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1 Introduction

How can one be best prepared for large losses (catastrophes) with small prob-
abilities? Should we purchase insurance against such losses, if such a policy is
available? A positive answer to this classic question appears plausible, since
reserves or savings alone are typically insufficient to cover large losses. How-
ever, there is evidence that insurance for catastrophes such as earthquakes
or flooding is not very widely purchased, even though many policies against
catastrophes are subsidised by governments to keep the premium favourable
to the buyers, e.g. earthquake insurance in Japan and the National Flood
Insurance Program (NFIP) in the United States.1 In contrast, it is widely
known that commonly sold insurance policies such as travel insurance, home
insurance and medical insurance, have a substantial mark-up (loading fac-
tor). Yet, many people voluntarily elect to purchase such policies. Why? It is
rather tempting to claim that this is yet more evidence of behaviourism pre-
vailing. Before accepting that claim, however, we make further observations
about the demand for catastrophe insurance.

First, as stated above, insurance for catastrophes is purchased with less
frequency compared to insurance for moderate risk (e.g. travel insurance),
even if the premium is often set more favourably for catastrophe insurance
(Stylised Fact 1 hereafter). On top of Stylised Fact 1, the following stylised
facts regarding insurance for catastrophes are reported largely based on ag-
gregate data.

• The market penetration is much lower in areas that have historically
been less frequently hit by catastrophes, even if the premium is adjusted
to reflect the lower frequencies. (Stylised Fact 2)

• The market penetration jumps up immediately after a catastrophe.
(Stylised Fact 3)

Dixon et al. (2006) collects a panel data of NFIP, and estimates that
market penetration is only one percent outside the Special Flood Hazard
Area (SFHA), where flooding takes place more frequently, while it is about
fifty percent within the SFHA. In Japan, the market penetration rate of the
earthquake insurance is substantially higher (than the national average) in
the three prefectures that are considered most at risk, although the premi-
ums for earthquake insurance there are the most expensive in the country.
Specifically in March 2006, 27.9 percent in Tokyo, 26.6 percent in Kanagawa
and 24.8 percent in Shizuoka, as opposed to 7.7 percent in Okinawa, 7.2
percent in Nagasaki, and 8.7 percent in Yamagata, where there is no history
of severe losses caused by earthquakes (data source: the General Insurance
Association of Japan). These are clearly consistent with Stylised Fact 2.

Earthquake insurance in Japan and the flooding insurance in the US are
also consistent with Stylised Fact 3. For example, market penetration in

1Kunreuther et al. (1978) is one of the pioneering works that reported this ‘anomaly’.
Moreover, there is long history of studies on the structure of the insurance market; earlier
studies include Arrow (1963), Borch (1962), Ehrlich and Becker (1972).
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Hyogo prefecture in Japan, which was hit by the Hanshin-Awaji earthquake
in January 1995, was 2.9 percent in March 1994, rising to 8.4 percent in
March 1996. Also, in Miyagi prefecture, which experienced a major earth-
quake in May 2003 and another one in August 2005, market penetration
was 16.7 percent in March 2003, jumping to 20.5 percent in March 2004,
and 25.9 percent in March 2006. On the other hand, the number of total
flooding insurance policies in the US was 4.458 million in 2001, gradually
increasing to 4.667 million by 2004. However, the number jumped to 4.956
million by 2005, and then to 5.394 million by April 2007 (data source: the
Federal Emergency Management Agency, FEMA). Note that 2005 was the
year Hurricane Katrina caused unprecedented losses, and the recent surge in
the number of total policies appears consistent with Stylised Fact 3.

This paper attempts to explain the three stylised facts above simultane-
ously within the standard expected utility framework. In so doing, we allow
for heterogeneous beliefs, and show that heterogeneity of beliefs has a ma-
jor impact on insurance demand. In particular, we characterise insurance
demand in terms of entropy of the loss probability distribution. We then
test the theoretical predictions empirically by using a unique household sur-
vey data from Vietnam, which is a resurvey of subsamples of the Vietnam
Household Living Standards Survey (VHLSS) 2006 households. The data
set includes subjective probability assessments of losses from Avian Influenza
(AI), and from flooding, willingness-to-pay for insurance for AI losses and/or
flooding, past loss experience, past experience about insurance, as well as
basic household information such as income, wealth, and education level.

The rest of the paper proceeds as follows. In the next section, a simple
static model is introduced first to define the willingness-to-pay for insurance,
and then basic results concerning willingness-to-pay as well as issues regard-
ing rationality are examined. Section 3 examines the theoretical predictions
presented in section 2 empirically by using the household data collected in
Vietnam. Section 4 concludes the paper.

2 Theoretical Framework

In this section, we first characterise insurance demand in terms of the entropy
of the underlying loss probability, while maintaining the subjective expected
utility framework. We then examine the question of rationality of subjective
probability using the elementary results of the large deviation theory.

2.1 Insurance Demand

Consider an agent who is facing some uncertainty: he may incur a loss. Let
as denote the amount of loss the agent will suffer in state s (s = 1, 2, ..., S),
and let W denote the initial wealth. Assume without loss of generality that
as > as′ for all s > s′ and a1 = 0, i.e. state 1 is the no-loss state. The final
wealth in state s then becomes W − as when there is no insurance.

Assume that the agent is a risk-averse expected utility maximiser, who
makes some probability estimate q = (q1, q2, ..., qS), where qs denotes the
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agent’s subjective probability (estimate) of state s. Now, assume that any
loss up to ak can be covered by insurance with a premium of ρk. With this
insurance, the final wealth becomes

W − as − ρk =

{
W − ρk if s ≤ k;
W − as + ak − ρk otherwise.

Agent h purchases the insurance if

S∑
s=1

qsu(W − as) ≤
k∑

s=1

qsu(W − ρk) +
S∑

s=k+1

qsu(W − as + ak − ρk),

while the agent is indifferent between purchasing and not purchasing when
equality holds. This observation leads us to define the agent’s willingness-
to-pay for this insurance as ρ̂q

k, satisfying the following equation:

S∑
s=1

qsu(W − as) =
k∑

s=1

qsu(W − ρ̂q
k) +

S∑
s=k+1

qsu(W − as + ak − ρ̂q
k).

It is easy to check that the willingness-to-pay ρ̂q
k is strictly concave in the

probability estimate q as well as in the maximum coverage ak, as long as
the von Neumann-Morgenstern utility function u is strictly concave, i.e. risk
averse.

Suppose now that the insurance is offered at an actuarially fair premium
with respect to a probability vector π = (π1, π2, ..., πS), where πs is the
probability of state s. The fair premium with respect to π is given by

ρ̄π
k :=

k∑
s=1

πsas +
S∑

s=k+1

πsak.

It is straightforward that the agent’s willingness-to-pay for the insurance
exceeds ρ̄π

k if his subjective probability coincides with π. However, it may
be the case that the agent’s willingness-to-pay is smaller than ρ̄π

k when his
subjective probability does not coincide with π.

To see this, let fs denote the conditional probability of state s given that
it is a loss state (i.e. s ̸= 1). Hence,

∑S
s=2 fs = 1. Then, without loss of

generality, we can write

πs = (1 − π1)fs, ∀s ̸= 1.

Now, assume that the agent’s subjective probability vector q is given as
follows. For some ε > 0,

q1 = π1 + ε;

qs = (1 − q1) fs = (1 − π1 − ε)fs, ∀s ̸= 1,

Namely, π and q have the same conditional probability of state s given that
it is not the loss state.
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Observe that the difference between the agent’s subjective probability
and π is completely represented by ε. Moreover, q dominates π in the sense
of first order stochastic dominance when ε > 0. Note that ε ≤ 1 − π1 since

qs = (1 − π1 − ε)fs ≥ 0.

In contrast with ρ̄π
k , the subjectively fair premium from the agent’s per-

spective is defined as follows.

ρ̄q
k :=

k∑
s=1

qsas +
S∑

s=k+1

qsak.

It follows that

ρ̄π
k − ρ̄q

k =
k∑

s=1

(πs − qs)as +
S∑

s=k+1

(πs − qs)ak

= ε
k∑

s=2

fsas + εak

S∑
s=k+1

fs, ∀ε > 0.

Hence, ρ̄q
k < ρ̄π

k and the difference between ρ̄q
k and ρ̄π

k is independent of π1,
and is linear in ε. Moreover, it is clear that ρ̂q

k > ρ̄q
k since the agent is assumed

to be risk averse. Hence, it is possible that the agent does not purchase the
insurance at the premium of ρ̄π

k , but purchases at ρ̄q
k, i.e. ρ̄q

k < ρ̂q
k < ρ̄π

k .
Clearly, this becomes more likely when the discrepancy between the agent’s
subjective probability q and π is greater.

Observe that ρ̂q
k − ρ̄q

k is the agent’s subjective risk premium, which is a
function of q1. Let rq

k(q1) := ρ̂q
k(q1) − ρ̄q

k(q1). Since u(·) is assumed to be

strictly concave, it is easy to show that
d2rq

k

dq2
1

(q1) < 0 for all q1, and there is a

critical value q̂1 such that drq

dq1
(q̂1) = 0, while rq

k(1) = 0 (in which case, ε = 0

must hold, too). Hence, rq
k(q1) is decreasing in q1, when q1 is sufficiently

large. It follows that for ε > 0 given, rq
k is also decreasing in π1, when π1 is

sufficiently large.
Recall that ρ̄π

k − ρ̄q
k is independent of π1. Notice also that

ρ̂q
k − ρ̄π

k = rq
k − (ρ̄π

k − ρ̄q
k).

It follows that ρ̂q
k − ρ̄π

k is decreasing in π1 when π1 is sufficiently large. Also,
since rq

k = 0 holds when q1 = 1, for sufficiently small ε > 0 and sufficiently
large π1, and that, for every k, there exists a critical value p1(k, ε) such that

ρ̂q
k


< ρ̄π

k if π1 > p1(k, ε),
= ρ̄π

k if π1 = p1(k, ε),
> ρ̄π

k otherwise.

Hence, for a given ε > 0, it is more likely that the agent does not purchase
insurance that is actuarially fair with respect to π when π1 is large. In other
words, given ε > 0, the impact of discrepancy between q and π becomes more
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significant when the probability of the no-loss state is larger and loss events
are rarer.

Note that we focus on the case ε > 0, because when ε < 0, it is trivial that
ρ̄π

k < ρ̄q
k < ρ̂q

k holds. Namely, the agent purchases the insurance irrespective
of the discrepancy in the probability estimates.

To further our analysis, we now introduce the notion of entropy, which
is useful in characterising probability distributions.2 The entropy of π is
defined as follows.3

H(π) := −
S∑

s=1

πs ln πs.

In our case, it is

H(π) = −π1 ln π1 − (1 − π1)
S∑

s=2

fs ln [(1 − π1) fs]

= −π1 ln π1 − (1 − π1)
S∑

s=2

fs ln fs − (1 − π1) ln(1 − π1)
S∑

s=2

fs

= −π1 ln π1 − (1 − π1)
S∑

s=2

fs ln fs − (1 − π1) ln(1 − π1).

Differentiating H(π) with respect to π1, we obtain

∂H(π)

∂π1

= − ln π1 − 1 +
S∑

s=2

fs ln fs + ln(1 − π1) + 1

= − ln
π1

1 − π1

+
S∑

s=2

fs ln fs.

It is straightforward that H ′(π) < 0 holds when π1 > 0.5, while it is the case
even when π1 is smaller than 0.5, depending on the value of

∑S
s=2 fs ln fs(≤

0). Moreover, the second derivative of H(π) with respect to π1 is

∂2H(π)

∂π2
1

= − 1

π1

− 1

1 − π1

= − 1

π1(1 − π1)
< 0, for all π1.

Hence, it is clear that H(π) is decreasing in π1 when π1 is sufficiently large.
The above observation leads us to claim the following proposition.

Proposition 1: For ε > 0 given and sufficiently large π1, both ρ̂q
k − ρ̄π

k and
H(π) are decreasing in π1. In particular, there exists a critical value p1(k, ε)
such that ρ̂q

k ≤ ρ̄π
k if and only if H(π) ≤ H(pk,ε), where pk,ε is the probability

law such that

probability of state s =

{
p1(k, ε) if s = 1,
[1 − p1(k, ε)] fs otherwise. ¥

2See for example Cover and Thomas (1991) for the definition and properties of entropy
as well as those of relative entropy.

3In the definitions of entropy and relative entropy below, 0 ln 0 := 0 and 0 ln(0/0) := 0.
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This result suggests that for a given level of ε, it is more likely that the
agent’s willingness-to-pay ρ̂q

k is smaller than the actuarially fair premium ρ̄π
k

with respect to π when the entropy of π is smaller. In other words, when the
entropy of π is smaller, more agents would not purchase the insurance whose
premium is actuarially fair with respect to π. Note that this is consistent
with Stylised Fact 1 above.

Moreover, we claim that proposition 1 does not contradict with the clas-
sical results of Mossin (1968). In Mossin (1968), the agent is choosing k
while taking the premium as given. Hence, when q and π coincide, and the
premium is actuarially fair, the agent chooses k = S, i.e. a full cover. Or,
when q and π coincide, but the premium has a positive loading factor, then
the agent chooses k < S, i.e. a partial cover.

Before proceeding, we illustrate the impacts of differences in subjective
probabilities and/or those in degrees of risk aversion on willingness-to-pay
for insurance. The key observation is that the scale of the willingness-to-pay
and that of the subjective probability are roughly proportionate even for risk
averse agents.4

Example 1: Suppose there are only two states, i.e. the loss state and the
no-loss state. We assume that the agents’ preferences have an expected utility
representation with constant relative risk-aversion von Neumann-Morgenstern
utilities. We focus on two cases, in which the relative risk aversion (rra) is
1 or 2. The two tables below report the willingness-to-pay for full cover
insurance.

Table 1 reports the case in which the final wealth is 20 in the no loss state
and 10 in the loss state without insurance. Table 2 reports the case in which

Table 1: WTP for full cover insurance: final wealth 20

Loss Probability WTP (rra = 1) WTP (rra = 2)
2−3 1.659919136 2.222222222
2−7 0.10801153 0.15503876
2−10 0.01353345 0.019512195
2−20 1.32207E-05 1.90735E-05
2−30 1.29109E-08 1.86265E-08

the final wealth is 100 in the no loss state and 10 in the loss state without
insurance.

The results from the two tables indicate that when a very small change
in subjective probability in absolute terms is actually a very large change
in terms of proportions of probability, this change results in a large pro-
portional change in the willingness-to-pay—e.g. the increase in subjective
probability from 2−30 to 2−20 is miniscule in absolute terms, but it is a huge
increase in terms of proportions, i.e. approximately 1000 times. Conse-

4Willingness-to-pay is concave in subjective probability for risk averse agents, but the
scale is roughly proportionate.
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Table 2: WTP for full cover insurance: final wealth 100

Loss Probability WTP (rra = 1) WTP (rra = 2)
2−3 25.01057907 52.94117647
2−7 1.782811081 6.569343066
2−10 0.224609201 0.87124879
2−20 0.000219591 0.0008583
2−30 2.14445E-07 8.3819E-07

quently, willingness-to-pay also increases approximately 1000 times. ¥

Note that both 2−30 and 2−30 are very small probabilities. In the subse-
quent subsection, we examine under what conditions such small probabilities
can be understood to be not contradicting with the empirical data. In so do-
ing, we utilise elementary results from large deviation theory, which is a field
in probability theory that studies the properties of very small probabilities.
For instance, we know from the strong law of large numbers that the average
of a sequence of i.i.d. random variables converges to the expected value of
the random variable with probability one.5 However, it is of interest to study
the speed of convergence as well as probability of some finite sequence of re-
alisations. Large deviation theory studies these aspects, and in what follows,
we utilise the results in our context.

2.2 Rationality

In what follows, we examine the issue of rationality. In the above, we in-
troduced probability laws π and q in a static setup. If all agents and the
insurance suppliers hold rational expectations, π = q holds, since all agents
and insurance suppliers know the true probability. However, there is no rea-
son why the agents know the true probability law π a priori. In this case, all
we can hope for is to examine if the subjective probability laws are compat-
ible with the empirical data, i.e. test if the subjective probability cannot be
rejected using any econometric methods.

Let random variable Xt denote the loss in period t, and let X1, X2, ..., XT

be an i.i.d. sequence. Also, let P(A) denote the space of all probability laws
on A := {a1, a2, ..., aS}. Furthermore, for a finite sequence (of realisations)
xT = (x1, x2, ..., xT ), we define the empirical measure of as as follows:

mx
T (as) :=

1

T

T∑
t=1

1as(xt), ∀s,

where 1as(·) is a simple function, i.e.

1as(xt) =

{
1 if xt = as,
0 otherwise.

5The strong law of large numbers itself does not require identically distributed random
variables, but just independent random variables.
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Then, we define type mx
T of xT as

mx
T := (mx

T (a1),m
x
T (a2), ...,m

x
T (aS)) .

Let MT denote the set of all possible types of sequences of length T , i.e.

MT :=
{
ν : ν = mx

T for some xT
}

.

Also, the empirical measure mX
T associated with a sequence of random vari-

ables XT := (X1, X2, ..., XT ) is a random element of MT .
Let Pµ denote the probability law associated with an infinite sequence of

i.i.d. random variables X := (X1, X2, . . .) distributed following µ ∈ P(A).
Also, the relative entropy of probability vector ν with respect to another
probability vector µ is

H(ν|µ) :=
S∑

s=1

νs ln
νs

µs

.

Proposition 2 (Lemma 2.1.9; Dembo and Zeitouni [1998]): For any
ν ∈ MT ,

(T + 1)−Se−TH(ν|µ) ≤ Pµ(mX
T = ν) ≤ e−TH(ν|µ). (1)

(Proof) See Dembo and Zeitouni (1998). ¥

Proposition 2 states that the probability of observing type ν for a sequence
of length T with respect to probability law µ has the lower and upper bounds
as specified in (1). Clearly, the bounds are tighter when H(ν|µ) is larger.
Note that this result (and the results in the literature of large deviations)
is very useful, since it may well be rather difficult to compute the precise
probability Pµ(mX

T = ν) in many cases. This difficulty arises from the fact
that we need to consider all possible paths/sequences that belong to the
specified type, which involves combinatorics. Moreover, from this result, we
know that the relative entropy H(ν|µ) characterises the probability Pµ(mX

T =
ν), although the bounds may not be very tight in some cases.6

Suppose µ is specified as µs = (1 − µ1)fs for all s ̸= 1 with
∑S

s=2 fs = 1,
i.e. the same structure as π above. Also, suppose the empirical measure is
specified as ν1 = µ1 +ε and νs = (1−ν1)fs for all s ̸= 1, i.e. just like q above
relative to π, although we allow for ε < 0 here. In this case, the relative
entropy H(ν|µ) is

H(ν|µ) = (µ1 + ε) ln
µ1 + ε

µ1

+
S∑

s=2

(1 − µ1 − ε) fs ln
(1 − µ1 − ε)fs

(1 − µ1)fs

= (µ1 + ε) ln
µ1 + ε

µ1

+ (1 − µ1 − ε) ln
1 − µ1 − ε

1 − µ1

. (2)

The following proposition examines how the relative entropy (hence, the
bounds on the large deviation probability) changes with respect to changes

6In particular, relative entropy characterises the speed of convergence in the context of
the strong law of large numbers.
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in µ1 given ε ̸= 0.

Proposition 3: For every ε ̸= 0 given, there exists a critical value µ̂1 such
that

∂H(ν|µ)

∂µ1


> 0 if µ1 > µ̂1,
= 0 if µ1 = µ̂1,
< 0 otherwise.

Note that ε can be either positive or negative, but it is restricted so that ν is
a probability vector.

(Proof) See appendix. ¥

Proposition 3 shows that the bounds in (1) are tighter when µ1 is larger
for a given level of ε. In other words, for a given level of discrepancy between
the probability law in mind and the empirical measure in absolute terms, it
is less likely to observe such a discrepancy when µ1 is greater. Hence, if we
regard µ as an agent’s subjective probability belief, a small discrepancy in
absolute terms of probability between the agent’s subjective probability belief
and the empirical measure may well result in the rejection of his previous
belief when µ1 is large. In contrast, an agent is less likely to reject his belief
when µ1 is small. Consequently, a larger class of probability laws would be
regarded as compatible with an empirical distribution that exhibits a lower
frequency of the no loss state a1.

Example 2: We examine simple examples where S = 2 so as to illustrate
proposition 3. Table 3 reports the precise probability of observing particular
types of ν as well as the upper bound in (1) when µ1 = 0.95. On the other

Table 3: Probability of observing ν when µ1 = 0.95 and T = 100

ν1 Pµ(mX
T = ν) Upper bound in (1)

0.96 0.20086009 0.893444928
0.94 0.202529288 0.905551559

hand, table 4 reports the precise probability of observing particular types of
ν as well as the upper bound in (1) when µ1 = 0.9. Namely, a case with a
lower µ1 compared to the one in table 3 is reported here.

Table 4: Probability of observing ν when µ1 = 0.9 and T = 100

ν1 Pµ(mX
T = ν) Upper bound in (1)

0.91 0.268163789 0.944319750
0.89 0.360862383 0.947443263

It is clear from tables 3 and 4 that for a given level of ε (0.01 or −0.01 in
the tables), the probabilities (and the upper bounds) become smaller when
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µ1 is larger. ¥

Notice that, for rare events, it is very likely that mx
T (a1) = ν1 = 1 and

mx
T (as) = νs = 0 for all s ̸= 1, i.e. no loss is ever realised. In this case, the

following holds trivially:

Pµ

{
mX

T = (1, 0, ..., 0)
}

= µT
1 .

Note that this coincides with the upper bound in (1), since in this case,

H(ν|µ) = ν1 ln
ν1

µ1

= − ln µ1,

which implies that the upper bound is eT ln µ1 = µT
1 . Table 5 reports the

probability of observing no losses for different levels of µ1, when we fix T =
100.7

Table 5: Probability of observing ν1 = 1 for T = 100

µ1 Pµ(mX
T = ν)

0.999999999 0.999999900
0.999999 0.999900050
0.9999 0.990049339
0.999 0.904792147
0.99 0.366032341

Observe that when µ1 is as low as 0.9999 (i.e. the probability of the
loss state is 1/10000), the upper bound is 0.99. This means that for any
µ1 ≥ 0.9999, up to about 99% there will be no loss for a period of length
T = 100. Hence, the scale of loss probabilities that are compatible with
the empirical frequency may vary substantially for rare events, particularly
unprecedented events (any probability less than 1/10000 is very plausible
when T = 100). Note that the results of table 5 holds regardless of the
number of states S as long as it is larger than 1.

Table 6: Probability of observing ν1 = 0.99 for T = 100

µ1 Upper bound
0.999999999 2.70468 × 10−7

0.999999 0.000270441
0.9999 0.026780335
0.999 0.244962197

Table 6 meanwhile reports the upper bound (1) for the probability of
observing one loss event in T = 100 for different values of µ1 (assuming that

7In fact, the upper bounds are the exact probabilities here.
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there are only two states). It is obvious that one realisation of state 2 out
of 100 periods/samples is not compatible with any µ1 greater than 0.999.
This means that one occurrence of a rare event out of large enough samples
for one’s lifetime experience is typically incompatible with beliefs that assign
very low probability to such an event. As a result, one occurrence of a rare
event may well result in a substantial revision of beliefs of the agents so that
their willingness-to-pay for the insurance rises rapidly, which is consistent
with Stylised Fact 2, and particularly, Stylised Fact 3.

However, the above result does not necessarily imply that agents can
learn the true probability law quickly. One reason is that the number of
empirical data (samples) is typically limited for natural disasters (e.g. 100
samples). This is because different properties in different locations cannot
be understood as random samples (i.e. not i.i.d.) when it comes to natural
disasters, since losses for different properties in the same region are corre-
lated, and each property has its own characteristics, i.e. losses for different
properties are not identically distributed. This is in sharp contrast with more
conventional insurance products, such as travel insurance, where the num-
ber of empirical data (samples) that one can refer to is far larger (1 million
samples, for instance).

3 Empirical Analyses

In this section, we shall test the theoretical predictions empirically. In so
doing, we use the household data collected in Vietnam. In what follows, we
first explain the data, and then report the estimation results.

3.1 Data

We utilise a unique survey data collected jointly by the Research Institute
of Economy, Trade and Industry (RIETI) of Japan and the Center for Agri-
cultural Policy in Vietnam (CAP), which we call the RIETI-CAP survey.
The data set is a resurvey of subsamples of the Vietnam Household Living
Standards Survey (VHLSS) 2006 households.8

Since the RIETI-CAP survey aims to collect data to facilitate the design
of an insurance scheme against avian influenza (AI, hereafter) and flooding,
sub-samples of VHLSS 2006 are chosen from four provinces: (1) Ha Tay (hit
only by AI); (2) Nghe An (hit only by flooding); (3) Quang Nam (hit both by
AI and flooding); and (4) Lao Cai (hit neither by AI nor by flooding). The
selection of these four provinces was made using commune questionnaire data
in VHLSS 2004. Table 7 reports the average numbers of natural disasters

8VHLSS is a biennial nationally representative rotating-panel household survey con-
ducted by the General Statistics Office (GSO) with technical assistance from UNDP and
the World Bank, and is a multi-purpose household survey covering household character-
istics, expenditures, income, health and education. Enumeration areas of VHLSS data
are chosen randomly from the 1999 Population Census enumeration areas and households
are selected randomly in each enumeration area. In VHLSS 2006, surveys with 30,000
households were conducted, providing representative statistics at the provincial level.
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Table 7: Natural Disasters and Epidemics in the past five years

Province Floods Typhoons Droughts Natural Disasters Epidemics
Ha Tay 0.042 0.042 0.000 0.083 0.917
Lao Cai 0.111 0.333 0.000 0.444 0.333
Nghe An 0.533 0.111 0.378 1.022 0.444

Quang Nam 0.500 0.143 0.393 1.036 0.714
Nationwide 0.375 0.292 0.235 0.902 0.656

Data: VHLSS 2004

and animal epidemics per commune for the five years to 2004 in the above
four provinces.

Table 8: RIETI-CAP Survey: Basic Information

Province Training End of Survey Communes Households
Ha Tay 20-21 Mar 3rd week April 22 508
Lao Cai 21-23 Feb 3rd week April 18 450
Nghe An 09-11 Mar 2nd week April 23 550

Qaung Nam 13-15 Mar 1st week April 19 510

The RIETI-CAP survey was conducted from late February 2008 until
April 2008 (see Table 8 for basic information). The households covered in
the REITI-CAP data include both those with and without the expenditure
module in VHLSS 2006. The data covers approximately 500 households from
each province, of which 100 households are with both income and expenditure
data and 400 households have income data only.

Table 9: Past Loss Experience Data

Causes of Losses Number of Loss Events Total Mean Std Dev
0 1 2 3 4 5 6

AI 1827 161 26 4 0 0 0 2018 0.1115 0.3699
Flood 1553 356 83 20 4 2 0 2018 0.3013 0.6293

Typhoon 1575 401 35 7 0 0 0 2018 0.2438 0.4899
Drought 1903 97 4 14 0 0 0 2018 0.0728 0.3364

Hail 1963 51 3 1 0 0 0 2018 0.0297 0.1866
Landslide 2001 14 3 0 0 0 0 2018 0.0099 0.1131

Other Epidemics 1557 306 83 20 17 34 1 2018 0.3845 0.9120
Other Disasters 1732 218 52 14 2 0 0 2018 0.1843 0.5055

The data represents extensive information, such as current and retro-
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spective income and expenditure information, asset information, subjective
questions on insurance subscriptions, borrowing, past loss experiences of nat-
ural disasters, subjective probability assessments of AI and/or flooding, the
maximum willingness-to-pay for various hypothetical insurance schemes, and
time preference. In particular, table 9 reports the summary statistics and
the distributions of past loss experience.

Since it is likely to be rather difficult for the respondents to provide a
probability assessment of AI outbreak or flooding, the survey asked questions
in a somewhat special way. More specifically, for household/personal AI risk:

Suppose you are observing fair coin flips. Please indicate the numbers of
consecutive ‘Heads’ that are more likely to be observed than your household’s
experiencing losses from AI within one year from today. (Please circle all
applicable entries and enter the highest value in to the box)

(a) 3 (b) 7 (c) 10 (d) 20 (e) 30 ¥

For example, if none of the five entries is circled, then the respondent
assesses that the respondent’s household would suffer from AI with a higher
probability than 2−3 = 0.125. If only (a) is circled, then the probability
assessment is strictly higher than 2−7 = 0.0078125 and lower or equal to
0.125. If all five entries are circled, then the probability assessment is lower
or equal to 2−30, which is approximately one in one billion. We ask a similar
question for losses from AI at the village level as well as those for losses
from flooding at household and/or village levels. Unfortunately, the range of
the scale of probability can be very large, in particular when all entries are
circled.

3.2 Estimation Results

In what follows, we shall test the theoretical predictions of the subjective
expected utility framewrok by using the RIETI-CAP survey data. The first
prediction follows directly from proposition 3.

Prediction 1: The subjective loss probability is increasing and concave in
the frequency of past losses. This applies to flooding more than to AI.

The following three predictions follow from the strict concavity of von
Neumann-Morgenstern utility function.

Prediction 2: The willingness-to-pay for insurance (both index and indemnity-
based) is increasing and concave in subjective loss probability.

Prediction 3: The willingness-to-pay for index insurance is increasing and
concave in the insurance payment.

Prediction 4: The willingness-to-pay for indemnity-based insurance is in-
creasing and concave in the maximum indemnity of the insurance.
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All estimation results as well as the definitions of variables are reported
in the appendix.9 Since the index insurance’s payment is contingent on the
occurrence of AI outbreak or flooding at the village level, the appropriate
subjective probability for index insurance is that for occurrence at the vil-
lage level. On the other hand, the conventional indemnity-based insurance’s
payment is the indemnity for the household’s losses, the subjective probabil-
ity is that for the occurrence of losses at the household level.

In what follows, we report results based on straight OLS estimations as
well as instrumental variable (IV) estimations. We report IV estimation
results that are more acceptable with respect to Hansen J test for over-
identification, albeit with some exceptions. Also, we report F statistics for
excluded instruments in the first stage estimation results for IV specifications
as weak instrument test statistics.

3.2.1 Impacts of Past Loss Experience on Subjective Loss Proba-
bility

Table 10 reports the results of the regressions of the subjective loss probability
at the household level on the household’s past loss experience in the last 5
years. It is clear that the past loss experience is statistically significant for
both the subjective probability of AI outbreak and that of flooding at the
village level. For the AI, the subjective probability of AI outbreak becomes
23.160 ≈ 8.94 times higher with one additional AI loss experience on average,
while the probability of flooding becomes 26.121 ≈ 69.60 times higher with
one additional flooding loss experience on average. Hence, one additional
loss experience has a very significant impact on the subjective probability
for flooding losses, while the impact is more limited for AI losses. Moreover,
the estimate for flooding has a much lower standard error (0.148) compared
to that for AI (0.248).

Also, an additional loss experience has a diminishing effects on the subjec-
tive loss probability, especially for flooding: from no loss experience to one ex-
perience, the subjective loss probability becomes 28.285 ≈ 311.91 times higher,
from one loss experience to two experiences, it becomes 24.072 ≈ 16.82 times
higher, from two experiences to three experiences, it becomes 21.952 ≈ 3.87
times higher, and so on. This is clearly consistent with Prediction 1 above.
However, it is less obvious if this is the case for AI.

A caveat to this interpretation is that the impacts of loss experience are
measured by comparing different agents (i.e. cross section), but are not
based on the changes of the subjective probabilities of the same household
over time. Still, the estimation results by and large support Prediction 1.
Moreover, the weaker results for AI may be reflecting the aspect that the
AI involves some unforeseen contingencies, since the mutation of viruses is
highly unpredictable. In other words, mutations cannot be captured as a
‘small world’ event, and so are not compatible with the subjective expected

9We also estimated the impact of subjective loss probability on willingness-to-pay semi-
parametrically. We do not report the results here, since the qualitative results are similar
to the ones reported in the paper. However, the results are available upon request.
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utility framework of Savage (1954).

3.2.2 Regressions of Willingness-To-Pay

The first two columns of table 11 report the OLS regression results of willingness-
to-pay for AI index insurance. Both the subjective probability (lprob) and
the insurance payment (lpay) are statistically significant in both regressions.
Note that these are consistent with Predictions 2 and 3 above. In particular,
the elasticity of the willingness-to-pay with respect to insurance payments
is relatively high, if not unity.10 Moreover, in the second column, the maxi-
mum AI loss the household could incur is significant at the 1% level (and is
positive). However, income (lincome) is statistically not significant.

The third to sixth columns of table 11 report the instrumental variable
(IV) estimation results for AI index insurance, while table 12 report the first
stage estimation results for subjective loss probability lprob (and in addition,
the maximum possible AI loss, lmaxloss, for IV3 and IV4 specifications). It
is clear that insurance payment (lpay) is always statistically significant with
a point estimate of around 0.52 and a small standard error (0.012 or 0.01)
in all specifications. Thus, we can conclude that Prediction 3 is comfortably
supported here. However, lprob is not always statistically significant, and so
it is not obvious if Prediction 2 is really supported here. Hence, this casts
some doubts on the validity of the expected utility framework.

Tables 13 and 14 report the estimation results for flooding index insur-
ance. Again, the insurance payment is always significant, and the estimator
is relatively high. Prediction 3 is once again supported. Also, the maxi-
mum loss is significant in both OLS and IV estimations. However, income
(lincome) is not always statistically significant.

The most important difference in a comparison with the AI index insur-
ance results can be found in the impact of subjective loss probability. In
contrast to AI index insurance, it is almost always significant for flooding
index insurance, and that, the IV estimators do not have large standard er-
rors. Hence, Prediction 2 is supported here. Also, the IV point estimates
are far larger than the OLS estimators, although the point estimates indicate
that an increase in the willingness-to-pay for the flooding index insurance is
not really proportionate with an increase in subjective loss probability: on
average, it is one digit less than an increase in subjective loss probability. For
instance, in IV 4, the estimated elasticity of willingness-to-pay with respect
to the subjective loss probability is 0.168, while the point estimate of exd1 in
the first stage is 2.947. Hence, willingness-to-pay becomes (22.947)0.168 ≈ 1.41
times higher with an additional flooding loss experience (compared to no
loss).11 This may not provide very strong support for Prediction 2, espe-
cially in light of Stylised Fact 1. Nevertheless, we cannot claim that this
contradicts with the prediction. Recall that the subjective loss probability
data does not necessarily reflect the scales of the actual subjective proba-

10The elasticity is unity if the willingness-to-pay is linear in the insurance payment.
11wtp = a · probc holds under the specification of the econometric model, where wtp is

willingness-to-pay, prob the subjective probability, while a and c are some constants.
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bilities very accurately, e.g. respondents that circled all entries up to (d)
range from 2−20 (approximately 1 in 1 million) to 2−30 (approximately 1 in
1 billion). This may well have impacts on the estimation results, and so the
estimation results are not necessarily too out of line of Prediction 2 even in
light of Stylised Fact 1.

We now turn our attention to regression results for indemnity-based insur-
ance. Tables 15 and 16 report the estimation results for AI indemnity-based
insurance, while tables 17 and 18 report those for flooding indemnity-based
insurance. The payment of the indemnity-based insurance is an indemnity,
i.e. min{maximum loss, maximum insurance payment}. Hence, lindem is
included as a regressor in place of lpay. The estimation results by and large
resemble those for index insurance. However, the IV estimators for subjective
probability for AI losses are statistically significant in most cases, and thus,
they are relatively more in line with Prediction 2, although the point esti-
mates are still rather small. The OLS estimation results in table 17 indicate
that subjective loss probability has less impact on the willingess-to-pay for
flooding indemnity-based insurance than that for flooding index insurance.
Still, the IV estimators reported in the third and fourth columns of table
17 are similar to the ones found in table 13. Hence, Prediction 2 is once
again supported here, at least to some extent. Moreover, Prediction 4 is sup-
ported for both AI and flooding indemnity-based insurance, since indemnity
(lindem) is always significant with a point estimate of about 0.2 to 0.3 with
a small standard error (approximately 0.01).

Apart from results concerning the four predictions, there are some inter-
esting results. First, it is clear that bad past experience concerning insurance
has a negative effect, since households who couldn’t receive the insurance pay-
ment in full (partialpay dummy) have a lower willingness-to-pay. Moreover,
the results here indicate that insurance is not a luxury good. This is in a
sharp contrast to some existing studies using macro data (e.g. Beenstock
et al., 1988; Outreville, 1990; and Enz, 2000). Our results are more in line
with the predictions of the expected utility framework, and thus, our results
suggest that the previous findings may well be a fallacy.

3.2.3 Policy Implications

We have found that a first loss experience tends to have a large impact on
the subjective loss probability, and consequently on the willingness-to-pay for
insurance, especially flooding insurance, whether it is index and indemnity-
based insurance. This indicates that it would be unlikely for a household with
no past loss experience to purchase flooding insurance even if the insurance
premium is actuarially fair in accord with the loss probability model of the
insurance supplier. Hence, a paternalistic policy that makes subscription of
insurance mandatory may well be more effective in ensuring that the flooding
insurance mechanism functions properly, even if the agents behave in accord
with the subjective expected utility framework. Note that a mandatory sub-
scription may be fully or partially subsidised by the government to minimise
the burden on households.
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Meanwhile, we have found that agents may not behave in accord with the
subjective expected utility framework as far as AI insurance is concerned. In
other words, it is less clear if it is the subjective loss probability that drives
the behaviour of the agents concerning AI insurance. Consequently, it is not
very clear if a paternalistic policy is the most desirable policy or not.

In recent years, the World Bank has implemented a pilot project of rain-
fall index insurance in India. Giné, Townsend and Vickery (2008) studies the
structure of demand for the rain fall index insurance, but it is not very clear if
introduction of formal insurance would indeed be successful since the struc-
ture of (potential) insurance demand in developing countries is essentially
unknown. One advantage of our data based on hypothetical questions is
that it includes household that may not purchase insurance, while the actual
insurance subscription data does not include them systematically. However,
as far as households that purchase insurance are concerned, clearly the actual
data is superior to data based on hypothetical questions, since the quality
of the response to the hypothetical questions is not as good as the actual
subscription data. Since there is unfortunately no immediate way to take
advantage of the two methodologies, it is important to gain as much insight
as possible from both.

4 Conclusion

We have shown that for a specified class of subjective expected utilities, more
agents would not opt to purchase actuarially fair insurance with respect to
the insurer’s probability estimate π when the entropy of π is smaller. This
is because even a small discrepancy in the probability estimate would have a
major impact on the willingness-to-pay for the insurance when the entropy
of the loss probability distribution is small. This prediction is compatible
with the casual observation that insurance for large losses (catastrophes)
with small probabilities is purchased with less frequency than is more con-
ventional insurance products that cover more frequent but moderate losses,
even though the premium for catastrophe insurance is more favourable for
the potential buyers.

Moreover, we have seen that the class of probability beliefs that is com-
patible with the empirical data is smaller when the entropy of π is smaller.
This appears to suggest that agents can learn and adjust their probability
estimates for catastrophes or losses caused by natural disasters more quickly.
However, this may well not be the case, since losses for different properties
(in the same region) are highly correlated and are not identically distributed,
and so we cannot regard them as random samples. Moreover, the scale of
loss probabilities may vary substantially for rare events—in particular, un-
precedented events, and so heterogeneity in the willingness-to-pay for the
insurance would have a major impact in such cases.

We tested these theoretical predictions empirically, using the RIETI-CAP
data collected in Vietnam. The tests show that flooding insurance, both in-
dex insurance and indemnity-based insurance, is more in line with the theo-
retical predictions above based on the subjective expected utility framework
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than AI insurance is. This may be a reflection of the fact that AI involves
unforeseen contingencies that are incompatible with the subjective expected
utility framework.
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A Proof of Proposition 3

From equation (2), i.e.

H(ν|µ) = (µ1 + ε) ln
µ1 + ε

µ1

+ (1 − µ1 − ε) ln
1 − µ1 − ε

1 − µ1

,

we can derive first derivative of H(ν|µ) with respect to µ1 as follows.

∂H(ν|µ)

∂µ1

= ln

(
1 − µ1

µ1

· µ1 + ε

1 − µ1 − ε

)
− ε

µ1(1 − µ1)
.

Meanwhile, the second derivative is

∂2H(ν|µ)

∂µ2
1

=
−1

µ1(1 − µ1)
+

1

(µ1 + ε)(1 − µ1 − ε)
+

1 − 2µ1

µ2
1(1 − µ1)2

ε

=
ε + 2µ1 − 1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε +

1 − 2µ1

µ2
1(1 − µ1)2

ε.

In what follows, we show that ∂2H(ν|µ)/∂µ2
1 > 0 for all ε and µ1.

(i) For ε > 0 and µ1 ≥ (1 − ε)/2,

∂2H(ν|µ)

∂µ2
1

=
ε + 2µ1 − 1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε +

1 − 2µ1

µ2
1(1 − µ1)2

ε

>
ε + 2µ1 − 1

µ2
1(1 − µ1)2

ε +
1 − 2µ1

µ2
1(1 − µ1)2

ε

=
ε2

µ2
1(1 − µ1)2

> 0.

(ii) For ε > 0 and µ1 < (1 − ε)/2,

∂2H(ν|µ)

∂µ2
1

=
ε + 2µ1 − 1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε +

1 − 2µ1

µ2
1(1 − µ1)2

ε

≥ ε + 2µ1 − 1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε +

1 − 2µ1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε

=
ε2

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
> 0.

(iii) For ε < 0 and µ1 ≥ 0.5,

∂2H(ν|µ)

∂µ2
1

=
ε + 2µ1 − 1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε +

1 − 2µ1

µ2
1(1 − µ1)2

ε

≥ ε + 2µ1 − 1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε +

1 − 2µ1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε

=
ε2

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
> 0.
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(iv) For ε < 0 and µ1 < 0.5,

∂2H(ν|µ)

∂µ2
1

=
ε + 2µ1 − 1

µ1(µ1 + ε)(1 − µ1 − ε)(1 − µ1)
ε +

1 − 2µ1

µ2
1(1 − µ1)2

ε

≥ ε + 2µ1 − 1

µ2
1(1 − µ1)2

ε +
1 − 2µ1

µ2
1(1 − µ1)2

ε

=
ε2

µ2
1(1 − µ1)2

> 0.

Hence, ∂2H(ν|µ)/∂µ2
1 > 0 for all ε and µ1.

Next, we show the existence of a critical value µ̂1 ∈ (0.5−ε, 0.5) for ε > 0
and µ̂1 ∈ (0.5, 0.5 − ε) for ε < 0. To do so, observe that when µ1 = 0.5,

∂H(ν|µ)

∂µ1

= ln

(
0.5 + ε

0.5 − ε

)
− 4ε

{
> 0, ∀ε > 0,
< 0, ∀ε < 0.

Also, when µ1 = 0.5 − ε,

∂H(ν|µ)

∂µ1

= ln

(
0.5 + ε

0.5 − ε

)
− ε

0.25 − ε2

{
< 0, ∀ε > 0,
> 0, ∀ε < 0.

It follows that ∂H(ν|µ)/∂µ1 = 0 at µ̂1 ∈ (0.5 − ε, 0.5) for ε > 0, and at
µ̂1 ∈ (0.5, 0.5 − ε) for ε < 0, since ∂2H(ν|µ)/∂µ2

1 > 0 for all ε and µ1. The
desired result follows immediately. ¥
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B RIETI-CAP: Willingness-to-pay questions

AI insurance (indemnity-based)
Consider insurance that pays you for losses on poultry from AI (officially
verified) for one year from today. You have to pay the full amount in cash
today to purchase the insurance.

The amount of insurance payment WTP (Thousand VND)
The full amount (i.e. no limit)
Up to 50 million VND
Up to 20 million VND
Up to 5 million VND
Up to 1 million VND

AI index insurance (village level)
Consider insurance that pays you a certain amount of money whenever AI
hits your village (regardless of your actual loss) for one year from today. On
the other hand, the insurance pays you nothing, when there is no AI outbreak
in your village.

The amount of insurance payment WTP (Thousand VND)
50 million VND
20 million VND
5 million VND
1 million VND
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C Estimation Results

List of Variables (Note: The base of log is 2.)

• wtp: willingness-to-pay (thousand VND);

• lwtp: log(1 + wtp);

• lprob: log(subjective probability of loss event);

• lmaxloss: log(1 + maximum loss);

• ex: number of times of losses (from AI for AI insurance, from flooding for flooding
insurance) the household experienced in 5 years;

• exwater: number of times of losses (from flooding, typhoons and drought for AI
insurance, from typhoons and drought for flooding insurance) the household expe-
rienced in 5 years;

• exepi: number of times of losses from epidemics (other than AI for AI insurance,
including AI for flooding insurance) the household experienced in 5 years;

• exother: number of times of other losses the household experienced in 5 years;

• exdi: dummy with 1 if the household experienced losses (from AI for AI insurance,
from flooding for flooding insurance) at least i times in 5 years.

• lpay: log(1 + insurance payment);

• lindem: log of min{maximum loss, maximum insurance payment};
• lasset: log of total value of assets;

• lincome: log of annual income;

• rural: rural dummy (1 if the household is living in a rural area);

• edusec: dummy with 1 if a household member has finished the secondary school;

• province1: dummy with 1 if Ha Tay;

• province2: dummy with 1 if Lao Cai;

• province3: dummy with 1 if Nghe An;

• partialpay: dummy with 1 if the household did not receive insurance payment in
full amount in the past;

• borrowing: dummy with 1 if the household has borrowing;

• hhsize: the number of household members;

• agehead: the age of the household head;

• ageheadsq: agehead2;

• wife: dummy with 1 if the respondent is the household head’s wife;

• husband: dummy with 1 if the respondent is the household head’s husband;

• son: dummy with 1 if the respondent is the household head’s son;

• daughter: dummy with 1 if the respondent is the household head’s daughter;

• floodloss1: dummy with 1 if the most significant loss from flooding was physical
assets;

• floodloss2: dummy with 1 if the most significant loss from flooding was physical
loss of livestock;

• floodloss3: dummy with 1 if the most significant loss from flooding was economic
loss of livestock;

• floodloss4: dummy with 1 if the most significant loss from flooding was loss of
crops;
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Table 10: Regressions of Loss Probabilities at Household Level (lprob)

Regressors AI Flooding
ex 3.160*** 6.121***

[0.248] [0.148]
exwater 4.012*** 4.032*** 4.792*** 4.454***

[0.097] [0.098] [0.153] [0.155]
exepi 0.410*** 0.418*** 0.478*** 0.565***

[0.128] [0.128] [0.114] [0.115]
exother 0.105 0.115 1.148*** 1.306***

[0.194] [0.194] [0.185] [0.183]
exd1 3.745*** 8.285***

[0.361] [0.234]
exd2 1.22 4.072***

[0.885] [0.358]
exd3 3.024** 1.952***

[1.388] [0.609]
exd4 0.556***

[0.169]
exd5 -0.864***

[0.310]
constant -20.697*** -20.741*** -20.956*** -21.240***

[0.136] [0.138] [0.141] [0.143]
Observations 2018 2018 2014 2014
R-squared 0.17 0.17 0.25 0.26

Note 1: Standard errors in brackets (the same applies to all tables hereafter).

Note 2: * significant at the 10% level, ** significant at the 5% level, ***
significant at the 1% level (the same applies to all tables hereafter).

Note 3: lprob here is the subjective probability of AI outbreak/flooding loss
event at the household level.

24



Table 11: AI index insurance (WTP) regressions (lwtp)

Regressors OLS OLS IV 1 IV 2 IV 3 IV 4
lprob 0.041*** 0.018*** 0.101*** -0.009 -0.009 0.090**

[0.003] [0.004] [0.016] [0.030] [0.064] [0.045]
lpay 0.522*** 0.520*** 0.522*** 0.520*** 0.520*** 0.520***

[0.013] [0.012] [0.013] [0.012] [0.012] [0.013]
lmaxloss 0.162*** 0.167*** 0.168* 0.031

[0.006] [0.009] [0.098] [0.078]
lasset 0.023 0.017 0.017 0.067**

[0.018] [0.020] [0.038] [0.032]
lincome 0.016 0.027 0.028 -0.069

[0.029] [0.035] [0.073] [0.060]
rural -0.220*** -0.235*** -0.237 0.02

[0.077] [0.078] [0.195] [0.164]
edusec 0.120* 0.143** 0.143* 0.08

[0.065] [0.068] [0.077] [0.076]
province1 -1.002*** -1.362*** -1.361 0.043

[0.089] [0.419] [0.927] [0.656]
province2 -0.808*** -1.161*** -1.16 0.168

[0.087] [0.403] [0.880] [0.627]
province3 -1.972*** -2.171*** -2.170*** -1.434***

[0.081] [0.236] [0.494] [0.356]
partialpay -0.801*** -0.754*** -0.752*** -1.044***

[0.133] [0.146] [0.235] [0.193]
borrowing 0.032 0.032 0.032 0.05

[0.063] [0.063] [0.064] [0.069]
hhsize -0.082*** -0.087*** -0.088** -0.032

[0.018] [0.019] [0.042] [0.034]
agehead 0.060*** 0.060*** 0.060*** 0.064***

[0.013] [0.013] [0.014] [0.015]
ageheadsq -0.00067*** -0.00067*** -0.00067*** -0.00071***

[0.00012] [0.00012] [0.00013] [0.00014]
wife 0.356*** 0.353*** 0.353*** 0.406***

[0.072] [0.072] [0.082] [0.015]
husband 0.388* 0.404* 0.404* 0.384

[0.224] [0.223] [0.223] [0.242]
son 0.843*** 0.896*** 0.893*** 0.803***

[0.149] [0.159] [0.168] [0.164]
daughter 0.624*** 0.643*** 0.646** 0.432*

[0.228] [0.228] [0.280] [0.254]
constant -1.123*** -2.864*** -0.054 -3.159*** -3.171** -1.37

[0.173] [0.403] [0.334] [0.530] [1.253] [0.946]
Observations 7979 7855 7979 7855 7855 7855
R-squared 0.18 0.32

Hansen J test 0.0578 0.2257 0.0872 0.0654

Note 1: lprob here is the subjective probability of AI outbreak at the village level.
Note 2: p-values for Hansen J test are reported.
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Table 12: AI index insurance first stage estimation results

Regressors IV 1 IV 2 IV 3 IV 4
lprob lprob lprob lmaxloss lprob lmaxloss

exd1 3.319*** 2.735*** 3.045*** 1.814*** 3.151*** 1.820***
[0.370] [0.341] [0.341] [0.128] [0.341] [0.128]

exd2 4.034*** 0.445 0.48 0.107 0.18 0.088
[0.913] [0.717] [0.708] [0.205] [0.713] [0.207]

exd3 2.192*** -2.676*** -2.496*** 0.961** -2.037*** 0.989**
[0.921] [0.719] [0.722] [0.449] [0.748] [0.440]

exwater 0.729*** 0.045
[0.103] [0.063]

lpay -0.004 -0.003 -0.002 0.003 -0.002 0.003
[0.049] [0.039] [0.039] [0.023] [0.039] [0.023]

lmaxloss 0.183***
[0.020]

lasset -0.267*** -0.223*** 0.195*** -0.231*** 0.195***
[0.059] [0.060] [0.036] [0.060] [0.036]

lincome 0.503*** 0.434*** -0.388*** 0.450*** -0.387***
[0.094] [0.095] [0.057] [0.095] [0.057]

rural -0.809*** -0.504* 1.577*** -0.578* 1.572***
[0.297] [0.302] [0.208] [0.302] [0.208]

edusec 0.564** 0.569** 0.001 0.552** -0.0097
[0.231] [0.231] [0.128] [0.230] [0.128]

province1 -13.876*** -13.737*** 0.476*** -12.829*** 0.532***
[0.210] [0.212] [0.147] [0.256] [0.164]

province2 -13.440*** -13.392*** 0.252* -12.458*** 0.309*
[0.255] [0.258] [0.150] [0.302] [0.168]

province3 -7.415*** -7.390*** 0.173 -6.853*** 0.206
[0.226] [0.227] [0.141] [0.242] [0.143]

partialpay 1.760*** 1.587*** -0.877*** 1.383*** -0.890***
[0.350] [0.350] [0.213] [0.349] [0.212]

borrowing -0.18 -0.151 0.016 -0.257 0.01
[0.203] [0.205] [0.111] [0.205] [0.112]

hhsize -0.205*** -0.155*** 0.302*** -0.161*** 0.302***
[0.060] [0.059] [0.033] [0.059] [0.033]

agehead 0.026 0.034 0.044* 0.018 0.043*
[0.046] [0.046] [0.025] [0.046] [0.025]

ageheadsq -0.0003 -0.0004 -0.0006** -0.0003 -0.006**
[0.0004] [0.0004] [0.0002] [0.0004] [0.0002]

wife -0.069 0.007 0.423*** -0.027 0.421***
[0.225] [0.223] [0.119] [0.223] [0.119]

husband 0.68 0.742 0.436 0.787 0.439
[0.493] [0.498] [0.408] [0.495] [0.407]

son 1.646*** 1.731*** 0.572*** 1.645*** 0.567**
[0.423] [0.425] [0.240] [0.421] [0.240]

daughter 0.698 0.46 -1.211** 0.472 -1.211**
[0.747] [0.773] [0.494] [0.754] [0.493]

constant -17.998*** -11.408*** -10.503*** 5.469*** -11.000*** 5.438***
[0.644] [1.355] [1.365] [0.754] [1.362] [0.755]

Obs 7979 7855 7871 7855 7871 7855
R-squared 0.02 0.38 0.38 0.07 0.38 0.07

F stats 233.88 28.56 36.81 106.02 38.63 79.79

Note 1: lprob here is the subjective probability of AI outbreak at the village level.
Note 2: The F statistics are for the excluded instruments.
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Table 13: Flooding index insurance (WTP) regressions (lwtp)

Regressors OLS OLS IV1 IV2 IV3 IV4
lprob 0.027*** 0.005 0.088*** 0.176*** 0.157*** 0.168***

[0.002] [0.004] [0.005] [0.019] [0.018] [0.019]
lpay 0.584*** 0.583*** 0.584*** 0.583*** 0.581*** 0.581***

[0.012] [0.012] [0.013] [0.013] [0.014] [0.014]
lmaxloss 0.090*** 0.053*** 0.206*** 0.193***

[0.006] [0.010] [0.040] [0.033]
lasset 0.097*** 0.094*** 0.080*** 0.081***

[0.017] [0.019] [0.020] [0.020]
lincome -0.083*** -0.05 -0.080** -0.064*

[0.028] [0.032] [0.034] [0.033]
rural -0.309*** -0.249*** -0.595*** -0.524***

[0.071] [0.091] [0.124] [0.114]
edusec 0.256*** 0.180*** 0.256*** 0.255***

[0.063] [0.074] [0.079] [0.079]
province1 -1.001*** 1.953*** 1.225*** 1.407***

[0.094] [0.353] [0.351] [0.345]
province2 -0.849*** 1.843*** 1.879*** 1.993***

[0.089] [0.318] [0.328] [0.328]
province3 -1.705*** -0.293* -0.440*** -0.348***

[0.080] [0.178] [0.174] [0.176]
partialpay -0.721*** -0.765*** -0.768***

[0.133] [0.136] [0.136]
borrowing 0.218*** 0.118* 0.065 0.081

[0.060] [0.069] [0.073] [0.072]
hhsize -0.055*** -0.037** -0.052*** -0.052***

[0.016] [0.019] [0.020] [0.020]
agehead 0.024* -0.02 -0.032** -0.035**

[0.013] [0.015] [0.016] [0.016]
ageheadsq -0.00032*** 0.00007 0.0002 0.00022

[0.00012] [0.00014] [0.00014] [0.00014]
wife 0.288*** 0.267*** 0.198*** 0.195***

[0.070] [0.079] [0.083] [0.082]
husband 0.102 0.126 0.059 0.114

[0.219] [0.245] [0.256] [0.255]
son 0.764*** 0.887*** 0.811*** 0.833***

[0.141] [0.167] [0.171] [0.168]
daughter 0.308 0.13 0.093 0.052

[0.226] [0.254] [0.284] [0.279]
floodloss1 -0.032 0.268 0.205 0.242

[0.239] [0.319] [0.287] [0.296]
floodloss2 0.482*** 0.428*** 0.395*** 0.364***

[0.090] [0.104] [0.105] [0.102]
floodloss3 -0.173 -0.333 -0.428 -0.502*

[0.236] [0.318] [0.284] [0.295]
floodloss4 -5.677*** -4.470*** -4.931*** -4.886***

[0.629] [0.643] [0.645] [0.644]
constant -1.828*** -2.612*** -0.796*** 0.032 -1.323** -1.109*

[0.160] [0.392] [0.182] [0.522] [0.607] [0.576]
Observations 7940 7828 7940 7828 7828 7828
R-squared 0.23 0.31

Hansen J test 0.0217 0.5791 0.0142 0.0256

Note: lprob here is the subjective probability of flooding at the village level.
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Table 14: Flooding index insurance first stage estimation results

Regressors IV1 IV2 IV3 IV4
lprob lprob lprob lmaxloss lprob lmaxloss

ex 2.271***
[0.107]

exlandslide 0.347 1.772* 2.007** 1.174*** 2.016** 1.235***
[0.943] [0.907] [0.925] [0.357] [0.925] [0.361]

exAI -0.471 0.620***
[0.323] [0.233]

exepi 0.061 0.530***
[0.096] [0.045]

exd1 9.555*** 2.935*** 1.079*** 2.947*** 1.220***
[0.237] [0.206] [0.109] [0.209] [0.111]

exd2 3.552*** 1.836*** -0.894*** 1.854*** -0.817***
[0.307] [0.300] [0.168] [0.301] [0.169]

exd3 0.682 0.614 -1.708*** 0.616 -1.805***
[0.524] [0.521] [0.336] [0.524] [0.327]

exd4 0.425*** -0.305* -0.706*** -0.294* -0.745***
[0.160] [0.169] [0.088] [0.172] [0.082]

exd5 -0.500* 1.744*** 1.116*** 1.725*** 1.089***
[0.262] [0.112] [0.116] [0.114] [0.102]

lpay -0.002 0.001 0.003 0.008 0.003 0.008
[0.047] [0.037] [0.037] [0.019] [0.037] [0.019]

lasset -0.014 0.018 0.097*** 0.016 0.078**
[0.051] [0.052] [0.031] [0.052] [0.031]

lincome -0.167* -0.162* 0.073 -0.156* 0.109**
[0.085] [0.086] [0.050] [0.086] [0.049]

rural -0.381 0.01 1.920*** -0.021 1.722***
[0.285] [0.286] [0.203] [0.289] [0.201]

edusec 0.3 0.138 -0.658*** 0.142 -0.544***
[0.223] [0.225] [0.108] [0.227] [0.108]

province1 -16.348*** -15.597*** 3.058*** -15.591*** 3.283***
[0.211] [0.219] [0.121] [0.223] [0.124]

province2 -14.380*** 14.713*** -1.924*** -14.739*** -2.031***
[0.248] [0.244] [0.162] [0.243] [0.163]

province3 -7.417*** -7.442*** -0.004 -7.428*** 0.168
[0.211] [0.214] [0.126] [0.216] [0.127]

Note: lprob here is the subjective probability of flooding at the village level.
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(Table 14 continued)

Regressors IV1 IV2 IV3 IV4
lprob lprob lprob lmaxloss lprob lmaxloss

hhsize -0.112 -0.073 0.141*** -0.077 0.110***
[0.056] [0.056] [0.026] [0.057] [0.026]

agehead -0.014 0.018 0.097*** 0.016 0.078**
[0.051] [0.052] [0.031] [0.052] [0.031]

ageheadsq -0.002*** -0.002*** -0.001*** -0.002*** -0.001***
[0.0004] [0.0004] [0.0002] [0.0003] [0.0002]

wife 0.04 0.143 0.479*** 0.124 0.383***
[0.219] [0.221] [0.100] [0.222] [0.100]

husband -0.096 -0.151 -0.186 -0.157 -0.12
[0.544] [0.549] [0.378] [0.549] [0.379]

son -1.096*** -0.995*** 0.457** -0.991** 0.462**
[0.392] [0.401] [0.197] [0.402] [0.198]

daughter 1.394** 1.572** 0.578 1.543** 0.392
[0.685] [0.701] [0.367] [0.703] [0.367]

floodloss1 -8.538*** -8.827*** -1.654*** -8.038*** -3.378***
[2.051] [2.090] [0.778] [2.159] [0.870]

floodloss2 0.067 0.246 0.416*** 0.8 -0.205
[0.327] [0.334] [0.135] [0.577] [0.319]

floodloss3 1.155 1.221 0.746*** 1.753* 0.014
[0.925] [0.909] [0.254] [1.028] [0.357]

floodloss4 -6.524*** -5.897*** 2.906*** -5.420*** 2.310***
[0.221] [0.211] [0.078] [0.379] [0.249]

lmaxloss 0.209***
[0.022]

constant -19.459*** -15.894*** -14.603*** 7.288*** -14.601*** 7.234***
[0.629] [1.248] [1.243] [0.654] [1.242] [0.643]

Observations 7940 7828 7832 7840 7832 7840
R-squared 0.2 0.52 0.51 0.23 0.51 0.24

F stats 735.36 227.65 707.94 126.47 535.66 140.76

Note 1: lprob here is the subjective probability of flooding at the village level.
Note 2: The F statistics are for the excluded instruments.
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Table 15: AI indemnity-based insurance (WTP) regressions (lwtp)

Regressors OLS OLS IV1 IV2 IV3
lwtp lwtp lwtp lwtp lwtp

lprob 0.015*** 0.007** 0.056*** 0.058*** 0.064***
[0.003] [0.003] [0.007] [0.020] [0.020]

lindem 0.220*** 0.228*** 0.212*** 0.215*** 0.213***
[0.008] [0.008] [0.008] [0.009] [0.009]

lasset 0.027 0.025 0.027
[0.019] [0.019] [0.019]

lincome 0.016 -0.0002 -0.006
[0.033] [0.034] [0.034]

rural -0.351*** -0.382*** -0.390***
[0.091] [0.094] [0.094]

edusec 0.136* 0.152** 0.160**
[0.070] [0.071] [0.071]

province1 -0.831*** -0.266 -0.205
[0.083] [0.229] [0.230]

province2 -0.476*** 0.084 0.148
[0.082] [0.230] [0.231]

province3 -1.483*** -1.218*** -1.201***
[0.080] [0.132] [0.133]

partialpay -0.366*** -0.431*** -0.464***
[0.133] [0.134] [0.134]

borrowing 0.099 0.104 0.109*
[0.065] [0.066] [0.066]

hhsize -0.083*** -0.075*** -0.077***
[0.019] [0.019] [0.019]

agehead 0.060*** 0.056*** 0.057***
[0.014] [0.014] [0.014]

ageheadsq -0.00066*** -0.00062*** -0.00064***
[0.00012] [0.00013] [0.00013]

wife 0.233*** 0.241*** 0.228***
[0.076] [0.078] [0.078]

husband 0.473** 0.581** 0.559**
[0.237] [0.246] [0.247]

son 0.903*** 0.937*** 0.937***
[0.155] [0.154] [0.154]

daughter 0.522** 0.509** 0.499**
[0.241] [0.244] [0.245]

constant 3.330*** 2.883*** 4.25*** 3.876*** 3.968***
[0.097] [0.395] [0.174] [0.542] [0.543]

Observations 7935 7827 7935 7827 7827
R-squared 0.13 0.19

Hansen J test 0.4758 0.1459 0.0004

Note: lprob here is the subjective probability of AI loss at the household level.
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Table 16: AI indemnity-based insurance first stage estimation results

Regressors IV1 IV2 IV3
lprob lprob lprob

ex 4.113*** 3.316***
[0.243] [0.249]

exd1 4.160***
[0.358]

exd2 1.757**
[0.789]

exd3 -3.077**
[1.346]

exwater 3.273*** 0.545*** 0.557***
[0.111] [0.124] [0.125]

lpay 0.165*** 0.220*** 0.217***
[0.023] [0.023] [0.023]

lasset 0.023 0.019
[0.062] [0.062]

lincome 0.291*** 0.289***
[0.103] [0.103]

rural 0.325 0.246
[0.338] [0.339]

edusec -0.304 -0.337
[0.248] [0.248]

province1 -10.161*** -10.231***
[0.286] [0.285]

province2 -10.191*** -10.231***
[0.324] [0.324]

province3 -4.622*** -4.690***
[0.282] [0.283]

partialpay 1.006** 0.941**
[0.414] [0.414]

borrowing 0.025 0.018
[0.213] [0.214]

hhsize -0.118* -0.120*
[0.064] [0.064]

agehead 0.067 0.072
[0.047] [0.047]

ageheadsq -0.001 -0.001
[0.000] [0.000]

wife -0.11 -0.138
[0.240] [0.241]

husband -1.764*** -1.801***
[0.579] [0.574]

son -0.689 -0.73
[0.460] [0.457]

daughter 0.691 0.696
[0.706] [0.704]

constant -24.180*** -19.535*** -19.524***
[0.218] [1.322] [1.322]

Observations 7935 7827 7827
R-squared 0.14 0.28 0.29

F stats 667.67 102.81 56.07

Note 1: lprob here is the subjective probability of AI loss at the household level.
Note 2: The F statistics are for the excluded instruments.
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Table 17: Flooding indemnity-based insurance (WTP) regressions (lwtp)

Regressors OLS OLS IV1 IV2
lwtp lwtp lwtp lwtp

lprob 0.009*** -0.007* 0.145*** 0.140***
[0.003] [0.004] [0.018] [0.018]

lindem 0.262*** 0.298*** 0.251*** 0.251***
[0.009] [0.009] [0.011] [0.011]

lasset 0.102*** 0.073*** 0.074***
[0.018] [0.021] [0.021]

lincome -0.026 0.038 0.035
[0.030] [0.034] [0.034]

rural -0.481*** -0.543*** -0.542***
[0.086] [0.101] [0.100]

edusec 0.268*** 0.261*** 0.271***
[0.066] [0.075] [0.074]

province1 -1.233*** 1.105*** 1.040***
[0.080] [0.297] [0.293]

province2 -0.573*** 1.580*** 1.506***
[0.087] [0.282] [0.278]

province3 -1.622*** -0.603*** -0.641***
[0.080] [0.155] [0.153]

hhsize -0.091*** -0.078*** -0.080***
[0.017] [0.020] [0.020]

partialpay -0.681*** -0.829*** -0.809***
[0.135] [0.140] [0.139]

borrowing 0.162*** 0.027 0.033
[0.061] [0.070] [0.070]

agehead 0.012 -0.022 -0.021
[0.013] [0.015] [0.015]

ageheadsq -0.00018 0.00012 0.0001
[0.00012] [0.00014] [0.00013]

wife 0.292*** 0.331*** 0.331***
[0.071] [0.078] [0.077]

husband 0.042 0.379 0.368
[0.217] [0.241] [0.240]

son 0.633*** 0.766*** 0.791***
[0.143] [0.151] [0.150]

daughter 0.299 0.1 0.094
[0.238] [0.264] [0.263]

floodloss1 0.710* 2.448*** 2.416***
[0.373] [0.471] [0.467]

floodloss2 0.442*** 0.412*** 0.409***
[0.097] [0.110] [0.107]

floodloss3 -0.092 -0.191 -0.208
[0.207] [0.266] [0.263]

floodloss4 1.587*** 2.394*** 2.364***
[0.199] [0.263] [0.261]

constant 2.505 2.777*** 5.652*** 5.579***
[0.125] [0.387] [0.537] [0.532]

Observations 7935 7827 7827 7827
R-squared 0.14 0.22

Hansen J test 0.9423 0.2495

Note: lprob here is the subjective probability of flooding loss at the household level.
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Table 18: Flooding indemnity-based insurance first stage regressions (lprob)

Regressors IV1 IV2 Regressors IV1 IV2
lprob lprob lprob lprob

ex 2.544*** 2.591*** floodloss1 -18.329*** -18.271***
[0.133] [0.135] [1.999] [2.155]

exlandslide 1.657** 1.699** floodloss2 -0.044 0.231
[0.833] [0.838] [0.354] [0.689]

exAI -0.199 floodloss3 0.904 1.116
[0.484] [1.049] [1.237]

exepi 0.280*** floodloss4 -5.067*** -4.839***
[0.099] [0.419] [0.638]

lindem 0.293*** 0.287*** constant -19.460*** -19.409***
[0.026] [0.026] [1.236] [1.231]

lasset 0.146** 0.136**
[0.058] [0.058]

lincome -0.382*** -0.362***
[0.094] [0.094]

rural 0.409 0.305
[0.326] [0.329]

edusec -0.122 -0.073
[0.236] [0.238]

province1 -13.704*** -13.604***
[0.246] [0.248]

province2 -12.716*** -12.803***
[0.274] [0.273]

province3 -5.834*** -5.749***
[0.249] [0.250]

partialpay 0.639* 0.658*
[0.388] [0.387]

borrowing 0.626*** 0.612***
[0.202] [0.202]

hhsize -0.103* -0.118*
[0.061] [0.062]

agehead 0.199*** 0.197***
[0.044] [0.043]

ageheadsq -0.002*** -0.002***
[0.0004] [0.0004]

wife -0.36 -0.415*
[0.230] [0.230]

husband -2.228*** -2.204***
[0.577] [0.576]

son -1.296*** -1.284***
[0.390] [0.390]

daughter 1.686** 1.582**
[0.715] [0.716]

Observations 7827 7827
R-squared 0.44 0.44

F stats 183.63 93.61

Note 1: lprob here is the subjective probability of flooding loss at the household level.
Note 2: The F statistics are for the excluded instruments.
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