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Abstract

In estimating the production function of firms, problems of endogeneity and self selection exist as a result of
firm-specific productivity shocks and entry/exit decisions. Several methods have been proposed to handle
these problems, such as those by Olley and Pakes (1996) and Levinsohn and Petrin (1999, 2003). However, the
endogeneity of labor input does not seem to be completely solved by these methods. We therefore propose an
alternative semiparametric 1V estimator. We suppose that firm-specific productivity influences labor input as
well as capital input. We adopt the lagged variables of inputs as their instruments instead of investment inputs,
unlike Olley and Pakes. Moreover, our econometric model should automatically adapt to the effect of the exit
decision of each firm. We applied the model to Japanese plant-level panel data from 1982 to 2004 on the
Census of Manufactures provided by the Ministry of Economy, Trade and Industry. We found that our
estimator works well in an empirical study in terms of sign and magnitude of the technological parameters.
Using the estimation residuals, we decomposed the TFP into firm-specific productivity and other exogenous
shocks. We also aggregated the productivity shocks to industry-level productivities to determine the transition.
We examined whether negative technological shocks were the main cause of poor economic performance in
Japan during the “lost decade”, and found that productivity did not decline in most Japanese industries since
the 1980s. This implies that the recession might have been caused by demand-side factors rather than

supply-side issues.
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1 Introduction

Since the burst of the bubble economy in the early 1990s, the growth rate of the Japanese
economy has obviously not been increasing, and it is said that the productivity continues
to decline. This period is sometimes called the "lost decade". A number of researchers
investigated what occurred during the period. The government also attempts to answer the
question in the quest for an effective policy to increase GDP growth. One possible reason
for the low or negative growth rate is the low level of industry productivity. Although
we can take a macroeconomic approach for such an analysis, recent microeconometric
developments allow us to investigate the problem using micro-data such as plant and
segment-level data. Such an analysis will yield a more precise statistical result at various
levels of aggregation.

The most commonly used measure of productivity is the total factor productivity (here-
after TFP). Production technology of a firm or an economy is characterized by its produc-
tion function. Cobb and Douglas (1928) proposed a production function with the following

form:

Yi = ALD K (1)

where Yit, Lit, K; indicate the output level, labor and capital inputs, respectively of firm
(or any production unit such as a plant) 7 at time t. §;, Or and A, are parameters that
determine the production technology. In the case of Cobb-Douglas production technology,
TFP is defined by log A, and it has been empirically measured by its estimate since the
pioneering work by Solow (1957). Taking the logarithm of (1) and adding a disturbance

term wu, we transform the Cobb-Douglas production function into a log-linear form,

yit = Bo + Bilie + Brkir + wir (2)

where l;; = log Ly, ky = log Ki,fo = log A. Christensen, Jorgenson and Lau (1973)
considered an extension of the Cobb-Douglas production function to the following more

general and flexible functional form that is a polynomial of independent variables:

Yit = Bo + Bilit + Brkir + Bull, + Bulitkie + Brks + wir. (3)

This is called the Translog production function. These two functional forms are widely
used in theoretical and empirical economic research, and in the context of productivity
analysis.

Numerous previous empirical works estimated the production function of the above
forms (2) and/or (3) by using the ordinary least squares (OLS) method and treated 3+ i
as an estimate of TFP, where Bg and 4; are estimate of By and the regression residual.

In this context, however, as discussed in Marschak and Andrews (1944) and many other



subsequent papers, there can exist an econometric problem of endogeneity in OLS esti-
mation. Firms may determine the factor input levels depending on their productivities,
namely Gy + u; if they can observe their own idiosyncratic shocks u; before making the
decision. Then [;; and k;; must be correlated with the error term, which creates a bias in
the OLS estimators.

Several methods have been proposed to handle this endogeneity problem such as Olley
and Pakes (1996) and Levinsohn and Petrin (1999, 2003), abbreviated as O&P and L&P

respectively. They split the error term wu; into two components as follows:

Yit = Bo + Bilit + Brkie + wit + M3t

wyy represents firm-specific productivity or technological shock, which firms can, but econo-
metricians cannot, observe before their input decision. Thus, it is possibly correlated with
the factor inputs. 7;; denotes the ordinary error term uncorrelated with the explanatory
variables. They explicitly considered a correlation between w;; and k;;, assuming exogeneity
in l;, and propose estimation methods solving the endogeneity problem.

The purpose of this paper is three-fold. First, we propose an alternative estimation
method to O&P, L&P and their variants. Our alternative is a semiparametric instrumental
variable estimator that is relatively easier to compute and allows for endogeneity in both
capital and labor inputs, unlike O&P and L&P. Exogeneity of l;; is an empirical issue
and it may or may not be an adequate assumption. For example, l;; is more likely to be
exogenous in such industries in which a labor union has significant bargaining power and
managers cannot easily change the labor input. On the other hand, l;; may be endoge-
nous in industries employing many part-time workers or seasonal workers. In principle,
exogeneity in l;; should lead to a bias in OLS, O&P, and L&P estimates, and we examine
its direction theoretically. Second, we propose two methods to decompose the residuals
into w;; and 7. This is important for the following reason. When TFP, the sum of 3y,
wy, and g, of a country is declining, the government claims that "the productivity is low"
and wants to increase it through economic policy. However, the necessary policy to be
taken by the government must differ based on which of w;; and 7;; is the main cause of the
poor economic performance. In the present setting, w;; represents the technological (the
supply side) shocks and 7;; includes other shocks, such as demand shocks. If the former is
the main cause, the government should give firms incentive to invest in R&D to improve
supply-side performance. If the latter, say demand shock, is the cause, the government
should implement a suitable macroeconomic policy to increase demand. In standard TFP
measurements, we typically obtain only, w;: + 75, but this is not sufficient to determine
the most appropriate and/or efficient policy. The government must know wj; and 7;+ sepa-
rately for such a purpose. Third, we applied the proposed method to estimate production
functions of a variety of industries in Japan using plant level data from 1982 to 2004, and

decompose the TFP into w;; and n;. Then we determined whether the productivity, or



more precisely technology, of Japanese firms declined during the so-called "lost decade"
period of 1992-2002.

In the empirical study, the proposed estimation procedure provides reasonable estimates
of §; and B, and we found that the estimates mostly supported the bias direction of OLS
and L&P depending on the industry. In some industries, we found no bias in L&P where
we supposed that there was no endogeneity in /. We computed the productivity shock
wy for each plant and year, and constructed industry-level productivity shocks. In general,
we found no negative productivity shocks though it is said that productivity decreased or
was very low during the "lost decade".

The following section reviews some of the previous research that solved the endogeneity
problem in productivity analysis. Section 3 proposes an alternative IV estimator to O&P
and L&P. Section 4 shows estimation results of the OLS, L&P, and the proposed method,
and discusses about the bias resulting from endogeneity in l;;. We explain how to decom-
pose the TFP into productivity shock and the error term, and apply the methods to the
present Japanese data in Section 5. We also show supporting evidence that our estimation
and decomposition performs reasonably well. Concluding remarks and future research are

in Section 6.

2 A Brief Review of the Literature

A number of previous studies estimated production functions from a variety of motivations.
Here we want to estimate it to compute micro-level productivity. The above model provides
a possible econometric model in the case where firms determine their factor inputs after
observing their technological shocks. This econometric model is widely used in empirical
research after O&P and L&P, and its variants have been developed recently. We quickly
review the literature in this field.

Several methods proposed to handle this endogeneity problem include O&P and L&P.

They split out the error term w;; into two components as follows:

Yit = Bo + Bili + Brkir + wit + M3t (4)

wjt represents firm-specific productivity or technological shock, which firms can, but econo-
metricians cannot, observe before their input decision. Thus, it is possibly correlated with
the factor inputs. wj is assumed to be a first-order Markov process and 7;; denotes the
ordinary error term uncorrelated with the explanatory variables. They explicitly consider a
correlation between wy and k;¢, assuming exogeneity in l;;, and propose estimation methods
to solve the endogeneity problem.

O&P propose a solution to this problem using the investment decision of each firm as a
proxy to wj; in (4). This is motivated by Pakes (1996) which proves that optimizing firms

have investment functions that are strictly increasing in the unobservable productivity



shock w;;. L&P use materials m;; to proxy ws instead of investment, because of many
zero-investment observations. As pointed out by L&P (2003, p. 321), the investment
function may have kinks that can cause a bias. We explain the method proposed by
O&P and L&P in the context of the latter paper under a slightly simplified setting. The

monotonicity of the input demand function with respect to w;; allows the inversion:
wit = w(mit, kig). (5)

They assume E(w;;) = 0 and E(nit|kit, li) = 0. The former is for the identifiability of 5y
and the latter means that 7;; is the standard disturbance term. Inserting (5) into equation

(4), we can write the model as a partially linear form:

vie = Po+ Bilie + Brki + w(ma, ki) + nie
= Bilit + d(mit, ki) + mit, (6)

where ¢(mi, ki) = Bo + Brkit + w(miz, kit) is an unknown function of mg, kiy. Then we
can apply Robinson (1988) to obtain consistent semiparametric estimates of 3; and ¢(-,-)

as follows. As a result of E(n;|mg, ki) = 0, we have, from (6),
E(yit|mat, kit) = BiE (Lig|mie, ki) + o(mig, kig). (7)
Subtracting (7) from (6), we obtain,
Yit — Eyitlmie, kit) = Bi{lie — E(lit|mie, kie) } + it (8)

Replacing the conditional expectations by nonparametric estimates, we apply the least
squares method to estimate [3;. To estimate ¢(-,-), we regress y; — Bllit on (mj, kit) non-
parametrically.

In the second step, By, Ok are identified and estimated. Letting & = wit — E(wit|wit—1),

write

d(mie, kie) = Po + Brki + w(mi, kir)
= Bo + Brkit + E(wit|wii—1) + &it- (9)

Inserting equation (9) into (6), we have
Yit = Bo + Bilit + Brkir + E(wit|wii—1) + it + it (10)

where &; + n;: is uncorrelated with k;t, l;;. Given some fixed values of By and [, we can
"estimate" w;; by
Wit = Yit — Bo — Bilit — Brkit-



It is possible to construct an estimate for E(wjt|w;¢—1) by regressing @;; on w; 1 nonpara-
metrically, which is denoted as E(ﬁoﬁk)(wiﬂwi,t_l). The subscript (8o, Bx) indicates that
the estimated conditional expectation depends on the prefixed values of (5o, Ok). Inserting

3 from the first step and this estimate into (10) , we have

yit = Bo + Bili + Brkit + E gy ) (witlwig—1) + Eit + it

Then we can estimate (0, O;) using a non-linear least squares method or the generalized
method of moments.

Ackerberg, Caves and Frazer (2006) (hereafter, ACF) proposed an alternative estima-
tion method that allows firm’s dynamic decision of labor. Using intermediate inputs my,

we can write (11) analogously to (5) as follows:
wit = w(Mit, kit, lit)- (11)
Inserting this into (4) and dropping the constant term, we obtain

yir = Bl + Brkit + w(mig, ki, Lie) + it
= D(wir, kit, Lie) + M3t

®(w, k, 1) is obiviously identifiable and estimable. Assuming that wj; is a first order Markov

process, we have

wit = Elwitlwit—1)+ &
= g(wit—1) + &

For this disturbance &, we have a moment condition E(&;|kit, li+—1) = 0. Given values for

(Bk, ;) and using an estimate for ®, we can construct

Oy, ) (Mt K, i) = ©(wi, kit in) — Bilie — Brkir.

They regressed wg, g,)(Mit, kit, lit) on W(g, g,y (Mit—1,kit—1,li1—1) and obtained the regres-
sion residual f( Br.B1) (miy, kit, liz). Finally, the above moment conditions are used to estimate
(B> B1)-

To the best of our knowledge, not many studies applied these methods to a Japanese
plant-level dataset. Fukao and Kwon (2006) used plant-level data of Japan to examine
productivity during the "lost decate". Fukao et al. (2007) applied the L&P method
to estimate the plant-level production function of Japanese firms. However, their main
interest was not in the TFP, but in the wage function and labor productivity. Kim (2008)
measured TFP based on a similar econometric model taking into account endogeneity,

where wj; is determined at least in part by R&D.



Doraszelski and Jaumandeu (2007) studied the relation between R&D and wj; using
data from Spanish manufacturing companies. They took the approach by ACF explicitly
modeling wj; such that it depends on R&D. Kim (2008) used the same method to examine
Japanese data. Fox and Smeets (2007) explored solutions to the "too much" dispersion of
measured TFP in the cross-sectional direction by considering labor quality and adopting
the O&P method. Gandhi, Navarro and Rivers (2009) introduced the idea of using the
share equations to identify firm-specific productivity. The key advantages of their method
are first, to avoid the endogeneity of inputs and second, to adopt additional heterogeneities
among firms in their estimation to improve the accuracy of measuring firm-level productiv-
ity. Blundell and Bond (2000) proposed a solution to the finite sample bias problem given
weak instruments in implementing the first-differenced GMM estimation, and applied a
system GMM to estimate the Cobb-Douglas production function. They found a higher
and strongly significant capital coefficient in the U.S. data.

Many other papers are related to this problem. See the references in these articles. We
also refer to Ackerberg, Benkard, Berry and Pakes (2007) and Syverson (2010) for a brief
survey of this field.

3 An Alternative Estimator

We propose an estimator for (4) with the above stated endogeneity. O&P and L&P show
how to use investments and intermediate inputs to control for the correlation between k;;
and wj;. They identified the parameters in an ingenious way and proposed estimators.
However, the endogeneity problem of input levels does not seem to be solved completely
by these methods because they only take into account the correlation of productivity shock
wir with capital input level k;, not with labor input l;;. If [;; is also determined by firms
depending on wj like ki, we have E(lit|mit, kit) = E(lit|wit) = lix. Then (3 is not obviously
identified in view of (8), and the first-step estimation procedure for f; collapses.

As long as the assumption related to exogenous labor input is correct, either O&P or
L&P will provide consistent estimates of the parameters. One may not, however, agree
with the assumption as an actual decision that firms make. It is, we believe, an empirical
issue, that should not be simply assumed without empirical investigations. We propose an
alternative semiparametric IV estimator that allows for the endogeneity in both inputs.

We adopt the lagged input variables as the instruments and rewrite equation (10) as

Yie = Bo+ Bilie + Brkie + E(witllii—1, kig—1) + &t + Mt
= Lo+ Bilit + Brkir + 9(lir—1, kit—1) + it + Mt (12)

where g(lit—1,kit—1) = E(wit|liz—1,kit—1) and & = wip — E(witllit—1, kiz—1). From this



equation, we immediately know the following moment conditions:
E(&i|lit—1,kiz—1) =0,

E (mt

lit—1,kit—1) = 0.

Although we want to consider the above two moment conditions separately, we can only

use

E(&t +nitllit—1,kit—1) =0, (13)

for the estimation of parameters since &;; and 1 are not separable. Using that wj; is a first

order Markov process, we also have the following moment condition:
E(&t + nitllit—2, kit—2) = 0. (14)

If g(-,-) is known, the above conditions would identify the parameters and we can easily
estimate them. Since it is unknown, we approximate it by a linear combination of series
functions. Letting ¢p(u), p=0,1,2,--- be a set of basis functions over a suitable L? space,

we can appoximate any function in the space as

Jn  Jn

9lig—1.kiz—1) = DD cpgdp(liz—1)dg(kiz—1), (15)

p=0g¢=0

for some J,, — oo as n — oo more slowly than n. Plugging (15) into (12), we obtain the

final form,

Jn JIn

yit = Bo + Bilit + Brki + Z Z Cpg®p(lit—1) g (Kit—1) + &t + Nt (16)

p=0g¢=0

We can estimate (o, 5, Bk, cpg by @ GMM method using the moment conditions (13) and
(14). Any basis functions can be used in theory for ¢,(-), but if we use standard polyno-
mials, we easily face the multicollinearity problem:; therefore, we can include polynomials
up to, say, only the third order.

We briefly describe the advantages and disadvantages of this estimator. We allow for
the correlation between w;; and k;; as well as wy and l;;. O&P use investment as a proxy
variable for w;; but it is not necessary here. There are two problems with using investments
as Levinsohn and Petrin (2003) pointed out. First, investment data are hardly available, es-
pecially at the plant or segment level. Second, the investment function may not be smooth,
which can create an estimation bias. A disadvantage is that we use l; 11, ki t—1,li 1—2, kit—2
as instrumental variables so that the number of observation effectively used decreases. We
also point out the possibility of high correlation between kj; and k;;—1, and/or betweenl;

and [; 1, which make the estimate unstable. When we have access to suitable exogenous



or predetermined variables for period t — 1, we can use them similarly to L&P. Indeed, we
do so in the following sections; namely, we use the following moment condition in place of
(14):

E(&q¢ + nitleis—1,miz—1) =0,

where e; ;1 and m; ;1 are electricity usage and materials respectively.

4 An Empirical Study for Japanese Plant Level Data

Using plant level Japanese micro panel data, we estimate the Cobb-Douglas production
function by three methods, OLS, L&P, and the new method proposed in the previous
section, called INK hereafter. Although it is possible to apply suitable panel estimation
methods, we do not take this approach because of the possibility of changes in technological
parameters G, 0; over time. We use the data as a series of cross sectional observations
partly because we have rather large sample sizes in many manufacturing industries for each
year.

In terms of estimation, we are interested in the following points. First, we would like
to examine whether the technological parameters By and (3; changed over time. It is said
that, in Japan, labor productivity has been increasing over time in recent years, but capital
productivity has been decreasing. We can confirm this by estimating parameters year by
year and comparing the estimates over time. Second, we would like to check whether
any endogeneity, as considered in the model, exists. If no endogeneity exists, all three
estimators must provide similar results. If only the capital input is endogenous, as assumed
by L&P, L&P and INK must provide similar results. If all inputs have endogeneity, the

three methods must give different estimates.

4.1 Estimation Model

We employ the same type of model as (4);
Yit = Pot + Bulit + Brtkie + wit + nit, (17)

where y;t, l;+, kit are log-value added, log-labor input and log-capital input of plant ¢ at
time t. wy and 1y indicate productivity shock and exogenous idiosyncratic disturbance,
respectively. This is the same specification as (4) in the previous sections, but different
in that the parameters can be time dependent. We use the observations of materials m;;
and electricity usage e;; as the instruments in addition to k; ;—1,l;+—1. Because k;;—1 and
ki ¢—o are highly correlated in our data, including both k;;—1 and k;;—o simultaneously
as instruments is inadequate. We proxy wj; by e€;¢—1, m;¢—1 for reasons discussed later.

Letting {¢p(z)};2¢ be a complete basis of an Ly space, we use the following estimation



model:
vit = Bot + Brekit + Pl +wir + i, 1 =1,---,n, t=1,---,T,

Jn JIn

wit = g(€i—1,Mit—1) + &t = Z Z Cpq®p(€it—1)Pp(mit—1) + &t

p=04¢=0

with the moment conditions,
E(& + €itleit—1,mi—1,lig—1,kig—1) = 0,

where g(ej¢—1,mir—1) = E(wit|eit—1,mi—1) and Jy, is a user-determined constant sat-
isfying J,, — oo and J,/n — 0 as n — oo. In our empirical analysis, we employ the
trigonometric series by transforming the energy input by 2m(e;;—1/ max;e;4—1) — m for

each year and similarly for the materials.

4.2 Bias Evaluations Resulting from Endogeneity: OLS and L&P

Before showing the empirical results, we studied the possible bias of OLS and L&P es-
timators for (17). Bias exists when either or the both of the explanatory variables are
endogenous. We evaluated the bias direction under endogeneity. Let sz, =n =1 31" (2; —

z)(yi — y), and write the OLS estimator as

( By ) _ ( By ) n 1 ( SkkStu — SlkSku >
Bk Bk SERSIL — Sty \ SuSku — StkStu )
where u = w + 1. We have sgis; — s%l > 0 unless k and [ are completely correlated. If k

is endogenous, Sk, > 0, and if [ is endogenous, s, > 0. We first consider the bias of Bl.
Putting pzy = Szy/\/SzxSyy, We write

> SkkSlu — SlkSk Skk+/SUS
B — B = - = (1w — PikPku)-
SkkSll — Sk SkkSll — Sk
The sign of the bias is the same as that of pj, — pikprw because Sgx+/SuSuu/(SkkSu —
s2;) > 0. We observe 0 < pjx < 1 in our dataset; thus, E(Bl) — 6y < 0 when only Kj is
endogenous. If both K;; and L;; are "equally endogenous" (meaning py, & pry), or Li is

"more endogenous" than Kj; (meaning py, > pru), E(Bl) — 6; > 0 tends to hold. Similarly,

writing
P SllSku — SlkSlu S114/ SkkSuu
Br — B = 5 = 5 (Pku — PIRPW),
SkEkSI — S SkkS1l — Sy

we see that E(Bk) — Bk > 0 when only Kj; is endogenous, both Kj;; and L; are "equally
endogenous", or Ky is "more endogenous" than L;.
L&P should be asymptotically unbiased when only Kj; is endogenous. However, if both

K and Ly are endogenous, §; tends to have a positive bias in view of its identification



Table 1: Bias Direction
Endogeneity | Parametor | OLS | L&P | INK
Only K O + 0 0

By — 0 0
Both K&L O +(*) | +/0/— 0
Bi +(*) + 0

(*) When pry, = pru(> 0).

strategy (L&P(2003), eq.(4)):
Yit — E(yitlkir) = Bi{lic — E(Litlkit) } + &t + 1t

L&P assumes that labor input is not endogenous, or l; and 7 are uncorrelated. This
motivates them to use a least squares method following Robinson (1988). If, however,
labor input is also endogenous, l;; and 7 should have a positive correlation. Then the
L&P estimate of 8 should have a positive bias in view of the above equation. We do not
know the sign of the bias for 8y by L&P. INK should be asymptotically unbiased even

when both K;; and L are endogenous. Table 1 summarizes the results.

4.3 Data

We use "Census of Manufactures" provided by the Ministry of Economy, Trade and In-
dustry in the empirical study. Our target is establishments (plants) with 30 or more
employees. This includes about 1.33 millions establishments for 23 years from 1982 to
2004. The plants are classified by Japanese Standard Industrial Code (hereafter JSIC).
Plants producing two or more kinds of products are classified by the product with the
largest shipment value from the plant. We use the six largest industries and two major
high-tech industries by two-digit JSIC. Table 2 shows the number of plants and the mean
of value added in each of the eight industries: food (9), general machinery (26), metal
products (25), apparel (12), electrical machinery (27), transportation equipment (30) and
information & communication electronics equipment (28) and electronic parts & devices
(29). L&P picked up the eight largest industries in the Chilean data: food, metal, textile,
wood product, other chemicals, bevarages, printing and publishing, and apparel. The food
industry is the largest in these two countries and the apparel industry is also large, but the
others are not common. Japan has more weight on the heavy manufacturing industries.
Figure 1 shows the number of plants in the food and apparel industries. The food indus-
try is considered stable against economic fluctuations, while the apparel industry may be
relatively sensitive. After the burst of the economic bubble in 1991, the number of apparal
plants continued to decrease.

We define the dependent variable, value-added, and covariates, capital and labor inputs,

10



Table 2: Number of Plants and the Mean of Value Added (Million Yen)

JSIC: 9 JSIC: 12 JSIC: 25 JSIC: 26
Year | Plants | Value | Plants | Value | Plants | Value | Plants | Value
Added Added Added Added

1981 | 5961 713.8 | 3802 | 211.9 | 4043 | 6642 | 5268 | 1240.9
1985 | 6275 | 830.2 | 5001 2514 | 4109 | 840.8 | 5712 | 1449.9
1990 | 6954 | 954.7 | 5380 | 300.7 | 4617 | 1099.9 | 6079 | 1839.5
1995 | 7311 | 1094.9 | 4539 | 329.3 | 4594 | 11989 | 5735 | 17925
2000 | 7309 | 1105.1 | 2760 | 337.1 | 4206 | 11129 | 5617 | 1781.1
2004 | 7067 | 1101.0 | 1789 | 327.7 | 3908 | 1051.2 | 5263 | 1841.1

JSIC: 27 JSIC: 28 JSIC: 29 JSIC: 30
Year | Plants | Value | Plants | Value | Plants | Value | Plants | Value
Added Added Added Added

1981 | 3051 | 1165.8 | 1793 | 1385.4 | 1925 | 1062.1 | 3088 | 2647.9
1985 | 3786 | 1446.3 | 1674 | 1632.4 | 2753 | 1474.6 | 3260 | 3356.3
1990 | 4361 | 1733.8 | 1352 | 2457.9 | 2663 | 2117.7 | 3315 | 4110.2
1995 | 4146 | 1933.1 | 1565 | 3459.3 | 2733 | 2674.0 | 3283 | 4169.3
2000 | 3622 | 2037.4 | 1380 | 3812.3 | 2559 | 3527.8 | 3145 | 4033.1

2004 | 3012 | 2098.6 978 3565.9 | 2172 | 3802.3 | 3282 | 4519.2
JSIC 9: Food, 12: Apparel, 25: Metal, 26: General Machinery, 27: Electrical Macinery, 28:

Information & Communication Electronics Equipment, 29: Electronic Parts & Devices, 30: Trans-

portation Equipment
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Figure 1: Number of the Plants: Food and Apparel Industry
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in our empirical work as follows. To obtain the value-added (VA) of production activities

in year ¢, we use the following variables:

e VA = (total shipment) - (cost of materials, fuels and electricity) - (starting inventory
of finished and half-finished products) + (final inventory of finished and half-finished
products)

The value of tangible fixed assets (K) includes buildings and structures, machinery and
equipment with a durable life of one year or longer. We use the number of regular workers

as labor input (L):

e K = (Starting tangible fixed asset) + (acquired tangible fixed asset during the year)—

(depreciation)

o L — (# of full time workers) + (# of part-time workers) + (# of workers dispatched

from other companies).

In choosing the proxy for w;:, we have four informative intermediate inputs such as elec-
tricity, fuels, materials and water. L&P uses three intermediate inputs (fuels, materials
and electricity) as proxy variables. We note that present dataset contains no plant-level
investment observations. The Chilean data of L&P include investment observations, but
also include over 50% of zero observations in each industry. They prefer materials and/or
electricity to fuels as the proxy given the larger percentage of "non-zero" observations in
the industries chosen. Table 3 shows the percentage of zero observations of in the four in-
termediate inputs for the eight industries in our dataset. We found that more than 90% of
the plants reported non-zero observations for all four inputs in each of the eight industries.

L&P provided further guidance in selecting proxy variables. First, intermediate inputs
used as a proxy should be reliably and stably supplied, and then they should be highly
correlated with w. L&P point out that electricity supply was unreliable in Chile during the
period, and that a delivery problem for fuels might exist. In the present Japanese data,
such supply problems in energy seem not to exist. Second, they mention a measurement
problem related to the intermediate inputs. We would like to measure the exact amount of
inputs used for production in a year. Firms usually record only the input purchased, not
the amount used, in a year. L&P expects that electricity, for example, can be a good proxy
because it cannot be stored. The amount of fuels and materials should have measurement
errors because of the possible input inventory. L&P has the observations on consumed
amounts of electricity, but only new purchases of fuels and materials.

Our dataset contains the consumption-based data on electricity, fuels, materials and
water in each year, all of which satisfy the above two requirements, in addition to having
a good non-zero observation rate. We eventually chose electricity and materials as proxy
variables and IV variables in our estimation. We dropped the fuels and water because the
former included more non-zero observations than the other candidates and the latter had

a relatively large correlation with electricity and materials.
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Table 3: The Percentage of Zero Observations

Industry (JSIC) Electricity | Fuels | Materials | Water
Food (9) 060 % |240% | 0.890% | 017 %
Apparel (12) 039% |614% | 474 % |0.63%
Metal (25) 1.21 % 634 % | 166% |0.32%
General Machinery (26) 081 % |745% | 1.00% | 034 %
Electrical Machinery (27) 096 % |913% | 506% |0.45%
Information & Communication

Electronics Equipment (28) 0.87% [824% | 732% |051%
Electronic Parts & Devices (29) | 0.97 % [953% | 691 % | 051 %
Transportation Equipment (30) 216 % | 587 % | 352% | 054 %

4.4 Estimation Results

We are mainly concerned with the following two points in parameter estimation. First, we
would like to examine whether the technological parameters (5 and 3; have been changing
over time. It is said that, in Japan, labor productivity has been increasing lately over
time but capital productivity has been decreasing. Indeed, the relative shares of labor
and capital are approximately (0.65,0.35) in 1980 but (0.75, 0.25) in 2008 according to
the Japanese SNA report. Second, we would like to check whether endogeneity exists
based on the bias examination in the previous section. If there is no endogeneity at all,
all three estimators must provide similar results. If only capital input has endogeneity
as supposed by O&P and L&P, the L&P and INK estimator must be close. If all inputs
have endogeneity, the three methods must give different estimates. Our purpose is not to
statistically test whether endogeneity exists, but rather to gain an impression about it.
Figure 2 presents the estimation results for eight industries. We use the solid line and
the solid line with circles for OLS results, the dotted line and the dotted line with circles
for L&P results, and the dashed line and the dashed line with circles for INK results. Lines
with circles are the estimates for §; and lines without circles are for 8. (; are always larger
than 0 for all industries, and this does not depend on the estimation method. Moreover,
all three estimates of Jj are less than 0.4 and ; are over 0.6 for all industries. Although
we expected that (; increases and [y decreases lately given macro economic indices, our
results indicate that both §; and (; have been stable for all industries. We may conclude
that labor-intensive industries have recently increased their share in the entire economy.
We would also like to examine the existence of input endogeneity. In Figure 2, we
observe that OLS provides greater coefficient estimates than L&P and INK in all indus-
tries. Also, Bl_ Lp is greater than B;_ Nk in the food, electrical machinery, metal and
general machinery industries, while Bk_ Lp is about the same as or slightly smaller than
Bk_ Nk - This is consistent with the case in Table 1 when both k;; and [;; are endogenous.
Thus, we conjecture that because of endogeneity problems in both inputs, the OLS has
an upward bias for both G, 6; while L&P for §; has upward bias in at least some indus-
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tries. The apparel industry is an exception, where (Bl_ LP, Bk_ rp) are almost the same as
(Bl_ INK, Bk_ INk ). This suggests that only capital input has endogeneity in this industry,
as supposed by L&P. From these findings, we may conclude that there exists endogeneity

both in k and [ in some industries investigated here.

5 Measuring Firm-Specific Productivity

In the standard TFP analysis where w;; does not appear, or there is no endogeneity, we sim-
ply run an OLS regression and compute the residual, and then regard this as productivity.

Similarly, in view of (4), it is natural to compute the residual,
wit + it = Yit — Bo — Bilit — Bikean (18)

to obtain the productivity shock, where 5o, 31, Bx are INK estimates. Noting that E(ni|kit, lit) =
0, we might be able to regard w;; + ;¢ as an estimate of technological shock. However, this
residual should in fact include not only technological shocks but also other shocks such

as demand shock. Therefore we should be careful in regarding wit/-i-\m‘t as an estimate of
productivity shock w;;. As discussed in the introduction, small w;; and small 7;; can lead

to completely different policy implications. Furthermore, statistically, if Var(n;) is large,

(18) may not be an accurate estimate of w;. Thus, in our view it must be important to
extract wy out of wit/—i-\mt.

It also seems reasonable to estimate wy by

Jn In

G(lig—1,kig—1) = Z Z Cpg®p(lit—1)dq(Kit—1)

p=0¢=0

in view of (12) and (15). However, we do not believe this is satisfactory because, obviously,
kit and l;; (or other inputs at time ) must possess more information on w;; than variables
at t — 1. Writing wir = g(kit—1,lit—1) + &, 9(kit—1,li1—1) includes information only at
time ¢t — 1 and that of time ¢ should be squeezed into &;. In this sense, &; must include
information on wy. It is also possible to measure w;; from the profit maximization behavior
of each firm. In the following section, we describe how to identify or extract w;; at least in

part, and decompose the residual (18) into the two components w;; and 7.

5.1 w; Identification Methods

We can think of two ways to predict wy. One is statistical and the other is based on the
economic theory of profit maximization.
The key feature for identification of the first way is the properties E(n;|lit, ki) = 0,

but F(wst|lit, kit) # 0. We first consider the ideal case where w;; is measurable with respect
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to the o—algebra generated by (I, kit). In this case, we have

E(wit + nitllit, kie) = E(wit|lie, kit) + Eiellit, kit)
= wit +0=wj. (19)

If firms cannot fully adjust the inputs to the change in wj, it may not be measurable with

respect to the o—algebra generated by (li, kit). Then, we have
E(wit + nitllie, kit) = E(witllit, kit) (20)

unlike (19). However, as long as firms try to select the inputs optimally given their wy, it
is likely that wi; ~ E(wit|lit, kit). Therefore, we can believe that (19) still holds approxi-
mately. This provides us with a moment condition for identification of w;;. Indeed, we can
statistically justify the approximation in the sense that
E(wit + nitllit, kit) = argming,.. E[{wit — h(li, ki) }|lit, ki),

namely, it is the minimum conditional mean squared error unbiased predictor of w; given
(lit, kit). Therefore, it is an optimal predictor of wi; given (li, ki) in any case. This is a
regression based approach to obtain wj, and we hereafter write it Wit _reg- We remark
that we can replace l;, kit by any other inputs x;; = (lit, kit, €it, Mit, - - +), which are highly
correlated with wy. In particular, inputs that firms can adjust flexibly are suitable.

The second approach uses the first-order condition of profit maximization by firms.
Let Yy = f(Lit, Kit) = ew“ALgl Kft’“ be the production function measured by the value-
added, which each firm faces. It does not include the idiosyncratic error n;; because firms
cannot observe it; thus, firms maximize their profit with respect to this production function
without €;:. Let fr(Lit, Kit) = Of (L4, Kit)/OLit, and wy be the price of labor input. The

first order condition of profit maximization with respect to L;; is
fr(Lit, Kit) = wy (21)
and given the Cobb-Douglas specification,we have
fr(Li, Kit) = < ABLI VK. (22)

Note that we do not need the price of te products because f(L, K) is measured by the
value-added. Combining (21) and (22), and multiplying by L;:, we have

et ABLE K = wyLis.
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Then using Yi; = ALY K5,

(23)

Given the observations of total labor cost (w¢L;), value-added Yi;, and estimates of 3;, A,
we can compute w;; and hereafter write it as Wit foc-

In theory, both (20) and (23) should provide reasonable estimates, but it is not easy
to say which of the two methods is better. We suppose wj; rey 18 more robust, as it does
not assume profit maximization, but Wit foc MUSE provide good estimates for highly com-
petitive industries. (19), (20) are reliable if the firm can fully adjust the inputs depending

on wj, namely, the inputs are flexibly adjusted.

5.2 Estimation of w;; and its Aggregation

We can estimate wj; in two ways based on the two identification approaches of w;; described
in section 5.1. In any case, we first estimate model (16) for an industry using the method
described in Section 4, where we obtain the parameter estimates /1, Bk, Bl, Cpq for each
industry.

Following the first identification, we first obtain the residual (18), then estimate Wit reg
by regressing wis + ni; on T = (Kit, Lit, €it, mig, - - ), which is a vector of inputs at time ¢,
to obtain

Wit _reg = E(Wz‘t/‘f‘\mt’xz‘t)- (24)
We can simply run an OLS regression to construct (24), but if linearity is not a suitable
assumption, we can apply a nonparametric kernel regression estimation,

1 Tt — Lt

jg EH(T)wjt/‘Fnjt

Z% -Tjt*xzt)

7 (25)

where H(-) is a positive multivariate kernel function that integrates to unity, and h is a
positive bandwidth. We can also apply any other nonparametric regression methods such
as series estimation. We later use kj, [z, their quadratic terms and quantity of water to
predict the productivity wit reg in the empirical analysis.

(24) must provide a satisfactory estimate, but we can further attempt to exclude explic-
itly demand shocks, which should not be included in w;. We add the following regressor
which can be regarded as a proxy for demand shocks. The inventory ratio to shipment is
defined as

final inventory;, pe X Quant. of final inventory;
ISR = =

shipment;; pe X Quant. of shipment;,
Quant. of final inventory;

Quant. of shipment;;
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= ¢; +unexpected demand shock;,

where p; is the price of the product, and ¢; denotes the firm-specific planned inventory
ratio independent of ¢, or each firm’s fixed risk management for inventory. Then, ISR; —
¢; represents unexpected demand shock. We use the first difference of demand shock
AISR;; = ISR; — ISR;:—1 to remove ¢;. To implement the decomposition of Wit reg and
Nit, we include inputs and a demand shock proxy in the regression. Specifically, letting z;

be the amount of water use, we run a regression
— 2 2
wit + Mit = o + anlis + cuplyy + agrkie + gk + azzi + ag ATS Rig + it
and compute
N A ~ ~ 12 ~ ~ 2 A
Wit _reg = Qo + Quilis + qualiy + Qprkir + Qpakyy + Gzzit.

Note that we exclude the demand effect AIS R;; as it should not be included. This provides
an estimate of technological shock for plant ¢ at time t.

Following the second approach of identification (23), we can simply construct

Wit foc = log(—= ' ). (26)

As done in L&P(1999), we can further construct industry-level productivities w;, by

aggregating w;;, as
n

Wt = E SitWit,

i=1

where s;; represents the product share of plant 7 at time ¢. We can compute such @, for each
industry and time ¢, and can further aggregate @’s of different industries to a macro level
using analogous weights. L&P (1999) also aggregate individual productivities to industry-
level productivities to examine the source of the productivity transition. Changes in the
level of @; from one year to another are decomposed into four sources; new entries, exits,
share changes and individual productivity changes (see L&P (1999)). This tells us why the
productivity of a certain industry rises or falls. In our analysis, we aggregate each plant
using a two-digit code.

Figure 3 shows the growth rate from 1983 to 2004 of aggregated w¢ reg and Wi foc,
with a solid line and a dotted line, respectively, for a variety of industries. We first remark
that the levels of (I)t_reg and d)t_ foc are always positive throughout the period, although
we suppress them. We briefly describe the Japanese economy during this period, which was
mostly stable from 1982 to 1985. The economy bubbled from 1986 to 1991, and the period
from 1992 to 2002 is called the "lost decade." It is believed that the economy upturned
around 2003; however, we maintained a low GDP growth rate since then. During the

bubble economy, GDP grew over 6%, while after the bubble burst the average growth rate
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was about 1.3 % and was negative in some years.

We evaluate the bubble economy and the "lost decade" periods in terms of the growth
rate of @; from 1982, because growth rates were moderate and stable around this period and
near the 3.3% average from 1955 to the present. In addition, we can obtain similar results
even if we change the base year of 1982 to another year during 1980-1983. dzt_reg have
been increasing in food, general machinery and electrical machinery. Apparel, metal and
transportation equipment industries jumped up in the 1980’s and after 1990 maintained a
higher level than in 1982. On the contrary, during the bubble period, we observe higher
growth rates than in 1982 in information & communication electronsic equipment, but the
level of d)t_mg decreased after the bubble economy. Eut_mg of electronic parts & devices
was observed to be lower than that of 1982 in most years. We found that five industries
maintained the same or higher level of Wt reg than in the starting year of 1982.

We should point out that d)t_ foc are volatile compared with d}it_reg for eight industries.
In a regression-based method, we used additional information on demand shocks to make
Wit _reg independent of demand. Therefore, it should be less affected by demand shocks
than ‘f)z’t_ foc- @t_reg and d)t_ foc moved quite similarly in information & communication
electronics equipment. Seven other industries seemed to have large gaps in the magnitude
of the growth rates between two methods. However, they had similar fluctuation patterns
since 1990 even though the levels differ.

We cannot say which of cbt_mg and d)t_ foc 1s superior, but we shall take the former
rather than the latter for the following reasons. First, we can incorporate additional infor-
mation such as all ¢ period inputs for production and demand effects into the regression.
Second, the regression-based method does not impose a profit maximization restriction
and, thus, is considered more robust. Third, &; req appears more stable than w; foc in
our data, which might be related to the previous two reasons. We used the regression-based
results d)it_reg as the productivity measurement in the following.

Figure 4 compares the average growth rates of the productivity measured by the stan-
dard TFP (residuals of OLS) and @; rey during the bubble economy and the lost decade
for each of the eight industries. During the bubble economy, we observed that both TFP
and w; reg had positive average growth rates for all eight industries. In the lost decade,
however, we observed that the growth rate of TFP was negative in five industries, which
was smaller than the growth rate of d}t_reg. We suppose that the standard TFP is heavily

affected by demand shocks and it is not an adequate measure of productivity.
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5.3 Supporting Evidence from Semi-macro Indices

In the regression based method, we obtain w;; ey and then 7y = wit + Nit — Wit reg- it

can be aggregated for each industry in the same manner as the construction of Wi yeg:

n
U Z SitNit
i=1

where s;; are the product shares of plant ¢ at time t. wit/—i-\mt must include demand
shocks, and we attempted to make djit_reg to exclude the demand effect. Then, demand
shocks must be squeezed into 7. We examine whether or not this is true using semi-
macro indices. We picked up two indices that represent demand shocks for each industry:
"Business Indicator" (hereafter BI) and "Index of inventory turnover" (hereafter 1I'T) from
the Indices of Industrial Production by METI and computed the correlation coefficients
between each index and ;.

We aggregated 7;; to four-digits JSIC code. Blis an index of the economic mood of each
industry and IIT measures the gap between demand and expected demand. The expected
correlation with 7 is positive for BI and negative for IIT. The results are shown in Table 4
for the four industries in which BI and IIT are available. JSIC codes 2721, 2732, 2912, and
2913 indicate kitchenware, electric lighting fixtures, semiconductor devices and integrated
circuits, respectively. We found negative correlations for all four industries with IIT, as
expected, while three industries showed positive correlation with BI. Thus the signs mostly

coincide with our expectations, and we suppose that 7; includes demand shocks. We also
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did the same calculation under a higher level of aggregation to using two-digits JSIC codes,
and the result was not as clear as with the four-digit JISIC code aggregation, meaning that
only about half the industries possessed correlation signs as expected. This may be because

high level aggregation mixes heterogeneous agents, resulting in vague correlation.

Table 4: Correlation between 7j; and demand index 4 digits

JSIC(4 digits) | Business Indicator | Index of Inventory turnover
2721 -0.422 -0.755
2732 0.300 -0.684
2912 0.576 -0.415
2913 0.499 -0.588

Table 5: Correlation between wt "¢y and Production Capacity Index (4 digits)

JSIC | Production Capacity Index
2721 0.856
2732 0.787
2912 0.805
2913 0.291

We would also like to determine whether w;; is positively correlated with a semi-macro
index of industry-level productivity. One such possible index is the "Production capacity
index" (PCI) from the same survey of BI and IIT. This index indicates the production
capacity of each industry. We computed the correlation coefficient of PCI and &, expecting
it to be positive. We tabulated the results in Table 5, which shows a positive correlation

for all four industries, as expected.

6 Conclusions and Future Research

We proposed an alternative production technology estimation method to O&P and L&P
under stochastic firm- and time- specific technology shocks that cause a nuisance endo-
geneity. Our procedure allows both capital and labor inputs to depend on technology
level, unlike O&P or L&P. Exit decisions by firms should also be automatically adapted
under certain conditions. We also proposed two measures for plant-level productivities.
One uses regression of the residual (TFP) on the input levels, and the other uses the first
order condition of profit maximization by firms. We applied OLS, L&P and the new esti-
mation procedures (INK) to Japanese micro datasets, and estimated production functions
and productivities of various industries from 1982 to 2004. We compared the estimates to
determine whether or not the endogeneity as considered exists. We also examine whether
capital and labor coefficients changed over time at the micro level. Based on the estimates,
we computed industry-level productivities to investigate whether productivity shocks in

fact declined during the "lost decade" as is often claimed.
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The Japanese government and some economists claim that Japan should increase the
productivity in view of recent poor macroeconomic performance. This statement is, pre-
sumably, based on the measurement of w;; 4+ 7;; in our framework. Supposing that w;; + 7;
is low, the policy implication should be very different between when w;; is low and when
nit is low. From the present analysis, however, w;, the technology shocks, have not been
declining throughout time. We conjecture that the recession during the "lost decade" in
Japan was caused mostly by 7 shocks, and not productivity shocks, such as demand
fluctuations. Therefore, we believe that the government should pay more attention to the
demand side than the supply side, namely productivity, although, of course, increasing
productivity should be good for the economy in any case.

We attempted to mitigate the endogeneity problem in the production function regres-
sion, but we cannot say that this has been completely solved. We, including O&P, L&P and
others, treat w;; as the productivity shock that firms can observe but that econometricians
cannot. In fact, wy is essentially any shock that causes endogeneity by definition, which is
observable to firms and affect their input behavior. Then, this can include demand shocks
observed by firms, and we cannot definitely say that the estimates of w;; are productivity
shocks. Moreover, we did not use the operation ratio of capital and actual working hours,
which may affect the parameter estimates, and thus w;;. We need to more carefully han-
dle these problem. One possibility is to use the "Current Survey of Production", which
provides us with the information on how much of a product can be produced by plant, or
plant capacity. Using this and the realized amount of products, we may be able to identify
the demand shock observed or predicted by the firm. This can be used to remove observed
demand shock effects included in the present estimates of @w;. The research toward this

direction is currently under way.
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