate the time-invariant 

variables after controlling for unobserved heterogeneity among inventors. Column 1 for 

patent outputs and column 2 for citation output of Table 8 are estimated, with allowing 

for the interaction effects between the level of educations and experience, using 

Equation (4). As for the level of educations, both types of PhDs are significantly positive 

for forward citations in column 2 while only regular PhD is significantly positive for 

patent application in column 1. The fixed effect coefficient of regular PhD remains 

higher than that of PhD (DO). Using the estimation results, the experience yearly 

profile of patent and citation counts by level of educations are shown in Figure 6 and 7. 

The outputs in terms of both patents and forward citations are higher for a regular PhD 

compared to a PhD (DO). This indicates that while a PhD (DO) increases its 

productivity rapidly with its experience, the productivity of a regular PhD remains 

higher than the PhD (DO) during its inventive span.  

 

(Table 8) 

 

(Figure 6 and 7) 

 

  In order to investigate the impact of receiving PhD (DO) in their inventive career 

within a company, we estimate Equation (4) with separating PhD (DO) dummy at the 

time of before and after receiving year of PhD (DO) degree. Column 3 and 4 in Table 8 

show the results. While both PhD (DO) dummies are positively significant for both 

patent outputs, there are no significant differences between two. This indicates that the 

award of a PhD (DO) degree itself does not significantly affect the resources available 

for the inventor or its position. It is already anticipated by the firm.  

  The above results indicate that regular PhD holders have significantly higher 

research productivity than the other education levels. However, they also have the 

potential loss of inventions in their younger period because of longer education terms. 

How quickly can their high productivity compensate their potential loss in younger 

period? To answer this question, we calculate when regular PhD inventors can recover 

their potential inventive loss due to late startup, exploiting the learning time according 

to the estimation results. We assume all inventors start their inventive activity 

immediately after graduating in standard education time. That is, BA inventors begin 

their inventive activity in age 23, MA inventors begin it in age 25 and regular PhD 

inventors begin it in age 28. We additionally assume PhD (DO) inventors have MA 

degree and beginning of their inventive activity is in age 25. This assumption 
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overestimates potential inventive loss of regular PhD inventors because the difference 

between first job year and first invention year declines with education level (Table 9)25. 

 

(Table 9) 

 

  Table 10 shows the average time to surpass total inventions of each education level 

using the results in column 1 and 2 of Table 8. Cumulative invention of PhD inventors 

surpass that of PhD (DO) inventors in approximately 4.6 and 5.3 years respectively, and 

this time is somewhat shorter among BA and MA inventors. These results indicate that 

PhD inventors recover their potential invention loss by at least 5.3 years on average.  

 

(Table 10) 

 

5.3 Estimation results of exit analysis 

  Table 11 shows the results of estimating the hazard model on exit from inventive 

activity. Column 1 in Table 11 is estimated without research stages and workplaces 

variables, and column (2) is estimated with full sample. Hazard rate of exit decreases 

with higher level of education. The coefficients of both types of PhDs are negative and 

significant for exit in column 2, and PhD (DO) has a lower hazard rate than regular 

PhD. This indicates that the hazard rate of exit is 62% and 69% lower for regular PhD 

and PhD (DO), compared to baseline, respectively. Moreover, hazard rate for PhD (DO) 

is significantly negative even after controlling inventor ability in column 3 of Table 11. 

This shows that if an inventor gets a PhD (DO) degree, he/she tends to stay longer as an 

inventor. An award of PhD (DO) may help as a signaling/screening device, although it 

may also capture residual inventor ability.  

    

(Table 11) 

 

The age coefficients of Table 11 show that the hazard rate (exit rate) is low in younger 

stage, as expected. Moreover, the hazard rate increases drastically with age. This 

indicates that while young inventors remain in research workplaces, they exit from 

inventive works as they become more senior. Concerning the research stage, the hazard 

of basic research is significantly low. Conversely, hazard of technical service for exiting 

is significantly high. The coefficient of number of inventors is strongly significant and 

                                                  
25 We don't calculate "less than two year college" because it is composed of two groups which standard 
graduate years are difference. 
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positive for exiting. This result is somewhat interesting because an inventor in a big 

team is more likely to exit from their inventive activities. 

 

 

6. Conclusion 
  This paper has analyzed life-cycle inventive productivity of Japanese industrial inventors, based 

on the panel data of 1,731 inventors matched with firm data. We focused on two issues: whether 

PhDs contribute to inventive performance, even taking into account their late start in 

business careers, and whether the inventors with PhDs based only on dissertation 

(PhDs (DO), for which a university performs only a certification function) similarly 

productive as regular PhD inventors. We control for the types of work places, the types 

of project (research stage), inventor motivations, firm fixed effects, cohort effects, 

technology fields and inventor ability. We use the number of patent applications and the 

total forward citations received within 5 years from the applied by these patents as 

performance measures. Major findings are the following 

1. The life-cycle productivity of PhD inventors in terms of both patent and citation 

counts is significantly higher than those with less education even if they are late in 

joining the firm, reflecting their high annual productivity. One source of high annual 

productivity of PhD inventors is a short interval between the first job year and the first 

invention year. The panel data estimates suggest that they also stay longer as 

inventors.  

2. The life-cycle productivity of a PhD (DO) inventor is lower than that of a regular 

PhD inventor although the difference is not statistically significant. Our survey data 

suggests that a PhD (DO) inventor works in an independent laboratory and in the 

project involving basic research as frequently as a regular PhD does. The panel data 

estimates suggest that PhD (DO) have a steeper “learning” curve and stay longer as 

inventors, although there is no clear award effect. These results suggest that a system 

of providing a PhD (DO) might have served as a kind of screening and signaling device 

for encouraging high ability inventors to develop their careers as inventors. . 

3. The Hausman-Taylor estimations suggest that higher productivity of regular PhD 

inventors are robust to the possible correlation between unobserved heterogeneity of 

inventor ability and the educational choice. 

4. Inventor productivity is significantly higher when the inventors belong to the units 

dedicated to research, the project involves a basic research and they inventors belong to 

a large firm with large patent applications. Thus, productivity estimates without 
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considering these factors tend to significantly overestimate the productivity effect of 

higher education. 

 

  Let us turn to the implications and remaining research agenda. Our research shows 

that a regular PhD inventor is productive so that his late start in a business firm can be 

easily compensated, even if we control for the fact that such inventor is more likely to be 

assigned to a workplace, a project which generates patents more and their potential 

abilities. This suggests that it would be worthwhile for a firm to recognize PhDs as 

important human capital for the firm. We can also note that such inventors are more 

likely to generate internal knowledge spillover within a company through absorbing the 

external scientific knowledge. 

 However, this causes a new question why many PhDs are not able to find research 

jobs in private sector despite of their high inventive productivity. There are various 

candidate reasons for this. One possible reason is a selection bias of our study, that is, 

PhDs have already got employed by companies in our sample, therefore our PhD sample 

are the inventors who are matched to demand of company or are suitable to inventive 

activity in private sector. This indicates that life-cycle productivity in our sample is 

higher than average among PhDs. However, since this bias also lends itself well to other 

education levels, there needs to be additional explanation to why only PhD holders are 

highly selected. 

  A second potential reason is that there is an asymmetric information between PhDs 

and companies in first job market. In Japan, the number of PhDs employed by 

companies is quite low above mentioned. Therefore, since many companies have never 

hired them, they not only don't know their productivity but also don't have system to 

deal with them. This problem is maybe serious in Japan. 

  A third one is that inventive activity is not a unique task for corporate researchers. 

Since they have various objectives, invention is only one task for them to do. For 

example, they may accomplish their high productivity at the cost of linkage to 

manufacturing section or leadership of research management. In this case, companies 

are reluctant to hire PhD holders even if they have high inventive productivity. 

Furthermore, many Japanese companies expected not only research ability but also 

management skill for researchers and didn't prepare multiple career steps such as 

continuing to inventive activity. This is consistent our results, that even regular PhD 

holders cannot explicitly continue to their inventive activity. In this case, companies 

don't employ research intensive people such as regular PhD holders. 
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  Unfortunately, we do not have sufficient data to test these points is persuasive, and 

this is one of our future tasks. 

Our evidence also shows that a system of a PhD (DO) might have been a successful 

system. Such PhD inventor is productive and stays longer as an inventor. Our evidence 

suggests that a PhD (DO) inventor reveals his capability over time and will be able to 

take more important inventive jobs over time. A PhD (DO) may play an important role 

for such internal screening such transition (although we cannot detect a strong break at 

the time of the grant of a PhD). A system of a PhD (DO) seems to provide an incentive 

for an inventor to deepen his scientific understanding of the invention process under the 

support of the firm. While the system of granting PhD (DO) is in the direction of being 

phased out (especially due to the consideration of international recognition of a 

Japanese degree), it would be important to absorb the positive aspects of such system in 

the new graduate education system, especially a strong complementarily between the 

industrial research and academic research for PhD (DO).   

There are a number of research agenda. First, it would important to look into the 

reasons why a PhD enhances research productivity. One potential source is effective 

utilization of external scientific knowledge. Another could be a large team which such 

inventor tends to participate, which works as a channel of internal knowledge flow. Our 

measure may be partly biased due to the positive correlation between an omitted 

individual fixed effect (ability) and educational choice, although our T-Score variable 

and H-T estimation tried to control for. Second it would be important to further unpack 

why the PhD (DO) inventor has high productivity, including the endogeneity of such 

choice. 
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Table 1 Existing studies 

 

Quantity Citation Inventor Firm The others

Hoisl (2007)1)
(Cumulative number of patent applications)
/(age-25) ,
PhD vs. high school or vocational training

insignificant NA
Age, mobility, knowledge

sources
Firm size

2409 German inventors, EPO patents (1977-
2002)

Mariani and
Romanelli (2007)

EPO patent application or grants in 1988-1998,
PhD vs. high school

0.27 insignificant Age
Firm size and

number of patents
Co-inventors

793 inventors from Germany, Italy, The
Netherlands and the UK,  EPO patents

(1988-1998)

(1)Firm size,
capital intensity,

etc.
     (2)Fixed effects

Schettino, Sterlacchini
and Venturini (2008)

EPO patent applications (1991-2005),
University or PhD relative to non-university
degree

-0.13 0.17 Age, knowledgesource
Firm size and

number of patents
Co-inventors

743 Italian inventors,EPO partents(1991-
2005)

Assuming an average level of the importance of literature as information source for the invention.
Since their specification has the cumulative number of patents as an explanatory variable, the long-run effect of a PhD is larger than this coefficient.

Authors
Effects of PhD in terms of elasticity Major Controls

Sample

Kim, Lee and

Marschke (2004)
2) 0.07** NA Age, patent stocks Co-inventors US inventors, US patents (?)

Grants per year,
 PhD vs. nonPhD degree

Output measures, and comparison base
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Table 2. Descriptive statistics 

 

  

Variable name Obs. Mean Std. Dev. Min Max

ln(patent) 1731 2.17 1.31 -2.48 5.96

ln(citation) 1731 2.80 1.40 -2.48 6.49

ln(patent/span) 1731 -0.74 1.18 -5.41 2.53

ln(citation/span) 1731 -0.11 1.29 -5.41 3.39

inventive span 1731 20.05 7.85 2.00 54.00

birth year 1731 1961.37 7.01 1946 1975

ln(firm patents) 1731 119.60 55.08 1.39 303.48

motivation: science 1731 0.58 0.49 0.00 1.00

motivation: challenge 1731 0.89 0.32 0.00 1.00

motivation: career 1731 0.29 0.46 0.00 1.00

motivation: reputation 1731 0.18 0.39 0.00 1.00

motivation: benefit 1731 0.18 0.38 0.00 1.00

motivation: money 1731 0.23 0.42 0.00 1.00

male 1731 0.98 0.14 0.00 1.00

basic research 1731 0.18 0.38 0.00 1.00

applied research 1731 0.34 0.47 0.00 1.00

development 1731 0.71 0.46 0.00 1.00

technical service 1731 0.10 0.30 0.00 1.00

other division 1731 0.06 0.24 0.00 1.00

software development division 1731 0.04 0.19 0.00 1.00

laboratory attached to manufacturing division 1731 0.15 0.35 0.00 1.00

independent laboratory 1731 0.70 0.46 0.00 1.00

2 year college degree or less 1731 0.13 0.33 0.00 1.00

BA degree 1731 0.46 0.50 0.00 1.00

MA degree 1731 0.35 0.48 0.00 1.00

PhD degree 1731 0.03 0.18 0.00 1.00

PhD degree(DO) 1731 0.03 0.18 0.00 1.00

T-score 1409 52.38 9.67 25.00 72.50

Patent output indicators are fractional counts.
First year of "inventive span" is the year in which inventors enrolled their companes.
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Table 3. Mean statistics by level of educations 

 
  

2 year college
degree or less

BA MA PhD PhD(DO)

1.73 2.15 2.30 2.52 2.47
(1.41) (1.32) (1.24) (1.16) (1.31)

2.29 2.76 2.97 3.16 3.06
(1.53) (1.38) (1.33) (1.27) (1.44)

-1.35 -0.78 -0.50 -0.32 -0.73
(1.29) (1.17) (1.07) (1.04) (1.24)

-0.79 -0.16 0.16 0.33 -0.14
(1.44) (1.25) (1.17) (1.19) (1.41)

23.71 20.35 17.99 18.48 25.25
(9.14) (7.61) (7.15) (6.56) (5.98)

1960.12 1960.95 1963.04 1960.41 1955.29
(8.01) (6.83) (6.50) (6.96) (5.40)

128.14 117.46 120.03 102.30 129.41
(66.19) (55.79) (50.17) (37.12) (57.22)

0.97 0.98 0.99 0.96 0.98
(0.16) (0.15) (0.12) (0.19) (0.13)

0.13 0.11 0.23 0.46 0.48
(0.34) (0.31) (0.42) (0.50) (0.50)

0.28 0.27 0.42 0.54 0.57
(0.45) (0.45) (0.49) (0.50) (0.50)

0.67 0.78 0.67 0.46 0.39
(0.47) (0.41) (0.47) (0.50) (0.49)

0.20 0.11 0.08 0.05 0.04
(0.40) (0.31) (0.26) (0.23) (0.19)

0.09 0.08 0.03 0.04 0.00
(0.28) (0.27) (0.17) (0.19) (-)

0.05 0.05 0.02 0.02 0.00
(0.23) (0.21) (0.15) (0.13) (-)

0.17 0.16 0.14 0.11 0.05
(0.38) (0.36) (0.34) (0.31) (0.23)

0.54 0.66 0.77 0.84 0.95
(0.50) (0.47) (0.42) (0.37) (0.23)

- 49.02 55.51 57.74 61.02
(9.63) (8.34) (7.89) (5.49)

Inventive span is based on the first employed year as the initial year.
Standard deviations are in parentheses.
* p<0.1, ** p<0.05, *** p<0.01

other division***

software development division**

laboratory attached to manufacturing division

independent laboratory***

T-score***

technical service***

ln(patent)***

ln(citation)***

ln(patent/span)***

ln(citation/span)***

inventive span***

birth year***

log(firm patents)**

male

basic research***

applied research***

development***
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Table 4. Life-cycle cumulative patent outputs and average productivity 

 

 

 

 

 

  

ln(patent) ln(citation) ln(patent/span) ln(citation/span) ln(patent) ln(citation) ln(patent/span) ln(citation/span)

(1) (2) (3) (4) (5) (6) (7) (8)

0.012*** 0.010*** 0.005** 0.003 0.012*** 0.010*** 0.005** 0.003
(0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)

0.015 0.034 0.011 0.030 -0.039 -0.013 -0.028 -0.002
(0.088) (0.096) (0.077) (0.086) (0.087) (0.095) (0.077) (0.086)

0.220* 0.246* 0.223** 0.248** 0.168 0.183 0.178 0.192
(0.129) (0.138) (0.112) (0.123) (0.126) (0.135) (0.111) (0.122)

-0.065 -0.042 -0.081 -0.058 -0.051 -0.029 -0.067 -0.044
(0.080) (0.085) (0.071) (0.077) (0.079) (0.085) (0.070) (0.078)

-0.161 -0.185* -0.142 -0.166* -0.134 -0.162 -0.119 -0.146
(0.100) (0.110) (0.089) (0.100) (0.098) (0.109) (0.088) (0.100)

0.222* 0.212* 0.210** 0.200* 0.207* 0.184 0.195** 0.171
(0.114) (0.124) (0.098) (0.111) (0.111) (0.122) (0.097) (0.109)

0.026 0.01 -0.012 -0.028 -0.027 -0.042 -0.052 -0.067
(0.107) (0.118) (0.098) (0.110) (0.105) (0.118) (0.097) (0.110)

0.095 0.151 0.103 0.159 0.087 0.142 0.097 0.152
(0.101) (0.109) (0.089) (0.099) (0.096) (0.105) (0.085) (0.095)

0.477* 0.351 0.402* 0.277 0.603*** 0.466 0.495** 0.358
(0.252) (0.304) (0.225) (0.270) (0.233) (0.295) (0.210) (0.262)

0.303*** 0.267** 0.243*** 0.207*
(0.103) (0.115) (0.093) (0.106)

0.098 0.109 0.065 0.076
(0.085) (0.093) (0.076) (0.085)

0.095 0.055 0.069 0.028
(0.095) (0.104) (0.086) (0.096)

-0.164 -0.235 -0.176 -0.247*
(0.137) (0.151) (0.125) (0.140)

0.082 0.185 0.043 0.146
(0.245) (0.276) (0.221) (0.254)

0.052 0.237 0.115 0.3
(0.255) (0.279) (0.226) (0.252)

0.488** 0.548** 0.422** 0.483**
(0.201) (0.221) (0.184) (0.203)

0.641*** 0.722*** 0.538*** 0.620***
(0.191) (0.210) (0.173) (0.192)

0.437*** 0.391** 0.468*** 0.422*** 0.386*** 0.336** 0.426*** 0.376***
(0.149) (0.161) (0.135) (0.148) (0.142) (0.154) (0.130) (0.142)

0.739*** 0.761*** 0.739*** 0.761*** 0.635*** 0.652*** 0.653*** 0.670***
(0.168) (0.176) (0.149) (0.158) (0.161) (0.170) (0.144) (0.155)

1.413*** 1.386*** 1.361*** 1.333*** 1.223*** 1.182*** 1.198*** 1.157***
(0.275) (0.298) (0.250) (0.280) (0.276) (0.302) (0.253) (0.286)

1.167*** 1.161*** 1.073*** 1.067*** 0.897*** 0.883*** 0.847*** 0.833***
(0.224) (0.247) (0.202) (0.230) (0.224) (0.248) (0.202) (0.231)

-1.902** -1.38 -5.106*** -4.584*** -1.975*** -1.595** -4.131*** -3.751***
(0.894) (1.008) (0.843) (0.958) (0.563) (0.649) (0.507) (0.602)

Adj. R square 0.445 0.43 0.45 0.437 0.477 0.456 0.476 0.458

Observation 1736 1736 1736 1736 1731 1731 1731 1731
Patent output indicators are fractional counts.
Estimation method is OLS.
The beginning of inventive span is the first year inventor worked.
Firm dummies, technological dummies and cohort dummies are included in all equations.
Robust standard errors are in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

MA degree

PhD degree

PhD degree(dissertation only)

_cons

technical service

other division

software development division

laboratory attached to
manufacturing division

independent laboratory

BA degree

motivation: money

ln(firm patents)

male

basic research

applied research

development

motivation: sciense

motivation: challenge

motivation: performance

motivation: career

motivation: reputation

motivation: benefit
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Table 5. Life-cycle average productivity (based on the standardized first year of 18 

years old) 

 

ln(patent/span) ln(citation/span)

(1) (2)

0.009*** 0.008**
(0.004) (0.004)

-0.039 -0.012
(0.082) (0.090)

0.169 0.185
(0.115) (0.126)

(0.035) (0.014)
(0.075) (0.081)

-0.147 -0.172*
(0.091) (0.102)

0.196* 0.173
(0.101) (0.112)

-0.046 -0.062
(0.100) (0.113)

0.067 0.125
(0.090) (0.100)

0.547** 0.407
(0.217) (0.274)

0.258*** 0.222**
(0.098) (0.109)

0.078 0.09
(0.082) (0.089)

0.088 0.047
(0.091) (0.100)

-0.137 -0.212
(0.131) (0.145)

0.143 0.237
(0.229) (0.260)

0.152 0.331
(0.239) (0.260)

0.521*** 0.573***
(0.188) (0.206)

0.655*** 0.728***
(0.178) (0.196)

0.178 0.155
(0.129) (0.141)

0.276** 0.335**
(0.137) (0.144)

0.583** 0.613**
(0.239) (0.263)

0.449** 0.482**
(0.208) (0.233)

-4.438*** -4.052***
(0.544) (0.628)

Adj. R square 0.454 0.441

Observation 1731 1731

Patent output indicators are fractional counts.

Estimation method is OLS.

The beginning of inventive span is the first year inventor worked.

Firm dummies, technological dummies and cohort dummies are included in all equations.

Robust standard errors are in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

MA degree

PhD degree

PhD degree(dissertation only)

_cons

development

technical service

other division

software development division

independent laboratory

BA degree

motivation: reputation

motivation: benefit

motivation: money

male

basic research

applied research

laboratory attached to
manufacturing division

ln(firm patents)

motivation: sciense

motivation: challenge

motivation: performance

motivation: career
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Table 6. Life-cycle cumulative patent outputs and average productivity with T-score 

 
 

 

  

ln(patent) ln(citation) ln(patent/span) ln(citation/span) ln(patent) ln(citation) ln(patent/span) ln(citation/span)

(1) (2) (3) (4) (5) (6) (7) (8)

0.014*** 0.012*** 0.007** 0.005* 0.013*** 0.012*** 0.006** 0.005*
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
-0.073 -0.103 -0.05 -0.081 -0.062 -0.092 -0.042 -0.072
(0.105) (0.112) (0.091) (0.099) (0.106) (0.113) (0.092) (0.100)
0.177 0.19 0.153 0.166 0.197 0.21 0.169 0.182

(0.145) (0.154) (0.127) (0.140) (0.146) (0.155) (0.128) (0.140)
-0.038 -0.015 -0.055 -0.032 -0.048 -0.024 -0.062 -0.039
(0.088) (0.096) (0.077) (0.086) (0.088) (0.096) (0.077) (0.086)
-0.148 -0.193 -0.146 -0.191 -0.178 -0.223* -0.17 -0.215*
(0.116) (0.130) (0.103) (0.118) (0.119) (0.133) (0.105) (0.120)
0.252** 0.235* 0.246** 0.229* 0.259** 0.241* 0.251** 0.234*
(0.123) (0.137) (0.108) (0.123) (0.124) (0.138) (0.109) (0.124)
0.024 0.032 -0.011 -0.004 0.032 0.039 -0.005 0.002

(0.121) (0.137) (0.112) (0.129) (0.122) (0.138) (0.112) (0.129)
0.111 0.165 0.108 0.162 0.102 0.156 0.101 0.155

(0.108) (0.117) (0.094) (0.105) (0.109) (0.118) (0.095) (0.105)
0.531* 0.289 0.441* 0.2 0.530* 0.288 0.440* 0.199
(0.311) (0.378) (0.261) (0.323) (0.321) (0.390) (0.267) (0.331)
0.273** 0.252* 0.219** 0.198* 0.276** 0.255** 0.222** 0.201*
(0.113) (0.128) (0.102) (0.117) (0.114) (0.128) (0.102) (0.117)
0.129 0.15 0.089 0.11 0.13 0.152 0.09 0.111

(0.091) (0.100) (0.081) (0.091) (0.092) (0.102) (0.082) (0.092)
0.11 0.09 0.079 0.059 0.093 0.073 0.066 0.046

(0.109) (0.121) (0.099) (0.111) (0.109) (0.120) (0.098) (0.111)
-0.103 -0.156 -0.125 -0.178 -0.116 -0.169 -0.135 -0.188
(0.173) (0.186) (0.154) (0.168) (0.171) (0.184) (0.152) (0.167)
-0.022 0.149 -0.03 0.14 -0.028 0.142 -0.036 0.135
(0.292) (0.319) (0.264) (0.291) (0.292) (0.316) (0.263) (0.289)
0.039 0.216 0.123 0.3 0.009 0.186 0.099 0.276

(0.307) (0.334) (0.266) (0.296) (0.311) (0.335) (0.269) (0.296)
0.415* 0.456* 0.389* 0.430* 0.425* 0.466* 0.397* 0.437*
(0.239) (0.256) (0.214) (0.231) (0.241) (0.257) (0.216) (0.232)
0.520** 0.637*** 0.471** 0.588*** 0.546** 0.663*** 0.491** 0.608***
(0.227) (0.245) (0.205) (0.223) (0.231) (0.247) (0.208) (0.225)
0.014** 0.014** 0.011** 0.011*
(0.006) (0.007) (0.005) (0.006)
0.142 0.220* 0.132 0.210** 0.186* 0.264** 0.166* 0.245**

(0.105) (0.116) (0.092) (0.103) (0.105) (0.115) (0.091) (0.103)
0.806*** 0.791** 0.746*** 0.731** 0.848*** 0.833*** 0.778*** 0.764***
(0.268) (0.308) (0.244) (0.292) (0.268) (0.306) (0.245) (0.290)
0.365* 0.398 0.311 0.344 0.434** 0.467* 0.366* 0.399*
(0.216) (0.253) (0.199) (0.236) (0.218) (0.253) (0.201) (0.238)
-0.891 -0.428 -3.612*** -3.148** -0.316 0.149 -3.158*** -2.693**
(1.141) (1.295) (1.084) (1.242) (1.135) (1.270) (1.074) (1.216)

Adj. R square 0.474 0.447 0.467 0.442 0.467 0.442 0.462 0.438
Observation 1409 1409 1409 1409 1409 1409 1409 1409
Patent output indicators are fractional counts.
The beginning of inventive span is the first year inventor worked.
Firm dummies, technological dummies and cohort dummies are included in all equations.
Robust standard errors are in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

MA degree

PhD degree

PhD degree (dissertation only)

_cons

technical service

other division

software development division

laboratory attached to
manufacturing division

independent laboratory

T-score

motivation: benefit

motivation: money

male

basic research

applied research

development

ln(firm patents)

motivation: sciense

motivation: challenge

motivation: performance

motivation: career

motivation: reputation
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Table 7. Life-cycle patent outputs: panel analysis (FE model) 

  

  

ln(patent) ln(citation) ln(patent) ln(citation)
(1) (2) (3) (4)

0.204*** 0.235*** 0.206*** 0.237***
(0.009) (0.013) (0.010) (0.013)

0.027*** 0.030***
(0.004) (0.006)

0.038*** 0.044***
(0.003) (0.004)

0.034*** 0.035***
(0.005) (0.006)

0.035** 0.017
(0.017) (0.023)

0.044*** 0.044***
(0.012) (0.016)

-0.027** -0.044**
(0.013) (0.019)

-0.082*** -0.110***
(0.013) (0.017)

-0.056*** -0.072***
(0.022) (0.026)

-0.077 -0.023
(0.081) (0.110)

-0.081* -0.082
(0.046) (0.060)

0.034*** 0.037***
(0.003) (0.003)

-0.058*** -0.077***
(0.009) (0.012)

-0.820*** -0.988*** -0.826*** -0.989***
(0.054) (0.070) (0.055) (0.071)

Observation 30433 30433 30433 30433

Patent output indicators are fractional counts.

Estimation method is Fixed effect model.

Robust standard errors are in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

_cons

ln(firm patents)

BA degree*experience
2

MA degree*experience
2

PhD degree*experience
2

PhD degree(dissertation only)*experience
2

experience

experience
2

Two years college or less *experience

BA degree*experience

MA degree*experience

PhD degree*experience

PhD degree(dissertation only)*experience

Two years college or less *experience
2
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Table 8. Life-cycle patent outputs: panel analysis (Hausman-Taylor RE model) 

 

ln(patent) ln(citation) ln(patent) ln(citation)

(1) (2) (3) (4)

0.206*** 0.237*** 0.206*** 0.237***
(0.005) (0.008) (0.005) (0.008)

0.317** 0.382* 0.324*** 0.390***
(0.131) (0.211) (0.091) (0.148)

0.01 -0.022 0.008 -0.024
(0.058) (0.094) (0.040) (0.065)

0.05 0.078 0.051* 0.079*
(0.040) (0.064) (0.027) (0.045)

0.008 0.012 0.009 0.013
(0.045) (0.072) (0.031) (0.050)

-0.042 -0.05 -0.043 -0.052
(0.056) (0.090) (0.038) (0.063)

0.029 0.034 0.031 0.038
(0.105) (0.169) (0.072) (0.118)

0.01 0.003 0.01 0.005
(0.107) (0.172) (0.073) (0.120)

0.064 0.073 0.065 0.076
(0.081) (0.131) (0.056) (0.091)

0.106 0.122 0.107* 0.124
(0.084) (0.135) (0.057) (0.094)

0.276 0.42 0.269 0.409
(0.329) (0.529) (0.229) (0.371)

0.324 0.547 0.311 0.532
(0.291) (0.466) (0.204) (0.330)

1.332** 2.433** 1.352*** 2.446***
(0.621) (1.000) (0.430) (0.699)

0.889 1.588*
(0.579) (0.937)

0.895** 1.584**
(0.396) (0.647)

0.901** 1.552**
(0.400) (0.652)

0.031* 0.052** 0.031*** 0.052***
(0.016) (0.026) (0.012) (0.019)

0.042*** 0.066** 0.042*** 0.066***
(0.016) (0.026) (0.011) (0.018)

0.038** 0.058** 0.038*** 0.058***
(0.016) (0.026) (0.011) (0.018)

0.039** 0.039 0.039*** 0.039*
(0.019) (0.029) (0.015) (0.023)

0.048*** 0.066** 0.047*** 0.068***
(0.018) (0.028) (0.014) (0.021)

-0.027** -0.044*** -0.027** -0.044***
(0.011) (0.015) (0.011) (0.015)

-0.083*** -0.110*** -0.083*** -0.110***
(0.008) (0.011) (0.008) (0.011)

-0.057*** -0.073*** -0.057*** -0.073***
(0.008) (0.011) (0.008) (0.011)

-0.078* -0.024 -0.078* -0.024
(0.045) (0.064) (0.046) (0.064)

-0.081*** -0.082** -0.081*** -0.083**
(0.030) (0.042) (0.030) (0.042)

-0.117 -0.52 -0.862 -1.39
(0.738) (1.174) (0.900) (1.437)

Observation 30433 30433 30433 30433

Patent output indicators are fractional counts.

Estimation method is Hausman-Taylor random effect model

Motivation dummies, Firm dummies, technological dummies and cohort dummies are included in all equations.

Robust standard errors are in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

MA degree*experience
2

PhD degree*experience
2

PhD degree(dissertation only)*experience
2

_cons

BA degree*experience

MA degree*experience

PhD degree*experience

PhD degree(dissertation only)*experience

Two years college or less *experience
2

BA degree*experience
2

MA degree

PhD degree

PhD degree(dissertation only)

PhD degree(dissertation only) before

PhD degree(dissertation only) after

Two years college or less *experience

technical service

other division

software development division

laboratory attached to manufacturing division

independent laboratory

BA degree

male

basic research

applied research

development

ln(firm patents)
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Table 9. Average age of first job and first patent invention 

 

 

 

Table 10. Time required to compensate for the invention loss due to late start of 

inventive activity by a regular PhD. 

 

 

 

 

 

 

  

first job year (A) first invention year (B) (B) - (A)

21.16 29.74 8.58
(4.77) (7.48) (7.28)

23.99 29.01 5.02
(3.00) (5.49) (5.15)

25.24 28.15 2.91
(2.54) (3.51) (3.92)

28.39 30.45 2.05
(2.90) (3.83) (2.79)

26.07 29.98 3.91
(3.12) (4.48) (3.78)

Standard deviations are in parentheses.

less than two year college

BA degree

MA degree

PhD degree

PhD degree(Dissertation only)

column 1 in Table 8 column 2 in Table 8

patent forward citation

BA degree 4.43 4.61

MA degree 3.43 3.51

PhD degree(dissertation only) 4.59 5.25
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Table 11. The estimation of Cox Proportional Hazard Model 

 

(1) (2) (3)

-0.108** -0.115*** -0.128**
(0.044) (0.044) (0.054)

-0.338** (0.238) (0.209)
(0.155) (0.155) (0.184)

(0.264) (0.224) (0.318)
(0.209) (0.203) (0.253)

0.03 -0.002 0.106
(0.143) (0.145) (0.163)

0.116 0.115 0.007
(0.154) (0.154) (0.180)

0.124 0.115 0.201
(0.196) (0.198) (0.228)

-0.025 0.065 -0.017
(0.194) (0.191) (0.213)

0.083 0.095 0.115
(0.160) (0.158) (0.174)

0.136 0.005 0.414
(0.472) (0.478) (0.680)

1.351*** 1.394*** 1.388***
(0.059) (0.059) (0.066)

-0.626*** -0.641**
(0.219) (0.252)

-0.243 -0.188
(0.166) (0.188)

0.014 0.103
(0.181) (0.213)

0.452** 0.630**
(0.214) (0.268)

0.535 0.154
(0.371) (0.513)

0.828** 0.489
(0.381) (0.494)

0.281 0.046
(0.324) (0.444)

0.094 -0.142
(0.309) (0.409)

-0.01
(0.009)

-0.256 -0.227
(0.208) (0.205)

-0.417* -0.289 -0.086
(0.217) (0.213) (0.193)

-1.226** -0.958* -0.523
(0.506) (0.512) (0.505)

-1.435*** -1.172** -0.873*
(0.484) (0.494) (0.528)

-0.242*** -0.215** -0.289***
(0.089) (0.092) (0.106)

0.003*** 0.003** 0.004***
(0.001) (0.001) (0.001)

Log likelihood -3343.527 -3325.804 -2540.043

Observation 10447 10420 8512

Estimation method is Cox Proportional Hazard model.

Standard error are clustered by firms are in  parentheses.

Technological dummies and cohort dummies are included in all equations.

Robust standard errors are in parentheses.
* p<0.1, ** p<0.05, *** p<0.01

age2

T-score

BA degree

MA degree

PhD degree

PhD degree(dissertation only)

age

development

technical service

other division

software development division

laboratory attached to
manufacturing division

independent laboratory

motivation: benefit

motivation: money

male

ln(number of inventors)

basic research

applied research

ln(firm patents)

motivation: sciense

motivation: challenge

motivation: performance

motivation: career

motivation: reputation
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Appendix Table 1.  Life-cycle cumulative patent outputs and average productivity (whole counts) 

 

  

ln(patent) ln(citation) ln(patent/span) ln(citation/span) ln(patent) ln(citation) ln(patent/span) ln(citation/span)

(1) (2) (3) (4) (5) (6) (7) (8)

0.011*** 0.009*** 0.004** 0.003 0.011*** 0.009*** 0.004** 0.002
(0.003) (0.003) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002)

0.024 0.069 0.02 0.065 -0.03 0.02 -0.02 0.03
(0.084) (0.095) (0.073) (0.085) (0.082) (0.093) (0.072) (0.084)

0.194 0.219 0.196* 0.221* 0.132 0.142 0.141 0.151
(0.129) (0.141) (0.111) (0.126) (0.124) (0.137) (0.109) (0.124)

-0.002 0.012 -0.018 -0.004 0.014 0.026 -0.002 0.01
(0.076) (0.084) (0.067) (0.076) (0.074) (0.083) (0.066) (0.076)

-0.144 -0.168 -0.125 -0.149 -0.119 -0.143 -0.103 -0.128
(0.097) (0.108) (0.086) (0.099) (0.095) (0.108) (0.085) (0.099)

0.181* 0.164 0.169* 0.152 0.157 0.124 0.144 0.111
(0.109) (0.122) (0.093) (0.108) (0.106) (0.120) (0.092) (0.107)

0.039 0.037 0.001 -0.001 -0.019 -0.023 -0.044 -0.048
(0.104) (0.117) (0.095) (0.109) (0.103) (0.118) (0.095) (0.110)

0.087 0.141 0.096 0.149 0.077 0.13 0.087 0.139
(0.097) (0.108) (0.084) (0.097) (0.092) (0.104) (0.080) (0.094)

0.215 0.096 0.14 0.021 0.352 0.226 0.244 0.118
(0.248) (0.321) (0.208) (0.283) (0.235) (0.310) (0.196) (0.272)

0.315*** 0.291** 0.255*** 0.231**
(0.101) (0.115) (0.092) (0.106)

0.13 0.165* 0.097 0.133
(0.081) (0.091) (0.072) (0.082)

0.056 0.035 0.029 0.009
(0.091) (0.103) (0.083) (0.094)

-0.224* -0.301** -0.236** -0.313**
(0.125) (0.143) (0.112) (0.131)

0.081 0.19 0.043 0.151
(0.239) (0.275) (0.217) (0.254)

0.037 0.24 0.1 0.303
(0.246) (0.277) (0.213) (0.246)

0.434** 0.495** 0.368** 0.429**
(0.194) (0.223) (0.178) (0.205)

0.651*** 0.735*** 0.548*** 0.632***
(0.187) (0.212) (0.169) (0.195)

0.399*** 0.368** 0.430*** 0.399*** 0.346** 0.311** 0.385*** 0.350**
(0.144) (0.159) (0.130) (0.146) (0.136) (0.153) (0.124) (0.141)

0.743*** 0.779*** 0.743*** 0.779*** 0.624*** 0.652*** 0.642*** 0.670***
(0.159) (0.172) (0.141) (0.156) (0.152) (0.167) (0.136) (0.152)

1.490*** 1.452*** 1.438*** 1.399*** 1.271*** 1.217*** 1.246*** 1.191***
(0.258) (0.284) (0.235) (0.269) (0.260) (0.292) (0.240) (0.278)

1.233*** 1.226*** 1.138*** 1.132*** 0.923*** 0.905*** 0.873*** 0.856***
(0.213) (0.239) (0.194) (0.224) (0.211) (0.240) (0.192) (0.226)

-1.189 0.358 -4.393*** -2.846*** -1.184** 0.267 -3.341*** -1.889***
(0.779) (0.909) (0.734) (0.866) (0.549) (0.631) (0.502) (0.592)

Adj. R square 1736 1736 1736 1736 1731 1731 1731 1731

Observation 0.389 0.373 0.401 0.39 0.432 0.41 0.438 0.421

Patent output indicators are whole counts.

Estimation method is OLS.

The beginning of inventive span is the first year inventor worked.

Firm dummies, technological dummies and cohort dummies are included in all equations.

Robust standard errors are in parentheses.

* p<0.1, ** p<0.05, *** p<0.01

MA degree

PhD degree

PhD degree(dissertation only)

_cons

technical service

other division

software development division

laboratory attached to
manufacturing division

independent laboratory

BA degree

motivation: benefit

motivation: money

male

basic research

applied research

development

ln(firm patents)

motivation: sciense

motivation: challenge

motivation: performance

motivation: career

motivation: reputation
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Figure 1. Distribution of the logarithm of the number of patents (life-cycle 
productivity) 

 
 

Figure 2. Distribution of the logarithm of the number of forward citations (life-cycle 
productivity) 
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Figure 3. Timing of “Exit” inventive activity by cohort groups 
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Figure 4. Experience effect on the number of patents (FE model) 

 

 

 

Figure 5. Experience effect on the number of forward citations (FE model) 
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Figure 6. Experience effect on the number of patents (Hausman-Taylor RE model) 

 
 

 

 

Figure 7. Experience effect on the number of forward citations (Hausman-Taylor RE model) 
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