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Abstract 

The spatial structure of transport networks is subject to increasing returns in 
transportation, distance, and density economies. Transport costs between 
locations are thus, in general, endogenous, and are determined by the 
interaction between the spatial distribution of transport demand and these 
increasing returns, although such interdependence has long been ignored in 
regional models. By using a simple model, the present paper investigates the 
characteristics of viable hub structures (in terms of spacing and hierarchical 
relations) given the presence of density and distance economies in 
transportation. 
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1 Introduction

The transport cost has been undoubtedly one of the most essential elements in the urban

and regional economics. But, in the formal models proposed so far in this literature,

transport networks are either given exogenously or irrelevant.1 The present paper aims to

disclose the role of two types of increasing returns in transportation, distance economies and

density economies, in determining the location of a transport hub, and the spatial structure

of the transport network. The former refers to a decrease in transport costs per distance

by longer hauling,2 while the latter refers to a decrease in transport costs for a given link

by a larger transport density on that link.3 Although these two increasing returns have

been recognized as major causes for the formation of hubs and trunk links, to the best of

my knowledge, they have never been simultaneously considered in explaining the spatial

structure of transport network, not to mention the interdependency between the transport

network structure and location behavior of economic agents.4

As the formation of a transport hub necessarily requires concentration of transport

demand, the industrial and population agglomerations influence their location. But, there

is also an economic force working in the opposite direction. Namely, since the location

of transport hubs, or more generally, the spatial structure of transport network is subject

to the increasing returns specific to transportation, the size and location of industrial and

population agglomerations are also influenced by the increasing returns in transportation.

This latter channel has largely been ignored in the regional models for far.

For instance, it is hard to believe that the disproportionate growth of the largest city,

1While the former type of models can be easily imagined, the latter case may require some explanation.
There are two typical examples of this case. One is the two-region setup where the transport network
consists of an only link between the two regions, and the other is the “system of cities” setup (introduced by
Henderson, 1974) in which interregional spatial structure is assumed away all together.

2Fuel efficiency is probably the most common source of the distance economy. But, time efficiency is also
improved by longer hauling which justifies the services by express trains.

3Major sources of density economies are an increase in matching efficiency for transport services, and
scale economies by using larger vehicles and airplanes for concentrating transport flows to a major hubs and
trunk links.

4Some evidences have been reported for the presence of density economies in transportation. See
Brueckner and Spiller (1991), Brueckner, Dyer and Spiller (1992), and Caves, Christensen and Thretheway
(1984) for the case of air transportation, and Braeutigam, Daughety and Turnquist (1982, 1984) for the case of
rail transportation, and Mori and Nishikimi (2002) for the case of ocean transportation.
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Tokyo, in Japan during the last century was irrelevant to the advancement of the rail

transport technology. In 1889, when it took 20 hours by rail to reach from Tokyo to the

550km apart next largest city, Osaka, the (population) size of Tokyo was only 10% larger

than that of Osaka.5 When the travel time between the two cities reduced to 8 hours in

1935, it was 1.6 times larger. In 1965, right after the opening of the service of Shinkansen,

the bullet train, halved the travel time, the size of Tokyo (17.9 million) had become twice

as large as Osaka. When the travel time further reduced to 2.5 hours in 2005, Tokyo had

grown to the size 2.7 times (33.3 million) as large as Osaka.6

It is to be noted that the distance between these two cities has been crucial to realize

such drastic improvement in transport access for two reasons. First, to match the cost for

the state-of-the-art mass transportation, each hub city needs to support a sufficiently large

travel demand, which is possible only if they are reasonably far apart from one another

so that they do not need to compete for their hinterlands (density economies). Second, a

larger travel time reduction can be attained only by maintaining the maximum speed for

a longer distance, which is only possible by stopping less for a longer distance (distance

economies). It follows that the presence of these two increasing returns implies a certain

unavoidable distance between major transport hubs.

The locations which happened to coincide with major express stops for Shinkansen

obviously attracted a larger population. Indeed, between 1980 and 2005, among the 11

cities7 along the Shinkansen line connecting Tokyo and Osaka, the population growth rate

of 4 cities, Tokyo, Osaka, Nagoya and Kyoto, at which the express trains stop was 31.2%,

and was clearly higher than 20.3% for the case of the rest at which only local ones stop.

The present paper provides a preliminary first step toward exploring this channel between

the increasing returns in transportation and the growth of cities.

A similar argument applies at smaller spatial scales. In particular, the locations of

5The population sizes here are those of prefectures, since it is safe to assume that the metro areas of Tokyo
and Osaka are roughly contained within their respective prefectures then.

6“Cities” and “metro areas” are used interchangeably here. The definition of a city prior to 1980 is based
on Eaton and Eckstein (1997), while that in 1980 or later on the Urban Employment Area by Kanemoto and
Tokuoka (2002).

7Only those identified as metro areas are included.
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subcenters within a large metro area typically coincide with hubs of the urban transport

network. Since the urban transport modes (e.g., subways and busses) are also subject

to economies of density and distance, the spatial distribution of subcenters should also

depend on these increasing returns in transportation.8

The rest of the paper is organized as follows. It starts by reviewing the related literature

in Section 2, and proceeds in Section 3 by presenting the general structure of transport

technology subject to the distance and density economies. In Section 4, by specifying

transport technology explicitly, the basic mechanism in which the two increasing returns

interact to pin down the location of a hub is presented. It is followed by the representation

of the general transport network structure under a simple spatial distribution of transport

demand in Section 5, and the definition of a transport network equilibrium in Section 6.

In Section 7, certain implications are discussed regarding the macro structure of a large

hierarchical transport network. Finally, the paper is closed by the remarks on the basic

results, limitations of the present analysis, and an immediate future extension.

2 Related Literature

Regarding the impact of transport network structure on the location and pricing behaviors,

there have been several important contributions. Hakimi (1964) was the first to recognize

that the set of vertices of a transport network includes the optimal location of firms in

the classical least cost approach of Weber (1909). Louveaux, Thisse and Beguin (1982)

extended the Hakimi’s result by allowing distance economies, and showed further that

a transshipment location may also be a candidate for the optimal location in the Weber

problem above. Brueckner and Spiller (1991) formalized the mechanism in which density

economies lead to fare reduction in the trunk link of a given transport network. Krugman

(1993), Fujita and Mori (1996), Mun (1997), and Behrens, Lamorgese, Ottaviano and Tabuchi

8The existing literature explain the subcenter locations mainly as a result of the interaction between
land market and transport costs without increasing returns in transportation (e.g., Ota and Fujita, 1993;
Henderson and Mitra, 1996; Sasaki, 1990; Sasaki and Zhang, 1997, 2000, 2005).
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(2009) investigated interaction between the hub-location advantage in an exogenous

transport network and industrial/population agglomeration economies.9

Endogenous formation of hub-and-spoke network structure in the presence of transport

density economies was first formulated by Hendricks, Piccione and Tan (1995).10 But,

no insight has been obtained regarding relative locations among hubs, as their model

abstracted interregional space by assuming each pair of regions being equidistant. Mori

and Nishikimi (2002) proposed the first general equilibrium model with economies of

transport density in which a hub formation and industrial location are endogenous. In the

absence of distance economies in their model, however, it was not possible to investigate

the spacing of hubs as in the present paper (for the reason to be clear in page 11).11 Finally,

there are recent works by Behrens, Gaigne and Thisse (2009) and Takahashi (2006) which

explicitly formulate the behavior of the transport sector. But, as their models are restricted

to a two-region economy, the role of transport sector in shaping the transport network is

yet to be studied.

3 The basic framework

Imagine a regional economy which extends over a one-dimensional location space, X ≡

[0, F] as shown in Figure 1, where F > 0 is the fringe location of the region. At each location

on X, some interregional travel demand is generated, where each passenger is of measure

zero and independent from one another. For simplicity, assume that any passenger must

go through the gateway hub located at the left end of the regional space, 0, before reaching

the final destination (outside the region). Thus, all the transport demands in this regional

economy are directed toward this gateway.

9Konishi (2000) also investigated the causality between population agglomeration and transport network
structure, but in the absence of increasing returns to scale or externalities. In particular, he argued that
population concentration at a hub in a given transport network can be partly explained by a larger labor
requirement for transport service at the hub, even in the absense of any increasing returns to scale.

10Scale economies in traffic density have long been recognized, e.g., O’Kelly (1992) and Campbell (1996).
But, it has not been explicitly modeled before their work.

11It is to be noted that both distance and density economies are essential in order to explain the spacing
of hubs. In other words, the result of Mori and Nishikimi where only the density economies is considered
cannot be straightforwardly extended into a more general location space with more than three regions.
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[Figure 1]

Although the one-directional transport demand assumed throughout the paper is

primarily to achieve analytical tractability, it can also be considered as the simplest setup

corresponding to the two examples discussed in the Introduction. In particular, for the

second example of commuting traffic from residential area to CBD, it is fairly reasonable

to assume symmetric commuting transport density at each location between two time points

at one of which workers commute to CBD, and at the other of which they go back home.

In such a case, there is no loss of generality in the analyses to follow by assuming that the

transport demand at each residential location is directed toward CBD.

In the case of Japan in particular, the above commuting argument applies to even a

more global interregional passenger traffic pattern. Namely, there is a substantial regular

business traffic demand toward Tokyo from the rest of Japan given the disproportionate

centrality of Tokyo in the country. As of year 2000, indeed Tokyo metro area accounts for

more than 25% of Japanese population and more than 30% of the national GDP.12 Not

surprisingly, a disproportionate share, more than 20%, of all the inter-prefectural business

passenger traffic in Japan are directed toward Tokyo.13 It follows that the present setup of

one-directional transport demand can also be understood as a first-order approximation

of the interregional traffic pattern beyond a single metro area. Hence, the results obtained

below will provide at least a partial explanation for the growth and decline of Japanese

cities along the Shinkansen line presented in the Introduction. (See further discussions in

Sections 7 and 8.2.)

From each location, x ∈ X, the gateway can be reached either directly by using only

individual transport mode, or indirectly by using mass transport mode which connects trans-

port hubs by mass transport links. The transport cost on the mass transport links is subject

to the mass transport technology, otherwise it is subject to the individual transport technology.

In the present model, the formations of transport hubs (except for the gateway hub) and

12Data source: Japan Ministory of Internal Affairs and Communications (2000) and the Annual Report on
Prefectural Accounts by Japan Cabinet Office (2009).

13Data source: Japan Ministry of Land and Transport (2000).

5



mass transport links are endogenous. Once a transport link is formed, the transport rate

(per passenger) on the link is given by τ(d, Q) which is a continuous function of the link

length, d, and the transport density, Q, on the link.

Regarding the transport distance, this technology exhibits the following properties:

τ(d, Q) > τ(d′, Q) > 0 , (1)

τ(d, Q)/d < τ(d′, Q)/d′ , (2)

if d > d′ > 0 for any Q ∈ (0, ∞). Property (1) means that other things being equal, the

transport rate is strictly higher for a longer transport link, while (2) expresses economies of

transport distance (or long hauling), i.e., for a given transport density, the average transport

cost (per distance) decreases in distance transported.14

Regarding the transport density, while the aggregate transport costs is larger under a

higher density, the transport rate is smaller, i.e.,

Q′τ(d, Q′) ≤ Qτ(d, Q) , (3)

τ(d, Q′) > τ(d, Q) > 0 , (4)

if Q > Q′ > 0 for any d ∈ (0, ∞). Property (4) expresses economies of transport density which

are external to each passenger, i.e., they take τ as given and do not take into account their

contribution to the density, Q.15

In reality, any single transport mode (e.g., bus, train, airplane, ship) exhibits the distance

and density economies only in a limited range of the transport distance and density. Thus,

the transport rate τ here may be interpreted as the lower envelope of the transport rates

which can be realized by all available mass transport modes. By imposing the properties

given in (2) and (4), it is essentially assumed that there are large varieties of available

transport modes, and in effect, increasing returns are at work for the entire range of

14The strict inequality in (2) does not need to hold for all d > d′ > 0 to obtain the basic results below. But,
it is assumed for simplicity of the argument.

15The monotonicity in (3) can be strict. But, allowing the equality makes analysis much simpler without
sacrificing the basic result. Refer to footnote 18 below in Section 4.
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distance and density levels with implicit modal choice.

Finally, the individual transportation is assumed to be linear in distance and indepen-

dent of transport density, such that the transport cost for a unit distance is a constant given

by t > 0.

4 On the location of hubs

In order to illustrate the basic effects of distance and density economies on the location of

hubs, the analysis in this section focuses on a simplest setting. Namely, besides the basic

properties (1) through (4) for transport distance and density, the mass transport technology,

τ(·), is assumed to satisfy the following conditions at the limits:

lim
Q↓0

τ(d, Q) > td ∀d > 0 , (5)

lim
Q↑∞

τ(d, Q) ∈ [0, td) ∀d > 0 , (6)

lim
d↓0

τ(d, Q) ∈ (0, ∞) ∀Q > 0 . (7)

Property (5) states that for any given transport distance, d > 0, the individual transporta-

tion is more efficient than the mass transportation for a transport density close to zero,

while property (6) that the opposite is true for a sufficiently large transport density (due to

density economies). Property (7) implies that the cost for stopping is a source of distance

economies (given an alternative linear transport technology).

Now, consider the situation in which the distribution of transport demand on X is

uniform with density ν > 0, and no hub exists so that all transport demands to the gateway

generated in X rely on individual technology.16 In this context, it is convenient to introduce

the following notion of hub viability, i.e., the possibility of the formation of a trunk link

from a given location h to the gateway when only the passengers who currently pass

through h were to be carried.

16Although the uniform density is unrealistic, it is sufficient for the purpose of the present paper.
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Definition 4.1 (Hub viability) A hub is said to be viable at a location, h ∈ X, if

τ∗(h; F, ν) ≡ τ(h, ν[F− h]) ≤ th , (8)

i.e., if the transport rate at h on the potential transport link from h to the gateway under the present

transport density, F− h, (without the hub) is smaller than the traditional transport rate, th.

Under (8), there exists a unique equilibrium boundary, b ∈ (0, h), of the hinterland of

this hub, i.e., all passengers in [b, F] will pass through the hub at h before reaching the

gateway, while those in (0, b) will directly reach the gateway by individual transport mode.

Figure 2 describes this situation for the case of a strict inequality, where T(x) represents

the transport cost at a given location x (to be formally defined for a more general transport

network in Section 5).17

[Figure 2]

It is to be noted that the hub viability at a given location introduced above provides

a sufficient, but not a necessary, condition for the existence of a hub at this location in

equilibrium (to be formally defined in Section 6). It is in principle possible to derive a

necessary and sufficient condition for hub existence by taking into account the “equilib-

rium” transport hinterland, (b, F], depicted in Figure 2. Nonetheless, the present simple

notion of hub viability provides a far more tractable framework to understand the basic

role of increasing returns in transportation underlying hub and trunk link formations as

discussed below.

The following proposition summarizes the necessary and sufficient condition to guar-

antee the hub viability at some location (in the sense of Definition 4.1), which in turn

provides a sufficient condition for the formation of a transport hub at this location.

Proposition 4.1 For a given ν [resp., F], there exists a threshold hinterland size, F̃ [resp., transport

demand density, ν̂] such that there is a location at which a hub is viable if and only if F ≥ F̃ [resp.,

ν ≥ ν̂]. Moreover, if F = F̃ [resp., ν = ν̂], a hub is viable only at the (possibly multiple) critical

17If τ∗(h; F, ν) = th then b = h.
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location, h̃ [resp., ĥ], which satisfies τ∗(h̃; F̃, ν) = th̃ [resp., τ∗(ĥ; F, ν̂) = tĥ ] with its direct

hinterland extending over an interval, [h̃, F̃] [resp., [ĥ, F]]. If F > F̃ [resp., ν > ν̂], a hub is viable

at any location within a continuous vicinity of h̃ [resp., ĥ] such that τ∗(h; F, ν) ≤ th.

Proof. Note first that if a hub is viable at location h ∈ (0, F), then it must be true that

τ(h, ν[F − h]) ≤ th by Definition 4.1. Define τ∗(h; F, ν) as in (8). Then, τ∗(h) > th near

h = 0 by (7) and the continuity of τ∗ (by the continuity of τ), i.e., there is no cost advantage

for a hub formation in the vicinity of the gateway. Similarly, τ∗(h) > th near h = F by

(5) and the continuity of τ∗, i.e., there is no cost advantage for a hub formation in the

vicinity of the fringe location, F. But, as for h ∈ (0, F), if the transport density, F− h, at

h is sufficiently large (i.e., for a sufficiently large F), then τ∗(h; F, ν) < th by (4) and (6).

Since τ∗(h; F, ν) is continuous and decreasing in F, it follows that there exists a critical

hinterland size, F̃, and a hub location, h̃ ∈ (0, F̃), such that τ(h̃, ν[F̃− h̃]) = th̃. For F > F̃,

again by the continuity of τ∗ and by (4) there is a continuous interval around h̃ such that

τ∗(h; F, ν) ≤ th. The result regarding ν̂ and ĥ can be proved in a similar manner. Q.E.D.

In particular, it is to be noted that F̃ [resp., ν̂] is the threshold spatial size of the economy,

F [resp., ν], only above which a hub formation at a viable location will reduce the transport

costs under the (present) transport density at that location without a hub.

To help understanding the hub viability under given levels of distance and density

economies, a simple specification of the mass transport cost function can be given by

τ(d, Q) =
φ + ρd

Q
(9)

where φ/Q represents the fixed cost, and ρ/Q the marginal cost on a given transport link

with transport density, Q. A relatively larger value of φ [resp., ρ] implies larger distance

[resp., density] economies.18 Under this specification, τ∗ at the gateway, the fringe location,

18The specification in (9) is rather special in that condition (3) holds with equality. Alternatively, the mass
transport technology can be given by, e.g., τ(d, Q) = φ+ρ

Qα with α ∈ (0, 1) or τ(d, Q) = α + φ+ρd
Q , so that (9)

holds with strict inequality. But, the analysis becomes far more complex without changing the basic results.
The author benefited from the comments from Tony E. Smith for these points.
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F, and an interior location, h ∈ (0, F), take the values,

τ∗(0) =
φ

νF
> 0 , (10)

τ∗(F) ≡ lim
h↑F

τ∗(h) = ∞ , (11)

τ∗(h) =
φ + ρh

ν[F− h]
, (12)

respectively. Moreover, τ∗ is increasing and convex:

∂τ∗(h)
∂h

=
1
ν

[
ρ

F− h
+

φ + ρh
(F− h)2

]
> 0 , (13)

∂2τ∗(h)
∂h2 =

2(φ + ρF)
ν(F− h)3 > 0 . (14)

The hub viability function τ∗(h; F) is depicted in Figure 3 below, where the τ∗(h) schedule

at critical fringe distance, F̃, is drawn by a solid curve, and those with non-critical fringe

distances by dashed curves (as the vertical shifts from τ∗(h, F̃)). As indicated in the figure,

by solving for two simultaneous equations, τ∗(h) = th and ∂τ∗(h)/∂h = t, the critical

hinterland size, F̃, the critical density of transport demand, ν̂, as well as the critical hub

locations, h̃ and ĥ, are determined uniquely as below:

F̃ = 2
√

f /ν + r/ν (15)

h̃ =
√

f /ν (16)

ν̂ =
1
F2

(
2 f + 2

√
f
√

f + Fr + Fr
)

(17)

ĥ =
√

f /ν̂ (18)

where f ≡ φ/t and r ≡ ρ/t are the fixed and marginal cost for mass transportation relative

to the rate of individual transportation. The interpretations of f and r are the same as those

of φ and ρ. A larger value of f relative to r means relatively larger distance economies.

[Figure 3]

When the fixed cost, f , for transportation is larger, the viable locations, h̃ and ĥ, of a hub
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are necessarily farther from the gateway to utilize distance economies. When ν is larger,

the density economies are relatively more pronounced, and hence, the mass transportation

becomes efficient for a smaller transport distance. As a result, the viable location of a hub

becomes closer to the gateway.

The viable location for a hub is thus determined by the balance between distance and

density economies. If the former [resp., latter] is relatively stronger, the spacing of transport

hubs tends to be larger [resp., smaller] as the transport efficiency increases relatively more

by longer hauling [resp., carrying larger volume]. It is analogous to the agglomeration

shadow around an existing industrial agglomeration suggested by the new economic

geography models (e.g., Fujita and Krugman, 1995) in which a new agglomeration is

unlikely to form, since it is too close to the existing agglomeration in order for a firm to

exercise monopoly power in the local market. In the present case, “agglomeration” is in

terms of transport demand.

It is to be noted that both distance and density economies are necessary in order to

investigate the spatial distribution of hubs. When transport demand is generated at each

point in a continuous location space as in the present model, if there were no density

economies, then there would be no cost advantage of pooling transport demand, i.e., a

hub is not viable, while if there were no distance economies, a continuum of hubs would

be viable (i.e., hubs can form without leaving any space between them).19

5 Transport network : A general case

The notion of the hub viability introduced in the previous section is in fact applicable to a

more general class of transport network. To derive further implications of distance and

density economies in the following sections, a transport network is formally defined in

this section.

Let K ≡ {0, 1, 2, . . . , K} represent indices of hubs which exist in equilibrium (to be

19The continuity of the location space is not essential in this argument as long as the location space consists
of more than two locations.
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defined in Section 6), and H ≡ {h0, h1, h2, . . . , hK} denote the set of their locations, where

hi ∈ X. Let h0 ≡ 0 be the location of the gateway, and without loss of generality, assume

that hi < hj if i < j. Figure 4 shows an example of a transport network with five hubs.

[Figure 4]

Given K and H, the set of locations, Di ⊂ X, is called the direct (transport) hinterland of

hub i ∈ K, if hub i is the first hub among all the existing hubs, 0, . . . , K, through which

passengers from each location x ∈ Di to the gateway pass. In Figure 4, Di’s are indicated

along the location space X = [h0 ≡ 0, F], where the arrows in each Di specifies the direction

of passenger traffic within this direct hinterland.

By definition, Di ∩ Dj = ∅ if i 6= j, and ∪i∈KDi = X. Under the given transport

technology, it can be shown that each Di is a continuous interval on X if each travel

takes place along the cost minimizing route. Denote by bi the boundary between the two

adjacent direct hinterlands Di−1 and Di of hubs i− 1 and i for i = 1, . . . , K, and let b0 ≡ 0

and bK+1 ≡ F for notational convenience. Then, hubs and the boundaries of their direct

hinterlands are aligned so that hi−1 < bi ≤ hi, Di = [bi, bi+1) for i = 0, . . . , K − 1, and

DK = [bK−1, F] (refer to Figure 4).

If hub j is connected to hub i directly by a mass transport link, and all the transport

flows passing j go through i before reaching the gateway, then call hub i the parent hub of

hub j. In Figure 4, hub 4 is the parent of hub 5, hub 3 is the parent of hubs 2 and 4, and

finally the gateway hub 0 is the parent of hub 1 and hub 3. Denote by g(hi) the location

of the parent hub of hub i, and define G ≡ {g(h1), g(h2), . . . , g(hK)}. Also, denote by `i

the mass transport link between hi and g(hi), and define L ≡ {`1, `2, . . . , `K}. If the set of

direct hinterlands of hubs is denoted by D ≡ {D0, D1, . . . , DK}, then the physical structure

of transport network T can be identified by {H, G, D}, or equivalently by {H, L, D}.20

Next, let gk(hi)(k ≥ 1) represent the k-times mapping of hi by g, when such mapping

is well-defined, i.e., gk(x) ∈ H (refer to Figure 4 for a concrete example). By definition,

20In a more general situation in which the destinations of transport flows are not unique, there could be
multiple mass transport links from a given location. But, the present model focuses on a simplest setting
such that it is not the case.
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passengers from the direct hinterland, Dj, of hub j to the gateway must pass hub i if

gk(hj) = hi for some integer k ∈ [1, K). Hence, a transport network is hierarchical as there

exists an order in which traffic flows through hubs toward the gateway, and the order

can be defined relatively to the gateway. Namely, for hub i ∈ K, let λi ∈ {1, . . . , K} be an

integer satisfying gλi(hi) = h0. Then hub i is said to be of order λi relative to the gateway.

Similarly, if for hub j ∈ K there exists an integer k ∈ K such that gk(hj) = hi, then hub j

is said to be in the hinterland of hub i, and of order k relative to hub i. A hub is said to be of

higher order if it is more directly connected to the gateway, i.e., the value of the order is

smaller.

Now, denote by Ki(⊂ K) the index set of hubs in the hinterland of hub i, i.e., Ki ≡

{j ∈ K|∃k ∈ K s.t. gk(hj) = hi}. Then the total hinterland, Hi, of hub i can be expressed by

∪j∈Ki Dj,21 and accordingly, the transport density of hub i is computed as |Hi| ≡ ∑j∈Ki
|Dj|,

where |Dj| represents the size of transport demand generated in Dj. It follows that the

transport rate on the link i is given by τ(|`i|, |Hi|), where |`i| ≡ |hi − g(hi)|.22

In the network shown in Figure 4, there are two first-order hubs, 1 and 3, where hub 1

is just a local hub near the gateway, wheras hub 3 is a major regional hub which collects

transport demands generated in the hinterland, H2 ≡ D2 and H4 ≡ D4 ∪ D5, of its child

hubs, 2 and 4, respectively, besides those generated in its own direct hinterland, D3. Hub 4

is also a minor regional hub at which the transport flow coming from a local hub 5 merges.

Such a hierarchical transport network is ubiquitous in reality, but in order to explain this

“agglomeration” of transport flows endogenously within a model, an explicit consideration

of distance and density (or bulk-scale) economies is essential.

6 Transport network equilibrium

For a given transport network, T , denote by T(x) the equilibrium transport rate between

the gateway and location x ∈ X.23 Since each passenger must choose the cost minimizing

21Note that the entire spatial economy, X, belongs to the transport hinterland of the gateway, i.e., H0 ≡ X.
22Here, |`i| represents the length of the link i, i.e., the distance between hi and g(hi).
23T(x) introduced in Section 4 (Figure 2) is now defined under a general transport network, T .
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route in equilibrium, it follows that for each i ∈ {1, . . . , K},24

T(hi) = T(g(hi)) + τ(`i, |Hi|) . (19)

Under the cost minimization by individual passengers, it is also true that the transport

rate at boundary, bi, between the direct hinterlands of hubs i− 1 and i is the same for the

route via either hub, and that each hub i is contained in its direct hinterland, i.e., hi ∈ Di.

It follows that

hi−1 < bi ≤ hi ∀i = 1, . . . , K (20)

and that

T(hi) + t(hi − bi) = T(hi−1) + t(bi − hi−1) . (21)

Since (21) can be equivalently written as

T(hi) = T(hi−1) + t(2bi − hi−1 − hi) , (22)

then by applying it recursively at each boundary, bj, for j = 1, . . . , i− 1, the transport rate

at each hub i can be expressed as

T(hi) = t
i

∑
j=1

(2bj − hj−1 − hj) . (23)

The equilibrium condition (23) implies that

T(x) ≤ tx ∀x ∈ X . (24)

A typical transport cost schedule is shown in Figure 5 which corresponds to the network

depicted in Figure 4. Namely, it takes local minima at hub locations, and local maxima

at the boundaries of their direct hinterlands. In particular, the location h3 of the major

24In the present setup, the mass transport technology is defined on each link, and hence their properties,
(1)-(4), are specified in terms of the length and transport density of a given link. In particular, there is no
scale economies working over multiple links. If large agents designing the transport network are explicitly
considered, however, it is possible to have such situations.
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regional hub offers the minimum transport rate within its total hinterland, H3 = ∪5
i=2Di.

This figure clearly indicates that the transport cost structure realized in the presence of

distance and density economies is very different from that under the individual linear

transport technology, which in turn suggests a potentially large influence of increasing

returns in transportation on the location behavior of economic agents.

[Figure 5]

In summary, the transport network equilibrium in the present context can be defined

as follows.

Definition 6.1 (Transport network equilibrium) Transport network, T , is in equilibrium if

and only if each passenger travel in X takes place along the cost minimizing route in T , i.e., (19),

(20) and (23) are satisfied, so that there is no incentive for unilateral deviation of individual

passengers from T .

To avoid potential confusion, it is to be noted that the above equilibrium is defined

in terms of passengers’ route choice for a given transport network, and provides a necessary

condition for a fuller equilibrium which allows perturbations to the network structure T

itself. In that sense, it resembles “passenger equilibrium” in the classical transport network

literature (see, e.g., Beckmann, McGuire and Winsten, 1956). But, a crucial difference is

that hubs and trunk links are endogenous in the present model, hence their existence

must be supported by the passengers’ route choice. To formally develop a more general

equilibrium concept, it is necessary to incorporate an explicit mechanism of hub/trunk

link formation which allows collective deviations of passengers from the existing network

structure, say by introducing large agents (e.g., transport firms, a planner), or by allowing

coordination of individual passengers. The hub viability argument developed in Section

4 should eventually lead to the formalization of the mechanism of hub formation, and

equilibrium selection regarding the transport network structure (locations and routing of

mass transport modes). Though it is an ultimate goal of the present line of research, it is

beyond the scope of this paper.25

25It should be emphasized that this difficulty is one of the main reasons that the endogenous formation
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Finally, it is to be noted that Proposition 4.1 can be directly applied to check the viability

of a new hub within the direct hinterland of any existing hub by re-interpreting the gateway

location as that of this existing hub i ∈ K, and the fringe location, F, as the boundary

location of the direct hinterland of this hub i, i.e., bi−1 and bi. It is also straightforward to

extend the viability concept to investigate the possible formation of a higher-order hub in

a more general hierarchical network, such as that depicted in Figure 4 by using the same

argument as in Section 4.

7 Implications to the structure of a transport network

In this section, preliminary implications for the size and spacing of hubs from the present

model are discussed based on the specification (9) for mass transport technology. Although

a fuller analysis under more general equilibrium concepts is beyond the scope of the

present paper, some interesting insights can still be obtained from the present simplistic

setup.

In general, if density economies are more pronounced than distance economies, mass

transportation tends to collect transport demand along the way as a local train stops every

station in order to carry as many passengers as possible. Consequently, the hierarchy of

hubs tends to deepen. In this “local train” network, the size distribution of hubs becomes

relatively less skewed, as the size of a parent hub is larger than its child hub only by the

size of its own direct hinterland.26

If distance economies are more pronounced instead (say, when the cost of stopping is

high as in the case of airplanes), then the hierarchy is less likely to be formed among hubs,

and each hub tends to be directly linked to the gateway. In that case, the traffic volume at

the gateway will be disproportionately large as all the traffic gather there, while all the

other hubs are small as they are of the lowest-order. The resulting size distribution of hubs

will then be relatively more skewed.

of transport network under increasing returns in transportation has been left untouched for so long in the
literature. The present study is aimed to proceed one step forward in this direction.

26The size of a hub can be measured in terms of the size of transport demand in its hinterland.
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Below, it is shown that for a sufficiently large spatial economy, the depth of a hub

hierarchy would eventually hit its upper bound even if density economies are very strong

(Section 7.1), while a higher-order hub would eventually develop, and the hub hierarchy

would deepen, even if distance economies are very strong (Section 7.2). Hence, there is a

tendency that the skewness of hub size distributions under different levels of distance and

density economies converges, though there may not be a common limit.

This possibility of the emergence of order in the size distribution of transport hubs may

be in part responsible for the Rank-Size Rule for cities, a well-known log-linear relationship

between the size and rank in terms of size of cities. In fact, it is not difficult to confirm in

reality that most major cities are associated with major transport hubs. In the case of Japan,

the Spearman’s rank correlation between the population size of a city and passenger traffic

volume of the airport in that city in year 2000 is 0.645 (highly significant),27 and naturally

the correlation is expected to be even higher if all the mass transport modes are accounted

for.

7.1 On the upper limit of the hub hierarchy depth

Consider a situation in which the spatial size of the economy expands, i.e., F increases

gradually. Then, a hub becomes viable first at h̃1 ≡ h̃ when F reaches F̃1 ≡ F̃. Similarly, if

F reaches F̃2 ≡ h1 + F̃, the second hub becomes viable at h2 ≡ h1 + h̃. In this manner, it is

possible to construct an equilibrium i-order “local train” hierarchical hub system with i (≥ 1)

hubs in which hubs are located at hi ≡ hi−1 + h̃ for F ≥ F̃i, since there is no incentive

for unilateral deviation of passengers from the existing transport pattern.28 This network

structure is depicted in Figure 6.

[Figure 6]

Notice, however, that as the hierarchy of hubs deepens, the fixed cost of mass transporta-

tion accumulates, and at some point, there would emerge a possibility of cost reduction by

27Airport size data are obtained from Civil Aviation Bureau of Japan (2006).
28Note that it is not necessary to have an explicit mechanism of hub formation to construct an equilibrium

“local train” transport network which is consistent with Definition 6.1.
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directly connecting an existing hub i (≥ 2) to the gateway by a trunk link so that all the

passengers travel via hub i would be carried to the gateway directly by a mass transport

mode.

To see this, assume that hubs are formed at hi = hi−1 + h̃ and g(hi) = hi−1, for all

i = 1, . . . , KF, where KF is the ceiling of F/h̃. Now, define the relative cost for the direct trunk

link from hub n(≥ 2) to the gateway as

∆∗τ(F) ≡ φ + ρnh̃
|Hn|

/
n

∑
i=1

φ + ρh̃
|Hi|

(25)

where Hi ≡ [bi, F]. The numerator represents the potential transport rate at hub n when it

were directly connected to the gateway,29 while the denominator the current transport rate

at this hub which is directly connected to the neighbor hub n− 1.

Since H1 > Hi for all i > 1, ∆∗τ(F) is bounded from the above:

∆∗τ(F) <
φ + ρnh̃
|Hn|

/
n

φ + ρh̃
|H1|

=
φ/n + ρh̃
|Hn|

/
φ + ρh̃
|H1|

=
1/n + ρ

√
1/(φνt)

1 + ρ
√

1/(φνt)
|H1|
|Hn|

. (26)

But, since
|H1|
|Hn|

<
F

F− nh̃
=

F
F− n

√
φ/(νt)

, (27)

and since limF→∞ F/(F− nh̃) = 1, it follows from (26) and (27) that

lim
F→∞

∆∗τ(F) =
1/n + ρ

√
1/(φνt)

1 + ρ
√

1/(φνt)
< 1 . (28)

Hence, if the hub hierarchy deepens as F increases, for any given hub n ≥ 2, the formation

of a direct trunk link to the gateway would eventually become less costly than stopping at

hub n− 1.
29Note that hn = nh̃ by construction.
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As (26) indicates, if density economies are relatively more important than distance

economies (i.e., φ is small relative to ρ), then such a trunk link is less effective for cost

reduction. However, the analysis above suggests that for a sufficiently large spatial

economy (i.e., for a sufficiently large F), for any given levels of distance and density

economies (i.e., for any values of ρ and φ), the depth of the hub hierarchy would have

a limit, if an appropriate collective action (or in the presence of a large agent aiming for

reducing total transport costs) is allowed as in reality. Expression (26) also suggests that

a major trunk links (e.g., express and bullet trains, jumbo jet links) are more likely to

be formed at a large interregional scale (for a large n). It corresponds to the fact that

major trunk links (e.g., express and bullet trains, jumbo jet links) are only formed for

a sufficiently large spatial economy. This result corresponds partly to the motivating

example of Japanese hub cities in the Introduction: larger hubs can only emerge at a larger

spatial interval.

7.2 On the lower limit of a hub hierarchy depth

Next, consider a situation in which each hub is directly linked to the gateway, so that the

hub hierarchy is of only a single order. Such a configuration is likely to be an equilibrium

when distance economies are very strong. But, for sufficiently remote hubs for which the

distance cost dominates, there can be a substantial cost reduction by pooling transport

demand among neighboring hubs (although such an action is infeasible by unilateral

deviations of individual passengers).

To see this, consider a “hub-and-spoke” network so that local hubs are located at

h1, h2, . . ., each of which is directly connected to the gateway by a mass transport link, i.e.,

g(hi) = h0 and Hi = Di for all i ≥ 1, as shown in Figure 7.

[Figure 7]

Now, define the relative transport cost from hub n to the gateway when hub n is connected
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to a neighbor hub n− 1 instead of the gateway as

∆T∗∗(hn) ≡
[

φ + ρhn−1

Dn−1 + Dn
+

φ + ρ(hn − hn−1)

Dn

]
− φ + ρhn

Dn
. (29)

In (29), the bracketed term represents the potential transport rate at hub n when transport

demands at hubs n and n− 1 are pooled at hub n− 1,30 while the last term is the current

transport rate on the direct link between hub n and the gateway. Since (29) can be rewritten

as
Dn

ρhn−1
∆T∗∗(hn) =

Dn

Dn−1 + Dn

[
φ

ρ

1
hn−1

+ 1
]
− 1 , (30)

it follows that

lim
hn−1→∞

∆T∗∗(hn) < 0 . (31)

Hence, for a sufficiently remote hubs, n and n− 1, a cost reduction is possible by pooling

their transport demand.31

The result here (again) implies that the emergence of a major regional hub should occur

at a sufficiently remote location (from the gateway). An intuition behind this result can be

given as follows. If the distance economies are relatively stronger than density economies,

there will be relatively small advantage of integrating transport demand among hubs, i.e.,

higher-order hubs is less likely to be formed. In particular, when these two hubs, n and

n− 1, are located closely to the gateway, because of the fixed cost, φ, the integration of

transport demand from both hubs is more costly than the direct link from each hub. But,

when these two hubs are sufficiently far from the gateway, the fixed cost of the additional

stopping will eventually become negligible, relative to the benefit of cost sharing on

the long link to the gateway. It follows that as long as ρ (and φ) is strictly positive, the

formation of a higher-order hub in an area sufficiently far from the gateway would lead to

a substantial cost reduction in the transportation from the peripheral region. Hence, under

possibilities of some form of coalition leading to the formation of trunk links, it is likely

30The first [resp., second] term in the bracket is the transport rate between hub n− 1 and the gateway
[resp., hubs n and n− 1].

31Obviously, for a hub to be viable at a large hn, the fringe location, F, should also be large.
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that the hub hierarchy deepens as the economy expands spatially.

This result also complements the result in the previous section, and can be considered

to provide another explanation for why larger hubs can only emerge at a larger spatial

interval as pointed out in the motivating example in Japan in the Introduction.

Finally, it is worth noting that the insights obtained in Sections 7.1 and 7.2 together

have an implication to the size distribution of transport hubs. On the one hand, when

density economies dominates distance economies, the hub hierarchy tends to be deeper

(e.g., trains tend to stop at a larger number of stations), so that the size distribution of

hubs is relatively less skewed. But, the viability of major regional hubs which climb up

the hub hierarchy for a larger spatial economy implies the tendency that the skewness

of the size distribution increases (at the upper tail) as the spatial size of the economy

increases. On the other hand, when distance economies dominates density economies, the

hub hierarchy tends to be shallower (e.g., airlines stop far less than trains before reaching

the final destinations), so that the size distribution of hubs is relatively more skewed (e.g.,

only the gateway has disproportionately large traffic in the network depicted in Figure 7).

But, the fact that the formation of higher-order hubs becomes possible for a large spatial

economy implies that the skewness of the size distribution may decrease (at the upper tail)

as the spatial size of the economy increases.

8 Concluding remarks

In this paper, a simple model of transport network formation was proposed to show that

the increasing returns in transportation restricts the structure of transport network in its

own right. In particular, it has been shown that the two types of increasing returns in

transportation, i.e., distance and density economies, play a crucial role in determining the

viable locations of transport hubs.

Under larger density economies, it is more efficient to stop more frequently to accumu-

late transport demand, hence the spacing between the parent and child hubs tends to be

smaller. Under larger distance economies, it is more efficient for a mass transport mode
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to have a longer transport link, hence a larger spacing between a parent and child hubs

would result.

This section closes the paper by discussing implications of the two increasing returns in

transportation to the size and spacing of cities in Section 8.1, the limitations of the present

analysis in Section 8.2, and an immediate extension of the present research in Section 8.3.

8.1 Implications to the size and spacing of cities

As transport hubs have a better transport access than non-hub locations, they are natu-

rally more likely locations for industries and population. This result has an important

implication to the economics of agglomeration in which the location (and the spatial

distribution) of industrial and population agglomeration is a central subject. Other than a

few specific exceptions (discussed in Section 2), either no increasing returns are assumed

for transportation, or transport network structure is exogenous in this literature. But, the

result of the present analysis indicates that increasing returns in transportation could be a

major determinant of the size and location of economic agglomerations, as they determine

endogenously the transport cost structure within the spatial economy.

The balance between distance and density economies not only affects the spacing

of hubs, but also generates economic subregions in terms of an endogenous transport

hinterland of a hub. Though the thorough investigation of the hierarchical transport

network is beyond the scope of this paper, a preliminary analysis in Section 7 suggests that

a wide spread transport demand makes possible the formation of a higher-order regional

hub which requires both a large local hinterland and a long distance to the gateway. As a

result, larger regional hubs would be formed farther apart from each other, which may in

turn explain a larger spacing between major cities.

As transport costs account for increasing and non-negligible share in the international

trade,32 the mechanism underlying the transport network formation should obtain a

32E.g., Anderson and von Wincoop (2004) estimated the ad valorem tax equivalent transport costs as 21
percent for industrialized countries. According to Hummels (2007), the ratios between aggregate transport
costs and aggregate tariff duties for the US imports were 1 : 2 in 1958, 1 : 1 in 1965, and 3 : 1 in 2004.

22



serious attention in explaining the specialization pattern among countries as well.

8.2 Limitations of the present analysis

The present analysis is a modest step toward incorporating endogenous transport network

structure to the general equilibrium urban and regional models. At this point, however, it

only focuses on the most basic role of distance and density economies of transportation in

determining the locations of hubs.

An obvious shortcoming of the present model is the lack of microeconomic foundation

for these increasing returns. First, although density economies assumes underlying match-

ing externalities between supply and demand of transport services (refer to footnote 3),

the mechanism is completely in a black box. Second, while the ranges of both transport

density and distance for which increasing returns are effective differ depending on the

type of transport mode in reality, these increasing returns are assumed to be effective for

the entire range of density and distance levels, i.e., the modal choice is implicit in the

present model.

Next, the “viability” of a hub at a given location is only a sufficient condition for the

cost reduction by the hub formation. But, it does not specify any concrete mechanism by

which the hub is to be formed. This is indeed the difficulty that the modeling of transport

network formation faces in general, as it must consider a collective decision making or the

presence of large agents to coordinate the adjustment of a mass of transport flows, since

the trunk link cannot start from a marginal size in a decentralized self-organization.33

Finally, in order to accomplish the ultimate objective mentioned above, it is also

essential to endogenize the spatial distribution of transport demand, i.e., that of economic

agents by explicitly modeling the production and consumption sectors. In that case, since

transport demands are generally directed toward multiple locations, the problem of route

choice by passengers becomes far more complicated, which prohibits a simple argument

33It is somewhat similar to the city formation as it requires a large agent in the “system of cities” model by
Henderson (1974). An exceptional formulation has been proposed in the new economic geography by Fujita
and Krugman (1995) in which a city forms in a self-organizing manner from an arbitrarily small size in a
continuous location space. But, the same technical trick cannot be applied to the transport network.
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of hub viability in the present setup.

8.3 An immediate extension

Despite many limitations listed in the previous section, it is a straightforward extension

of the present paper to investigate the properties of equilibria in a large spatial economy

based on the hub viability concept (while keeping one-directional transport demands). As

the preliminary analysis in Section 7 indicated, there would likely exist equilibria with

multi-order hierarchical transport network for a large F and/or ν. While the non-linear

effects of the two increasing returns make it difficult to identify all equilibria, it is still

possible to identify general properties of equilibrium network structures by utilizing

numerical methods and by letting hub viability guide the search.

A preliminary analysis in this direction indicates that in a large spatial economy, the

size distributions of hubs exhibit a striking similarity across transport hinterlands of

higher-order hubs (i.e., Hi of hub i in Section 5). A fuller investigation in this direction is

to be conducted in a subsequent work.
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Figure 5: Transport cost schedule under the network in Figure 4
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