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Abstract 

Most growth theories have focused on R&D activities. Although R&D significantly influences 

economic growth, the spillover effect also has a considerable influence. In this paper, we study 

knowledge spillover among agents by representing it as network structures. The objective of this 

study is to construct a framework to treat knowledge spillover as a network. We introduce a 

knowledge spillover equation, solve it analytically to find a workable solution. It has mainly three 

properties:  (1) the growth rate is common for all the agents only if they are linked to the entire 

network regardless of degrees, (2) the TFP level is proportional to degree, and (3) the growth rate is 

determined by the underlying network structure. We compare growth rate among representative 

networks: regular, random, and scale-free networks, and find the growth rate is the greatest in 

scale-free network. We apply this framework, i.e., knowledge spill over equation, to the problem of 

firms forming a network endogenously and show how distance and region size affect the economic 

growth. We also apply the framework to network formation mechanism. The aim of our paper is not 

just showing results, but in constructing a framework to study spillover by network. 
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1 Introduction

Growth theories (Solow et al. (1957); Romer (1990); Aghion and Howitt
(1998); Grossman and Helpman (1991)) show that the progress of technology
determines the long-term growth. Most growth theories have focused on
R&D activities. Although R&D significantly influences economic growth,
the spillover effect also has a considerable influence. In this paper, we study
knowledge spillover among agents by representing it as network structures
and use complex network theories.

Although it is occasionally assumed, mainly for simplicity, that once new
technology is invented, it spreads worldwide immediately at no cost, tech-
nology diffusion takes time and incurs various costs beyond any doubt. The
following are just a few examples:

• It took a millennium for the water mill to be widely adopted
in Europe; it is felt that the main reason for this slow pace
of diffusion was the absence of significant mobility during
pre-medieval and medieval times.

• The spread of new hybrid seed has been central to the in-
crease in agricultural productivity over the past century.
The classical work by Ryan and Gross (1943) documents
that hybrid corn seed were adopted over a period of several
years in the early twentieth century, in the United States.
Moreover, diffusion of these seed displayed clear spatial pat-
terns; initially, a small group of farmers adopted the seed,
followed by their neighbors adopting it, and this was fol-
lowed by the neighbors of the neighbors adopting it, and so
on.

The examples above are taken from Goyal (2007). The classic paper by
Griliches (1957) shows that even more productive hybrid corn diffused only
slowly in the U.S and the diffusion process was affected by the local eco-
nomic conditions. He also found that technology diffusion can be described
by the logistic curve, occasionally referred to as the S-shaped curve. Ini-
tially, it spreads only slowly, but once adoption reaches the critical point, it
begins to spread very rapidly; finally after a large fraction adopts, the rate
of adoption declines. Griliches shows that the diffusion process takes time.
Recent reviews by Asheim and Gertler (2005) also shows that geographical
proximity is an important factor for spillovers and Konno (2008) shows that
the transaction between firms decreases as the distance increases.

There is no doubt that technology difference exists across countries, fur-
thermore the difference is not only across countries but also within a single
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country. We can observe significant differences across firms in even a nar-
rowly defined industry, Bartelsman et al. (2000) shows that technology is
local rather than global. Many studies find correlations between productiv-
ity and firm size, various measures of technology (e.g, IT technology level),
skill level of the employee, management practices, and so on. However, the
question why there exists a significant productivity difference among firms
within a single country and within even a narrowly defined industry is not yet
answered. Therefore, it is not surprising that we still lack a consensus on what
determines cross-country productivity differences. These evidences show that
new technology does not spread instantaneously and technology difference ex-
ists, and in particular it suggests that knowledge spillover structure surely
exist, which we will express by network structures. Unless such networks ex-
isted meaning that technology diffuses world wide instantaneously, it would
be difficult to explain why such a significant technology difference exists.

The following recent papers study knowledge spillover. Keller (2004) dis-
cussing spillovers and geographical relation; Eaton and Kortum (2001) show-
ing convergence, spillovers and trade; Eaton and Kortum (1999); Acemoglu
et al. (2006); and Vandenbussche et al. (2006). Knowledge spillover must
be related to geography; in this respect Fujita and Thisse (2002), Spatial
Economics, may also be relevant.

Our study also focuses on the network structure, placing it among other
studies on networks. Goyal and Moraga-Gonzalez (2001) studied the R&D
formation mechanism by which coalition diminishes marginal cost, while our
model directly deals with knowledge spillover which increases TFP and fo-
cuses on the processes of technology diffusion by network structure of that
process. For the Economics of networks, please refer Goyal (2007); Jackson
(2008).

Before introducing our model, we briefly explain the standard model that
analyzes knowledge spillover. For convenience, we explain it with the model
of the international world technology frontier by following Acemoglu (2009).
The world consists of J countries indexed by j = 1, 2, · · · , J . Each country
has the following production function:

Yj(t) = F (Kj(t), Aj(t)Lj(t)) (1)

We define growth rate of the country j, gj, by

gj(t) ≡
Ȧj(t)

Aj(t)
(2)

Let us assume that world technology frontier, which is denoted by A(t), grows
exogenously at the constant rate
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g ≡ Ȧ(t)

A(t)
(3)

The population growth is ignored, then the utility function is

Uj =

∫ ∞

0

e−ρt

[
c̃j(t)

1−θ − 1

1− θ

]
dt (4)

where c̃j ≡ Cj(t)/Lj(t) is the per capita consumption in country j at time t.
We assume that ρ is the same across all the countries1.

As in the neoclassical growth model, the flow of capital is described by

k̇j(t) = f(kj(t))− cj(t)− (δ + gj(t))kj(t) (5)

where cj(t) ≡ c̃j(t) ≡ Cj(t)/Aj(t)Lj(t) is the consumption normalized by
effective units of labor.

In this model, knowledge spillover is described by the following equation:

Ȧj(t) = σj (A(t)− Aj(t)) + λjAj(t) (6)

Eq.(6) states that each country absorbs world technology at the exogenous
constant rate σj. If the country j is far behind the world technology frontier,
then Aj(t) grows faster. In contrast, if Aj(t) = A(t), the country j has
nothing to learn from the world technology frontier.

We also define aj(t) as

aj(t) ≡
Aj(t)

A(t)
(7)

Then we can re-write Eq.(6) as

ȧj(t) = σj − (σj + g − λj) aj(t) (8)

gj(t) becomes

gj(t) =
ȧj(t)

aj
+ g (9)

There exists a unique steady state such that ȧj(t) = 0 ∀j.

a⋆j =
σj

σj + g − λj

(10)

f ′(k⋆
j ) = ρ+ δ + θg (11)

1Do not confuse this ρ with the ρ which will be introduced into our model later and
means self evolution rate.
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and consumption per capita in each country grows at the constant rate g,
which is the growth rate of world technology.

In this type of models, the network structure of knowledge spillover is
not explicitly considered. There exist only two kinds of countries an ordi-
nary country and one that is not actually a country; but a world technology
frontier. Interactions among agents where knowledge diffuses from one agent
to other agents are not explicitly considered. Instead of introducing such in-
teractions among many countries, ordinary countries are affected only by the
world technology frontier. However, in this model, these countries do not af-
fect other countries nor they are affected by them. This is probably because it
is difficult to find an analytical solution where there is an asymmetric network
structure of knowledge spillover in which degree distribution is heterogenous.
It is also probably because this type of model was invented before “Complex
Networks” emerged around 2000, when people realized that explicitly consid-
ering the network structure in the model has significant importance. Studies
on “Complex Networks” small-world and scale-free networks are widely rec-
ognized and strongly suggest that underlying network structures, especially
scale-free networks, determine the outcome of models. However, most of the
network models considered in Economics are based on random networks. In
our view, a regular network is not a true network because it is just a lattice
in which all the vertices have the same degree; it is a symmetric network
without heterogeneity in degree distribution2. In some respect, a random
network is almost the same as regular network, because the mean degree
of nearest neighbors ⟨ξnn⟩ of a random network is almost the same as that
of a regular network. Of course, from another view, random networks are
different from regular networks. Unfortunately, scale-free networks have not
received enough attention in Economics so far, except for network formation
mechanism studies. Scale-free networks have not been used in models with
network structures, and our study is possible because of the discovery of the
scale-free network around 2000 and subsequent complex network studies. We
need to mention it has been already shown that scale-free networks are in
reality ubiquitous in the reality rather than exceptional, see Konno (2009).

In contrast to the existing models, our model considers the explicit net-
work structure of knowledge spillover. Because we know that network struc-
tures determine outcomes of models, we need to have a framework dealing
with such phenomena. Unlike preceding models, our model has no world
technology frontier, no country, no firm, no agent playing that role , all the
agents are affected by and affect other agents. Our model is not limited to
the analysis of spillover among countries, but among any agents like firms,

2Of course, from another respect random regular network has significant importance.
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regions, people, and so on. We show that the growth rate depends on the un-
derlying network structure. In scale-free networks, the growth rate is greater
than that of regular and random networks. We find that the long-term
growth rate does not depend on degree, but on the global network character-
istic, ⟨ξnn⟩. The growth rate of all the agents are the same only if they are
connected to the network regardless of degree. However, TFP itself depends
on degree and is proportional to it.

1.1 Outline of the Paper

The aim of the present paper is to provide a fundamental framework dealing
with knowledge spillover. For this purpose, we demonstrate that it is indeed
useful; it is simple and workable enough to analyze problems, and especially
solvable. First, we explain spillover and spillover network, then briefly explain
some types of representative networks. We introduce knowledge spillover
equation, solve it analytically, and show other different kinds of spillover
equations: degree dependent network, CES spillover, directed network, multi-
technology network, hierarchical network. We also show the relationship to
the existing model and solve it by different method. We compare growth
rates among representative three kinds of networks. We use the equation to
show the relationship among spillover, growth rate, and distance. We show
that network formation mechanism is studied by our knowledge spillover
equation. Finally, we state conclusion.

1.2 What is Knowledge Spillover on Networks?

A
B

C

D

E
F

G

H

Figure 1: Knowledge Spillover Through a Network

6



Around 2000, the“Complex Networks Theory” arose and has stimulated
a variety of scientific fields including Physics, Social Sciences, Biology and
other sciences. However, there seem to be many areas in Economics where
complex network theory can be applied and Economics has not yet conducted
enough analysis using complex networks. In this study, we introduce com-
plex networks into Economics and show how network structure, particularly
“Scale-Free Networks” affects the outcome of the model. We believe eco-
nomic growth theory is an excellent candidate for applying complex network
analysis because the externality of TFP is significant and knowledge spillover
can be regarded as a network structure.

First, we briefly explain knowledge spillover on a network. In the modern
industrialized society, countries, firms, and people communicate with each
other to acquire new information and enhance their knowledge. For example,
why are many firms built in famous research centers such as Silicon Valley
? Why do many firms exist in big cities? Despite the cost and congestion,
firms in these locales can more easily acquire information from other firms to
improve their productivity, a phenomena called “knowledge spillover”. In this
paper, we study this effect with explicit network structures. For instance,
some firms obtain spillover from other firms and other firm do not obtain
spillover, we describe these relations as network structures.

Fig.1 illustrates an example of this “knowledge spillover through a Net-
work”. The vertices represent, for example, firms3, (here eight firms). The
edges represent the knowledge spillover relationship. Firm-A enhances its
TFP by receiving spillover from adjacent firms, C, B, D ,and E. For exam-
ple, if firm-B develops a new technology, then firm-A acquires the information
and also enhances its TFP. However, a firm far away from firm-B, in terms
of physical or informational distance, is not able to enhance its TFP instan-
taneously from firm-B. The distant firm has to wait for a time until the
information comes through the network.

1.3 Brief Introduction to Complex Networks

In this section, we explain three type of representative networks. We explain
the only minimum information on “Complex Networks” to understand this
paper.

3The agents on vertices can represent not only firms but also people, countries, cities,
and so on. Here, for simplicity, we regard them as firms.

7



1.3.1 Regular Network

Fig.3 illustrates a regular network. Regular network is the network in which
all the vertices have the same degree. Degree is the number of edges the
vertex has. In this example, the degrees of all the vertices are the same, four.
Fig.3 is the degree distribution, which is the delta function, P (ξ) = δ(ξ− 4).
Here, ξ stands for degree.

Figure 2: Regular Network

1
P(k)

Degree: k4

Figure 3: Degree Distribution

1.3.2 Complete Network

Figure 4: Complete Network

Fig.4 illustrates a complete network, we will discuss in Section 3.1. The
definition is simple, every vertex is connected to all the other vertices. The
complete network is a regular network.

1.3.3 Random Network

A random network (P.Erdos and A.Renyi (1959)) is constructed as follows.
Choose two vertices, then connect them in probability p and do not connect
them in probability 1 − p. After doing this procedure for all the pairs of
the vertices, we do this V (V−1)

2
times and V is the number of vertices on the

entire network, then we have a random network. Taking p → 0 with keeping
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Figure 5: Random Network

P(k)

Degree:k

Figure 6: Degree Distribution

np = λ so that mean degree is kept constant, the degree distribution becomes
a Poisson distribution such as

P (k) ∼ e−λλk

k!
(12)

which is illustrated in Fig.6. In other words random network is the network
in which any pair of vertices is connected in the constant probability. The
random networks explained here might be called Poisson random network,
because there are other classes of random networks. However, in the present
paper, Poisson random network is referred to as random network. Many
network literatures call Poisson random networks as random networks. If
we needed to discriminate Poisson random networks from other classes of
random networks, we would call it as Poisson random, however, in the present
paper it is not necessary. Remember that if you see “Random networks”, in
most cases it means Poisson random networks as the present paper does.

1.3.4 Scale-free Network

Figure 7: Scale-free Network

P(k)

Degree

P(k)~k-γ

Figure 8: Degree Distribution

The networks we have explained thus far are “classical networks”, in
contrast, the “scale-free network” is a member of “Complex Network”. It
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was discovered that, contrary to our assumption, many real networks are not
random networks, but scale-free networks. It was also found that underlying
network structure, in particular scale-free network, drastically changes the
outcomes of the models. This is the reason why complex networks have
attracted considerable interest. It is not too much to say that the explosion of
Complex Networks literature begun with the discovery of scale-free networks
and small world networks4.

The scale-free network and its degree distribution in log log plots are
illustrated in Fig.7 and Fig.8. The scale-free network is defined as a network
with the following degree distribution

P (ξ) ∼ ξ−γ (13)

In random networks vertices have almost the same degree however, in a scale-
free network, there exists a very high degree. In this paper, we also show how
the underlying network structure changes the outcome of the economy. We
are going to discuss in Section 3.4 that inter-firm transaction network is also
a scale-free network, Konno (2009). Generally speaking, scale-free network is
constructed when links are formed by preferential attachment. Preferential
attachment is such a mechanism that the more degree a vertex has, the more
likely the vertex attract new link. It is something like winner takes all. It is
yet recognized that social networks like friendship networks have scale-free
structures.

1.3.5 The difference between ⟨ξ⟩ and ⟨ξnn⟩

We will use the important fact that the mean degree ⟨ξ⟩ is different from
the mean degree of nearest neighbors ⟨ξnn⟩ repeatedly. It is this difference
which brings many interesting phenomenon in complex networks. A good
example is epidemic spread, Pastor-Satorras and Vespignani (2001) show that
epidemic threshold does not exist in scale-free networks with γ ≤ 3, which
is typical parameter of real scale-free networks. They show that epidemic
explosion always breaks out in scale-free networks. Then, what do ⟨ξ⟩ and
⟨ξnn⟩ mean ? First, we will explain it by words, then by figures, and finally
demonstrate they actually differ contrary to our naive assumption with an
example. First, chose a vertex randomly. The mean degree of randomly
chosen vertices is, by definition, ⟨ξ⟩. What about the mean degree of the
vertices linked to the randomly chosen vertices? It is denoted by ⟨ξnn⟩; the

4Small world networks have the following two properties: high clustering coefficient
and small average path length. Clustering coefficient is a measure of the local density of
relationships.
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“nn” stands for nearest neighbors. You may think that it must be the same as
⟨ξ⟩; however, it is not the case. Only when the network is a regular network,
⟨ξ⟩ = ⟨ξnn⟩ holds true. The mean degree, ⟨ξ⟩, and the mean degree of nearest
neighbors, ⟨ξnn⟩, are illustrated in Fig.9.

<ξ>

<ξnn>

Randomly chosen  vertex Randomly chosen  vertex

Next neighbor  vertices

Figure 9: Explanation for ⟨ξ⟩ and ⟨ξnn⟩

We would like to demonstrate that ⟨ξ⟩ and ⟨ξnn⟩ are really different using
Fig.10. In the figure, the degrees of the vertices are ξA = 1, ξB = 2, and
ξC = 1, respectively. The mean degree is

⟨ξ⟩ = 1

3
(1 + 2 + 1) =

4

3
(14)

On the other hand, mean degree of nearest neighbors, ⟨ξnn⟩, is given by

⟨ξnn⟩ =
1

3

(
ξB +

ξA + ξC
2

+ ξB

)
=

1

3

(
2 +

1 + 1

2
+ 2

)
=

5

3
(15)

Actually, ⟨ξ⟩ ̸= ⟨ξnn⟩ holds true in the even simple network illustrated in
Fig.10. For uncorrelated networks in which degree-degree correlation is ab-

sent ⟨ξnn⟩ = ⟨ξ2⟩
⟨ξ⟩ .

1.3.6 Review Papers

We raise some reviews as to complex networks for the interested readers,
Vega-Redondo (2007)
,S.N.Dorogovtesev and J.F.F.Mendes (2003). Albert and Barabási (2002),
Newman (2003), Jackson (2008), and Goyal (2007).
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A

B

C

Figure 10: ⟨ξ⟩ ̸= ⟨ξnn⟩

2 Knowledge Spillover and TFP Growth Rate

2.1 Mathematical Expression for Technology Diffusion
in Networks

A
B

C

D

E
F

G

H

Figure 11: Knowledge Spill over through Network

Aj(ξj, t+△t) = (1 + ρ△t)Aj(ξj, t)︸ ︷︷ ︸
Self−Evolution

+
∑
i∈∂j

wjiδNAi(ξi, t)△t︸ ︷︷ ︸
Spill Over Effect

(16)

The equation above is the starting point, where knowledge spillover is ex-
pressed. The TFP of the firm-j, Aj(ξj, t), evolves according to this equation.
Note that although we write Aj(ξj), TFP is determined by degree ξ, thus it
might be better to write it as A(ξj). However, we write it as Aj(ξj), to show
clearly whose TFP we are discussing. The first term (1 + ρ△t) is the self
evolution effect. Without any spillover from other firms, firms increase their
TFP by (1+ρ△t) after△t. Before explaining the network effect of knowledge
spillover, we need to explain some terms and conventions. i ∈ ∂j means all
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the vertices adjacent to vertex-j. For example, in Fig.1, {B,C,D,E} ∈ ∂A
means that firm-j receives spillover from all the adjacent firms. ξj is the de-
gree of vertex j. The degree stands for the number of edges the vertex has; for
example ξA = 4. δN is the depreciation factor of the network spillover effect.
wji is the weight, meaning how strongly agent-i and agent-j are connected, in
the present context in terms of information flow. For a while we will assume
that all the weights, wij are equal to w. The equation (16) has the charac-
teristics of the level effect, such that the agent with low TFP receives great
deal of spillover from the agent with high TFP, and conversely the agent with
high TFP receives little spillover from the agent with low TFP.

After transforming Eq.(16) into continuous form, we have,

Ȧj(ξj, t) = ρAj(ξj, t) + δNw
∑
i∈∂j

Ai(ξi, t) (17)

Then, we are going to show the method of solving TFP evolution equation
(17) analytically using the method called “mean field approximation” which
replaces other elements with the ensemble average.

Fig.13 schematically shows mean field approximation. We see the problem
of firm-A in Fig.1. In mean field approximation, we replace the degrees
of firms adjacent to firm-A by its mean, ⟨ξnn⟩. The “nn” stands for next
neighbor.

The notation ⟨· · · ⟩ means ensemble average, ⟨x⟩ ≡ E(x). In this respect,
the problem of the firm with degree ξ becomes as follows. (We label the
vertex with degree ξ as j for convenience.)

Ȧj(ξ, t) = ρAj(ξ, t) + δNw
∑
i∈∂j

Ai(ξi, t)

= ρAj(ξ, t) + δNwξA(⟨ξnn⟩, t) (18)

To solve above Eq.(18), we need to know A(⟨ξnn⟩, t). We also use mean
field approximation to obtain this. The vertex with degree ⟨ξnn⟩ is also
surrounded by the vertices with degree ⟨ξnn⟩ as illustrated by Fig.14

Thus, in a similar fashion, we have the equation for the vertex with degree
⟨ξnn⟩ as,

Ȧ(⟨ξnn⟩, t) = ρA(⟨ξnn⟩, t) + δNw⟨ξnn⟩A(⟨ξnn⟩, t) (19)

Then we have the solution for the firm with degree ⟨ξnn⟩ as follows.

A(⟨ξnn⟩, t) = Ann(0) exp (δNw⟨ξnn⟩+ ρ) t (20)
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Figure 12: Mean Field Approximation

A

<ξnn>

<ξnn>

<ξnn>

<ξnn>

Figure 13: Around “A”

<ξnn>

<ξnn>

<ξnn>

<ξnn>

<ξnn>

Figure 14: Around ⟨ξnn⟩

where, Ann ≡ A(⟨ξnn⟩, 0).
Next, substitute Eq.(20) into Eq.(18) and solve the differential equation

to find

A(ξ, t) =
Ann(0)

⟨ξnn⟩
ξe(δNw⟨ξnn⟩+ρ)t + {A(ξ, 0)− Ann(0)

⟨ξnn⟩
ξ}eρt (21)

The asymptotic solution of Eq.(17), as t → ∞, becomes

A(ξ, t) ∼ ξ e(ρ+δNw⟨ξnn⟩)t (t ∼ ∞) (22)

This is the method by which we derive the solution. The point is that the
growth rate of TFP for each vertex is common across all the distinct agents
because ⟨ξnn⟩ is the global value for the entire network.

gA =
Ȧj(ξj)

Aj(ξj)
=

Ȧ

A
= δNw⟨ξnn⟩+ ρ (23)

The growth rate of A(ξi) is common across all the firms, regardless of degree
ξi, whereas the TFP of individual firm depends on degree ξi. Therefore, if
we regard degree as a result of investment, and a vertex as a country, we can
interpret the properties of the model to demonstrate that the growth rate
does not depend on investment and is common across all the linked countries;
however, the TFP level depends on investment.

Proposition 1 (Knowledge Spillover).
There are three points as follows:

1. The TFP spillover equation Eq.(16) is solved analytically.

A(ξ, t) ∼ ξ e(δNw⟨ξnn⟩+ρ)t (24)
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2. The growth rates are the same across all the agents linked to the network
and independent of their degree.

gA ≡ Ȧj(ξj)

Aj(ξj)
=

Ȧ

A
= δNw⟨ξnn⟩+ ρ (25)

3. The level of TFP is proportional to the degree.

A(ξj, t)

A(ξi, t)
=

ξj
ξi

(26)

2.2 Degree Dependent Network Depreciation

ξ1-η

ξ

δ（ξ）ξ

Figure 15: δ(ξ) · ξ = δNξ
1−η

We assumed that network depreciation, δN , is constant so far. However,
it is natural to assume that it depends on the degree. If the degree is small,
an agent receives much spillover from one agent. On the other hand, if the
degree is large an agent receives much spillover from all the adjacent agents,
but little from one agent. Mathematically, this relation is described as

∂δN(ξ)ξ

∂ξ
> 0

∂2δN(ξ)ξ

∂ξ2
≤ 0

(27)

For the time being, we employ a special case where δN(ξ) = δNξ
−η. From

the condition, Eq.(27), we have 0 ≤ η < 1. The knowledge spillover equation
becomes

Aj(ξj, t+△t) = (1 + ρ△t)Aj(ξj, t) + δN(ξj)
∑
i∈∂j

wjiAi(ξi, t)△t (28)
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The solution, by mean field approximation, is then

A(ξ, t) ∼ ξ1−η exp
(
ρ+ wδN⟨ξ1−η

nn ⟩
)
t (29)

where, 0 ≤ η < 1. In general, if δN ≡ δN(ξ), the solution becomes

A(ξ, t) ∼ ξδN(ξ) exp [ρ+ w⟨δN (ξnn) · ξnn⟩] t (30)

2.3 CES Type Spillover

Eq.(16) describes only the linear spillover effect only. We describe more
general spillover equation which incorporates the linear spillover equation.
We introduce CES spillover equation represented by

△A(ξj, t) =

αI (ρA(ξj, t)△t)
θ−1
θ + αN

{∑
i∈∂J

δNwjiA(ξj, t)△t

} θ−1
θ


θ

θ−1

(31)

In Eq.(31), the effect of self-evolution ρ and spillover effect
∑

i∈∂j A(ξj, t)
are mixed. Even in this case, we have asymptotic solution of Eq.(31) with
the properties stated in the following proposition 2

A(ξj, t) ∼ ξj exp
[
αIρ

θ−1
θ + αN(⟨ξnn⟩δNw)

θ−1
θ

] θ
θ−1

t (32)

Proposition 2 (CES Spillover).
The solution of knowledge spillover of CES form, Eq.(31), also has the two
characteristics.

• Growth rate, gA, is common only if an agent is connected to the entire
network.

gA =
[
αIρ

θ−1
θ + αN(⟨ξnn⟩δNw)

θ−1
θ

] θ
θ−1

(33)

• TFP level is proportional to degree ξ

When θ → 1, the solution of spillover equation of CES form, Eq.(32),
becomes Cobb-Douglas form,

A(ξj, t) ∼ ξj exp [ρ
αI · (⟨ξnn⟩δNw)αN )] t (34)

This CES form spillover equation contains linear spillover equation as a spe-
cial case. When θ → ∞, then Eq.(32) becomes linear type

A(ξj, t) ∼ ξj exp [αIρ+ αN⟨ξnn⟩δNw] t (35)

which is equivalent to Eq.(22)
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2.4 Directed Network

Roughly speaking, there are two kinds of networks: undirected and directed.
We have dealt with undirected networks only so far. We now introduce
knowledge spillover with a directed network. For undirected networks, if two
agents are connected, then the both agents can receive knowledge spillover
from each other. With directed networks, however, the directions of links are
introduced. In our model, the direction of link is the direction of knowledge
flow of spillover. In Fig.16, there are three agents, say firm-A, firm-B, and
firm-C. The arrow between firm-A and firm-B means that knowledge flows
from firm-A to firm-B only, it does not flow from firm-B to firm-A. Between
firm-A and firm-C, knowledge flows in both directions as in undirected net-
works. We need to introduce another notion of the degree, that is in-degree
ξin and out-degree ξout. The names describe what they are. ξinA = 2, ξoutA = 3,
ξinB = 4, ξoutB = 1.

A B

C

Figure 16: Directed Network

For directed network, the knowledge spillover equation becomes

d

dt
Aj(ξ

in
j , ξ

out
j , t) = ρAj(ξ

in
j , ξ

out
j , t) + δN

∑
i∈∂j

wjiAi(ξ
in
i , ξ

out
i , t) (36)

For directed networks, i ∈ ∂j has a different meaning. In Fig.16, B ∈ ∂A
holds true, however, A ̸∈ ∂B, because the link points from A to B only. We
express the mean field solution of Eq.(36) as

A(ξin, ξout, t) ∼ ξin exp
(
ρ+ δNw⟨ξinnn⟩

)
t (37)

Here it is worth noting that the condition, ⟨ξin⟩ = ⟨ξout⟩, must be satisfied
because the total number of in-degrees for the entire network must be equal
to the total number of out-degrees for the entire network. Out-degree, as
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well as in-degree plays a role in determining knowledge spillover. Eq.(37)
has the similar characteristics.

Proposition 3 (Knowledge Spill Over for Directed Networks).
Knowledge spillover on directed networks has the following properties.

• Knowledge spillover for directed networks has the solution:
A(ξin, ξout, t) ∼ ξin exp (ρ+ δNw⟨ξinnn⟩) t

• The growth rate, gA, is common only if the agent is linked to the entire
network. gA = ρ+ δNw⟨ξinnn⟩

• The TFP level of each agent is proportional to in-degree. Aj ∝ ξin

2.5 Relationship with Existing Models

World Technology Frontier

Country

Country

Country

Country

Figure 17: Countries and the World Technology Frontier

The existing model we have described in Section 1 can be taken as a
special case of our model. Eq.(6) becomes

Ȧj(t) = (λj − σj)Aj(t) + σjAW.F.(t) (38)

ȦW.F (t) = gAW.F (t) (39)

We compare Eq.(38) with our knowledge spillover Eq.(16) of directed net-
works, and for convenience we provide our equation again,

Ȧj(ξ
in
j , t) = ρAj(ξ

in
j , t) + δNw

∑
i∈∂j

Ai(ξ
in
i , t) (40)

If we consider such a network structure as illustrated in Fig.17, and set

ρ = λj − σj (41)

δNw = δj (42)
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The countries improve their knowledge, Aj, by themselves without spillover
at the rate of ρ = λj − δj. The countries receive knowledge spillover from the
world technology frontier with a depreciation rate, δNw = δj. The network
is directed in that only ordinary countries receive spillover from the world
technology frontier, while the world technology frontier does not receive any
spillover. In Fig.17, all the countries are the same and thus symmetric. It is
known that the existing model has the level effect that the low TFP agent
receives a high amount of knowledge spillover from the high TFP agent, and
conversely the high TFP agent receives little from the low TFP agent. Be-
cause the existing model can be taken as a special case of our model, it is
confirmed that our model also has the level effect.

2.6 Multi Technology

So far, for the sake of simplicity, we have assumed that there is only one
kind of knowledge A in the economy. However, the reality is that there are
many kinds of technologies, and firms use several kinds of technologies. Each
kind of technology diffuses and this process can be regarded as a network
structure. The technology of firm-j, Aj, consists of M kinds of different
technologies that can be described as

Aj ≡ Aϕj
1(ξj,1; 1) · Aϕj

2(ξj,2; 2) · · ·Aϕj
M−1(ξj,M−1;M − 1) · Aϕj

M (ξj,M ;M) (43)

ϕj
1 + ϕj

2 + · · ·+ ϕj
M = 1 (44)

We assume that the weight is always 1, wji = 1 ∀i, j. The knowledge diffusion
equation for multi-technology becomes

A(ξj,1, t+△t; 1) = (1 + ρ1△t)A(ξj,1, t; 1) +
∑
i∈∂j

δN,1A(ξi,1, t; 1)△t

A(ξj,2, t+△t; 2) = (1 + ρ2△t)A(ξj,2, t; 2) +
∑
i∈∂j

δN,2A(ξi,2, t; 2)△t

...

A(ξj,M , t+△t;M) = (1 + ρM△t)A(ξj,M , t;M) +
∑
i∈∂j

δN,MA(ξi,M , t;M)△t

(45)

19



The solutions for each technology are

A(ξj,1, t; 1) = ξj,1 exp (ρ1 + δN,1⟨ξnn,1⟩) t
A(ξj,2, t; 2) = ξj,2 exp (ρ2 + δN,2⟨ξnn,2⟩) t

...

A(ξj,M , t;M) = ξj,M exp (ρM + δN,M⟨ξnn,M⟩) t

(46)

The total technology of firm-j is represented by Eq.(43). Substituting Eq.(46)
into Eq.(43), omitting subscript j, we have

Aj({ξj,1, · · · , ξj,M})

= ξ
ϕj
1

j,1 × ξ
ϕj
2

j,2 × · · · × ξ
ϕj
M

j,M exp [ϕ1ρ1 + · · ·+ ϕMρM + ϕ1δN,1⟨ξnn,1⟩+ · · ·+ ϕMδN,M⟨ξnn,M⟩] t

=
M∏
i

ξ
ϕj
i

i exp

[
M∑
l

ϕj
l ρl +

M∑
s

ϕj
sδN,s⟨ξnn,s⟩

]
t (47)

We let gmA denote the growth rate of technology m that is common to all the
connected agents represented by

gmA ≡ ρm + δN,m⟨ξnn,m⟩ (48)

The growth rate for firm-j is a linear combination of the growth rate of each
technology represented by

gA(j) =
Ȧj({ξj,1, · · · , ξj,M})
Aj({ξj,1, · · · , ξj,M})

=
M∑

m=1

ϕj
mg

m
A (49)

If ϕj
m does not depend on firm-j, ϕj

m = ϕm, then the growth rate for any firm
is the same only if it is connected to the entire network, regardless of degree.
The growth rate is represented by gA =

∑M
m=1 ϕmgA. However, the TFP level

of firm-j is proportional to a function of degree of the firm-j, represented by

Aj({ξj,1, · · · , ξj,M}) ∝ ξϕ1

j,1 × ξϕ2

j,2 × · · · × ξϕM

j,M (50)

Example (M = 2)
Suppose there are two kinds of technologies; thus, M = 2. ϕj

m does not
depend on firm-j, and so is written as ϕm. The network depreciation rate is
independent of the kind of technology, δN,m = δN . Each technology, m = 1, 2,
spillovers through different networks. Knowledge spillover for technology-1
occurs through the network illustrated in Fig.18 and that for technology-2
goes through the network illustrated in Fig.19.
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Figure 18: Technology-1 Figure 19: Technology-2

The technology of firm-j is represented by

Aj(ξj,1, ξj,2) = ξϕ1

j,1 · ξ
ϕ2

j,2 · exp (ϕ1ρ1 + ϕ2ρ2 + δN(ϕ1⟨ξnn,1⟩+ ϕ2⟨ξnn,2⟩)) t (51)

Because we assumed that ϕ is independent of firm, the growth rate of the
technology for any firm is common across all the firms

gA = ϕ1ρ1 + ϕ2ρ2 + δN(ϕ1⟨ξnn,1⟩+ ϕ2⟨ξnn,2⟩) (52)

On the other hand, the level of TFP for firm-j is proportional to a function
of the degree ξj,1, ξj,2

Aj(ξj,1, ξj,2) ∝ ξϕ1

j,1ξ
ϕ2

j,2 (53)

Proposition 4 (Multi Technology Networks).
Knowledge spillover with multi technologies has the following properties.

• The solution is

Aj({ξj,1, · · · , ξj,M}) =
M∏
i

ξ
ϕj
i

i exp

[
M∑
l

ϕj
l ρl +

M∑
s

ϕj
sδN,s⟨ξnn,s⟩

]
t (54)

• The growth rate is given by
∑M

m=1 ϕ
j
mg

m
A

• The TFP level of each agent is proportional to the product of the degree
of each network ξϕ1

j,1 × ξϕ2

j,2 × · · · × ξϕM

j,M

2.7 Hierarchical structure

We study knowledge spillover for the network with a hierarchical structure
or community structure. Konno (2009) show that the clustering coefficient
of inter-firm transaction network implies a hierarchical structure.

First, we have the solution for level-H network. In level-H network, each
vertex that actually consists of small components is regarded as one compo-
nent and grows at the rate of ρH without spillover effect.

AH(ξH , t) ∼ ξH exp (ρH + δH,NwH⟨ξH,nn⟩) t (55)
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And level-(H-1) network has the following solution

AH−1(ξH−1, t) ∼ ξH−1 exp (ρH−1 + δH−1,NwH−1⟨ξH−1,nn⟩) t (56)

ρH can be represented by the growth rate of level-(H-1), gA,H−1. In this
example, ρH = ρH−1 + δH−1,NwH−1⟨ξH−1,nn⟩.

In general, we have

ρh = ρh−1 + δh−1,Nwh−1⟨ξh−1,nn⟩ (57)

gA,h = ρh + δh,Nwh⟨ξh,nn⟩
= ρh−1 + δh−1,Nwh−1⟨ξh−1,nn⟩+ δh,Nwh⟨ξh,nn⟩ (58)

where we denote hierarchy level by h. More generally, we have

gA,h = ρ1 +
h∑

j=1

δj,Nwj⟨ξj,nn⟩ (59)

where h = 1 is the lowest level of the hierarchy.

An Example of Hierarchical Network

Region 1

Region 2

Region 3

Region 4

Figure 20: Region Network 1

Region 1

Figure 21: Firms in one Region

We explain a hierarchical structure with an example. There are four
regions affecting each other as illustrated in Fig.20. In each region, there
are firms forming the spillover network within one region as illustrated in
Fig.21. Regions and firms constitute the hierarchical network; thus it is 2-
level as illustrated in Fig.22. Suppose that self evolution rate of the firms is
ρ1, and the mean degree of nearest neighbors of the firms’ network within
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one region is ⟨ξ1,nn⟩, where 1 denote hierarchy level. Without spillover from
other regions, the firms, in other words, and regions grow at the rate of

ρ2 = ρ1 + δ1,Nw1⟨ξ1,nn⟩ (60)

As illustrated in Fig.20 regions form spillover network. Let ⟨ξ2,nn⟩ denote the
mean degree of nearest neighbors of the network. With the spillover from
other regions, the regions and the firms grow at the rate of

ρ2 + δ2,Nw2⟨ξ2,nn⟩
=ρ1 + δ1,Nw1⟨ξ1,nn⟩+ δ2,Nw2⟨ξ2,nn⟩ (61)

If all of the spillovers are considered, the growth rate of each firm in the
network is given by Eq.(61). Although we described as if regions formed
the network, actually firms form the network as illustrated in Fig.22. The
network among firms across different regions can be viewed as the regions’
network; it is also mean field picture, and this prescription makes it possible
for us to calculate the growth rate as we did. Note that we do not exclude
any picture in which not only firms but also regions like cities or countries
form a network. What we did here is that network of firms across different
regions can be regarded as a network formed by regions.

Figure 22: Region Network 2

2.8 Bethe Approximation

We can solve Eq.(17) in a different way. So far, we have used mean field
approximation in which the next neighbor degrees are replaced by the mean
degree of nearest neighbors, ⟨ξnn⟩. Instead of this method, we will apply a
kind of Bethe approximation. Unlike mean field approximation, next neigh-
bor degrees are exact values; however, the next neighbors of next neighbor
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degrees are replaced by the mean degree of nearest neighbors. As a result,
the technology of the agent with degree ξj becomes

Aj(ξj, t) ∼
∑
i∈∂j

ξi
⟨ξnn⟩

exp(ρ+ δNw⟨ξnn⟩)t (62)

∼
∑
i∈∂j

ξi exp(ρ+ δNw⟨ξnn⟩)t

To show what
∑

i∈∂j ξi means clearly, we write it as∑
i∈∂j

ξi = ξ1 + ξ2 + ξ3 + · · ·+ ξξj (63)

1, 2, 3, · · · , ξj are the labels of the vertices connected to agent-j. Eq.(63) is
the sum of all the degrees of the vertices connected to agent-j. It is con-
firmed that Eq.(62) is consistent with our mean field approximation method.
(However, bethe approximation is actually a kind of mean field.) Mean field
approximation is the way in which all the ξi in Eq.(63) are replaced by ⟨ξnn⟩.
In this case, Eq.(62) becomes the mean field solution, Eq.(22). The TFP
level of agent-j is proportional to

∑
i∈∂j ξi = ξ1 + ξ2 + ξ3 + · · ·+ ξξj , which is

total sum of the degrees of all the agents adjacent to agent-j. In this sense,
growth rate is not only dependent on global network structure but also local.

2.9 Weights of the Networks

The weight, wji, means how strongly firm-i and firm-j are connected. In so
far, We have assumed that weights of the networks are the same and are
written by w. Bethe approximation is not only better approximation, but
also let weights wji play a role. The TFP level of firm-j is given by

Aj(ξj, t) ∼
∑
i∈∂j

wjiξi exp(ρ+ δN⟨w⟩⟨ξnn⟩)t (64)

The TFP level is proportional to
∑

i∈∂j wjiξi; however, the growth rate is still
common across all the agent only if they are connected to the entire network.

3 Comparison of the Growth Rates of Differ-

ent Network Structures

In this section, we compare growth rates across different kinds of represen-
tative networks.
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3.1 The Method of Comparing Different Networks

Here, we explain the method to compare a factor across different network
structures. Without appropriate method of comparison, complete network
explained in Section 1.3.2 must have the largest growth rate, if linking were
cost-free because all the vertices have the largest degree among all kinds of
networks and each vertex links to all the other vertices, so that knowledge
spillover is the greatest, and every vertex can learn from all the other vertices.
Thus, we introduce an appropriate way to compare a factor among underlying
network structures below.

1. The number of vertices on the entire network, N , is the same.

2. The mean degree of the network is the same.

Under these conditions, we can compare the growth rate among three repre-
sentative networks: regular, random, and scale-free.

In order to compare growth rate, we use the same three values across
three different networks, δNw = 0.5 × 10−2, ρ = 0.01, N = 109, these values
are network depreciation factor, the self-evolution rate, and the number of
firms on the network, respectively. We use γ = 2.9 for the scale-free network
parameter, so that the mean degree becomes ⟨ξ⟩ = 2.1. Many real scale-free
networks fall into this parameter space, 2 < γ ≤ 3. The other parameter
values such as δN , ρ, and N do not have particular meaning; however, we
believe that the order of magnitude of growth rates among three representa-
tive network is robust, regardless of the values of such parameters. This is
because, as we will explain later, growth rates are mainly determined by the
mean degree of nearest neighbors ⟨ξnn⟩. When we compare growth rate, as
we have already discussed, we must keep the mean degree the same across
all the three networks.

First, we need to calculate the mean degree of nearest neighbors, ⟨ξnn⟩.

3.2 Method for calculating ⟨ξnn⟩ for Three types of
Networks

We demonstrate how to obtain ⟨ξnn⟩ in three kinds of networks: regular,
random, and scale-free, given the that mean degree ⟨ξ⟩ is determined already.
Here, the mean degree ⟨ξ⟩ is the same for all three kinds of networks.

3.2.1 Regular Network

For regular networks, to calculate ⟨ξnn⟩ is straightforward, because every
vertex has the same degree. Hence, ⟨ξnn⟩ = ⟨ξ⟩.
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3.2.2 Random Network

For random networks, degree distribution is P (ξ) ∼ e−λλξ

ξ!
which is explained

in Section 1.3.3. Thus it is possible for us to make use of the relationship
⟨x2⟩ − ⟨x⟩2 = ⟨x⟩ for any x that is a stochastic variable following a Poisson
distribution.

⟨ξnn⟩ =
⟨ξ2⟩
⟨ξ⟩

= ⟨ξ⟩+ 1 (65)

Finally, we have the mean degree of nearest neighbors ⟨ξnn⟩ = ⟨ξ⟩+1 on the
condition that mean degree ⟨ξ⟩ is given.

3.2.3 Scale-free Network

Figure 23: Scale-free Degree Distributions

P(k)

Degree

P(k)~k-γ

Figure 24: Ideal Degree Distribution

P(k)

Degree: k

Figure 25: Finite Size

First, let us describe the finite size effect with an example. Thinking of
the scale-free network whose parameter is γ = 2 then P (ξ) = ξ−2

So for ξ = 5, the probability is P (5) = 5−2 = 1
25
. In addition, suppose

we have N = 10, 000 and ignore the normalization factor. N is the size of
network. The expected number of firms whose degree is 5 is N × P (5) =
10000
25

= 400. In this way, the expected number of firms whose degree is k = 10
becomes N × P (10) = 10000

102
= 100.

In these two cases, both numbers are larger than 1, so it can be observed
in reality. However, for k = 100, the number of firms with ξ = 100 is
N ×P (100) = 1. For ξ = 1, 000, the expected number of firms is N ×P (ξ) =
10,000
10002

= 0.01 < 1. This is less than 1. If the expected number of firms whose
degree is ξ becomes less than 1, in reality a vertex with such a large degree
is hard to observe.

26



We see the kink in Fig.25, in this example, the kink begins where the
degree is 100. At this point, the expected number of firms becomes less than
1. Fig.24 illustrates the degree distribution of a scale-free network where
the number of vertices are infinite, N = ∞. By contrast, Fig.25 illustrates
the degree distribution of a network with finite vertices. There are two main
methods for determining the cut off degree. In one method, we regard ξ = 100
as a cut-off parameter. We define ξmax = 100. The cut-off parameter, ξmax,
is obtained by N × P (ξmax) = 1. However, we are going to use the other
method, which ill be explained later,to determine the cut off degree.

Note that, we have used P (ξ) ∼ ξ−γ so far without explicitly considering
normalization. However, P (k) = Z−1ξ−γ is right rather. Z is defined as
Z =

∫
P (ξ)dξ. Z−1 the is normalization factor. Then, we have

Z ≡
∫ ∞

1

ξ−γdξ =
1

γ − 1
(66)

Together with this normalization factor Z, ξmax is obtained in the following
way.

N(γ − 1)

∫ ∞

ξmax

ξ−γdξ = 1

⇒ ξmax = N
1

γ−1 (67)

In a nutshell, Eq.(67) states that the number of firms that have more than
ξmax links is equal to one. In this way, we determine cut off degree, ξmax.

Therefore, ⟨ξ⟩ under the finite size effect is represented by

⟨ξ⟩ =
∫ ξmax

1

Z−1ξξ−γdξ

=
γ − 1

γ − 2

[
1− ξ2−γ

max

]
(68)

⟨ξ2⟩ and ⟨ξnn⟩ under the finite size effect are also determined by

⟨ξ2⟩ =
∫ ξmax

1

ξ2ξ−γZ−1dξ

=
γ − 1

3− γ

[
ξ3−γ
max − 1

]
(69)

⟨ξnn⟩ =
⟨ξ2⟩
⟨ξ⟩

=
γ − 2

3− γ

[
ξ3−γ
max − 1

1− ξ2−γ
max

]
(70)
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3.3 Comparison of Growth Rates among Three Rep-
resentative Networks

The growth rates comparison result is summarized in Table 1.

Table 1: Growth Rate
Regular Network Random Network Scale-free Network

Growth Rate 0.021 0.026 0.059

The growth rates of regular and network do not differ much because the
mean degree of nearest neighbors ⟨ξnn⟩ does not differ greatly between them.

The scale-free network illustrates the case where there exists some con-
centrated research center such as Silicon Valley or big business cities. On the
other hand, the regular network is viewed as benefiting each place equally
and having no industrially concentrated locations. In conclusion, we state
that scale-free network supports a more efficient growth rate than does the
regular or random network.

3.4 Network Structure: an Empirical Study

We showed that the scale-free network is the most efficient of three repre-
sentative networks. The next logical question is what network structure the
real economy has. We mention the empirical study by Konno (2009) who
studied the inter-firm transaction network among 800,000 Japanese firms.

γ

Figure 26: Degree Distribution of the Transaction Network

Fig.26 illustrates the degree distribution of the Japanese inter-firm re-
lationship network. The figure actually shows that, contrary to our naive
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assumption that the network structure of the firms’ transaction is a random
network, the Japanese firms’ transactions form scale-free network, in which
degree distribution follows P (ξ) ∼ ξ−2.4. Konno (2009) also discovers hier-
archical structure by using clustering coefficient, which is a measure for the
local density of the network, and the existence of a degree-degree correlation,
such as ξnn ∼ ξ

1
2 exists. Therefore, scale-free network must have something to

do with firms’ relationship. Konno (2009) did not study knowledge spillover
network directly, but the inter-firm transaction network; however, the trans-
action network is related to the spillover network, because it is also a network
of contacts, and contacts are likely result in knowledge spillover.

3.5 Spillover in Star Network

We call the network illustrated in Fig.27 as a star network. The question
that which network, scale-free or star network has higher growth rate arises.
We will answer the question within the mean field framework.

Figure 27: Star Network

The spillover equation for a star network is represented by

d

dt
A(1, t) = ρA(1, t) + δNwA(N, t)

d

dt
A(N, t) = ρA(N, t) +

N∑
i=1

δNA(1, t) = ρA(N, t) + δNwNA(1, t)
(71)

where N denotes the number of vertices in the entire network, and find

A(1, t) = A0e
(ρ+δNw

√
N)t

A(N, t) = A0

√
Ne(ρ+δNw

√
N)t

(72)
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The growth rate in a star network proves to be ρ + δNw
√
N . Thus, the

question arises whether the growth rate of star network, ρ+δNw
√
N , or that

of scale-free, ρ+ δNw⟨ξnn⟩, is larger. The problem becomes whether
√
N or

⟨ξnn⟩ is larger. The mean degree of star network is given by

⟨ξ⟩star = 1
N − 1

N
+ (N − 1)

1

N
∼ 2 (73)

That of star and scale-free network, and network sizes are kept fixed for
comparison. We study the case where 2 < γ, because if γ ≤ 2 mean degree
diverges as N goes infinity. The mean degree of the scale-free network and
normalization factor ,Z, are given by

⟨ξ⟩ = Z−1

∫ N

1

ξξ−γ dξ (74)

Z =

∫ N

1

ξ−γ dξ (75)

Because we must make mean degree of scale-free network equal to that of star
network, ⟨ξ⟩star = 2, from the above equations we have γ = 3 and Z = 1/2.
The mean degree of nearest neighbors is given by

⟨ξnn⟩ =
⟨ξ2⟩
⟨ξ⟩

= log(N) (76)

Because, log(N) <
√
N holds for large enough N , the growth rate in star

network is higher than that of scale-free network. However, to keep mean
degree and size of the two networks constant we cannot help imposing the
special condition that γ = 3. It is noted that we compared star network with
particular scale-free network only.

4 Numerical Simulation

We show that our solution Eq.(22), A(ξ, t) ∼ ξ exp (ρ+ δNw⟨ξnn⟩) t, is valid
by numerical simulations. We fix the mean degree and network size such
that ⟨ξ⟩ = 10 and N = 1500 for all the three networks: regular, random, and
scale-free. In all the cases, δN ·w = 0.5× 10−3. The scale-free network is set
to be γ = 3. It should be noted that the results are robust to initial values of
A, because the they are obtained by largest eigenvalue of ρI + δN⟨ξnn⟩, and
the corresponding eigenvector.
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4.1 Growth Rate

The results are summarized in Table 2. We did three cases: ρ = 0.01, 0.005,
and 0. For each case, the theoretical values, gA = ρ+δNw⟨ξnn⟩, written within
parenthesis, are in good agreement with simulation values. The growth rate
is common across all the agents. This simulation confirms that the growth
rate of scale-free network is the highest.

Table 2: Growth Rate: Simulation (Theory)

Regular Network Random Network Scale-free Network
ρ = 0.01 0.0150 (0.0150) 0.0156 (0.0155) 0.0295 (0.0297)
ρ = 0.005 0.0100 (0.0100) 0.0105 (0.0105) 0.0245 (0.0247)
ρ = 0 0.0050 (0.0050) 0.0055 (0.0054) 0.0197 (0.0200)

4.2 TFP Level and Degree

Eq.(22) has the significant property that the TFP level is proportional to the
degree. In this section, we demonstrate that this relationship holds true by
numerical simulations. The figures show degree and TFP level. All of them
are set to be ρ = 0.01. The levels are re-scaled so that the slopes are 1. In all
the figures, the relationship, TFP level = 1× degree + constant, holds true.
Thus, the standard error of the slope, R2, and scatter plots must be checked.
We regressed the TFP level on degree. For regular network we cannot draw a
scatter plot, because a regular network is defined as having the same degree
for all the vertices.

Random Network
In the random network, N = 1500, ⟨ξ⟩ = 10, ρ = 0.01, and δN ·w = 0.5×10−3.
As Fig.29 shows, the TFP level is proportional to the degree; the standard
error of the slope is 0.0087, R2 is 0.90.

Scale-free Network
In the scale-free network, N = 1500, ⟨ξ⟩ = 10, ρ = 0.01, δN ·w = 0.5× 10−3,
and γ = 3. As Fig.30 shows, the TFP level is proportional to the degree; the
standard error of the slope is 0.006, R2 is 0.94.
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These results clearly confirm that the TFP level is proportional to the degree,
Aj ∝ ξj, which is expected by Eq.(22).

Figure 28: Degree against TFP Level
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Figure 30: Scale-free Network

4.3 Bethe Approximation

In Section 2.8, we solved the knowledge spillover equation by Bethe approx-
imation to solve Eq.(62). Here, we will confirm the approximation solution,
A(ξj, t) ∼ (

∑
i∈∂j ξi) exp(ρ+ δNw⟨ξnn⟩), by numerical simulation.

Fig.32 and Fig.33 strongly demonstrate that this approximation method
is valid. In both cases, the technology level is re-scaled so that the slope
becomes 1; in short, slopes are 1 for both cases. Thus, what should be checked
are the R2 and the standard error for the slopes. For random network,
the standard error is only 0.03 and R2 is 0.99. For scale-free network, the
standard error is only 0.01 and R2 = 1.00. Although the solution obtained
by Bethe approximation fits better than that of mean field approximation,
we believe that mean field solution, A(ξ, t) ∼ ξ e(ρ+δNw⟨ξnn⟩)t, is usually
more useful. However, Bethe approximation solution, Eq.(62), can be useful
for analyzing some kinds of problems like network formation and the like,
because the TFP of an agent is determined by the sum of all the degrees of
adjacent agents, and the solution fits numerical simulation better than mean
field.
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Figure 31: Next Neighbor Degrees against TFP Level
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Figure 32: Random Network
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Figure 33: Scale-free Network

5 Spillover, Growth Rate, and Distance

5.1 Basic Model

The purpose of our study is to construct a workable framework for analyzing
knowledge spillover through network. In this section, we illustrate the frame-
work with an example. We use knowledge spillover equation to analyze the
relationship among growth rate, area, distance, network formation, output,
degree, and so on. First, the utility function of consumer is given by

U =

(∫ V

1

Xj(ξj)
σ−1
σ dj

) σ
σ−1

(77)

The consumer maximizes this under budget constraint
∫ V

1
pjXj = I. Then

the demand function for goods Xj becomes

Xj(ξj) =
pj(ξj)

−σ∫ V

1
pj(ξj)1−σdj

I (78)

= pj(ξj)
σ

(
I

P

)
(79)

where P ≡
∫ V

1
pj(ξj)

1−σdj.
The technology of firms are to change one unit of labor, lj(ξj), toAj(ξj)unit

final goods, Xj(ξj) = Aj(ξj)lj(ξj). Then the firms’ maximization problem is

max
pj(ξj)

πj(ξj) = pj(ξj)Xj(ξj)− wlj(ξj) (80)

= pj(ξj)Aj(ξj)lj(ξj)− lj(ξj) (81)
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Substituting Eq.(78), we have the solution of firms’ profit maximization prob-
lem Eq.(81) as

pj(ξj) =
σ

σ − 1
wAj(ξj)

−1 (82)

Thus, substituting Eq.(82), we also have

Xj(ξj) =

(
σ

σ − 1

)−σ

Aj(ξj)
σ I∫ V

1
p1−σ
j dj

(83)

lj(ξj) =

(
σ

σ − 1

)−σ

Aj(ξj)
σ−1 I∫ V

1
p1−σ
j dj

(84)

From Eqs.(77), (81), (83), and (84), we find

Xj(ξj) =
Aj(ξj)

σ∫ V

1
Ai(ξi)σ−1di

I

w

σ − 1

σ
(85)

lj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

I

w

σ − 1

σ
(86)

πj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

I
1

σ
(87)

U =

(∫ V

1

Xj(ξj)
σ−1
σ dj

) σ
σ−1

=

(∫ V

1

Aj(ξj)
σ−1dj

) 1
σ−1 I

w

σ − 1

σ
(88)

From Eqs.(85)-(88), we have the growth rate of each value as

Xj(ξj, t+△t) =
Aj(ξj, t+△t)σ∫ V

1
Ai(ξi, t+△t)σ−1di

I

w

σ − 1

σ
= gAXj(t) (89)

lj(ξj, t+△) =
Aj(ξj, t+△t)σ−1∫ V

1
Ai(ξi, t+△t)σ−1di

I

w

σ − 1

σ
= lj(t) (90)

πj(ξj, t+△t) =
Aj(ξj, t+△t)σ−1∫ V

1
Ai(ξi, t+△t)σ−1di

1

σ
I = πj(t) (91)

U(t+△t) =
I

w

σ − 1

σ

(∫ V

1

Aj(ξj, t+△t)σ−1dj

) 1
σ−1

= gAU(t) (92)

where,

gA ≡ Aj(t+△t)

Aj(t)
(93)
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Remember that gA is common for all the firms and is independent of j and ξj,
because they are connected to the entire network, Aj(ξj, t) = ξj exp [ρ+ δNwN⟨ξnn⟩] t.
We used wN as a weight of the network, for letting w denote wage. The
above equation demonstrates that final goods, Xj(ξj, t), grows at the rate of
gA which is common for all j.

To close the model, we comment on the income of household, I. Suppose
that a household supplies inelastically L unit labor,∫ V

1

lj(ξj)dj = L (94)

Substituting Eq.(86), we have

I =
σ

σ − 1
wL (95)

Then, Eqs.(85)-(88) become

Xj(ξj) =
Aj(ξj)

σ∫ V

1
Ai(ξi)σ−1di

L (96)

lj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

L (97)

πj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

wL

σ − 1
(98)

U =

(∫ V

1

Aj(ξj)
σ−1dj

) 1
σ−1

L (99)

Endogenous Network Formation We described the fundamental setting
of the model so far. Now, we introduce “distance” and “endogenous network
formation” into the model and see what happens in the economy.

5.2 Endogenous Network Formation: Spill over Depre-
ciation with Increased Distance

First, we introduce distance into the knowledge spillover equation. As il-
lustrated in Fig.34, as the distance between two vertices increases, then
knowledge spillover between them decreases. This expresses the very sim-
ple observation in our lives that we can learn something much easier from a
close neighbor than from a distant person.

In Fig.34, two agents receive knowledge spillover from each other. In the
upper figure, the distance between them is d, thus the spillover is 100. On the
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Figure 34: Distance and Spillover

other hand in the lower figure, the distance is 2d, then the spillover becomes
50. In this example, spillover dies out as 1/d. Generally, we assume that
spillover decreases as d−νn . In the figure, νn = 1. The knowledge spillover
equation with the distance depreciation effect is described as follows:

Aj(ξj, t+△t) = (1 + ρ△t)Aj(ξj, t) +
∑
i∈∂j

wjiδNd
−νn
ij Ai(ξi, t)△t (100)

An example explains the meaning of Eq.(100). The firm-j receives spillover
from other firms: firm-1, firm-2, and so on. The spillover terms can be writ-
ten in the form

A1/d1j + A2/d2j + A3/d3j + · · · (101)

where, νn = 1. d1j is the distance between firm-1 and firm-j.
We also solve Eq.(100) by mean field approximation to find

A(ξj, t) =
(
Ann(0)/⟨ξnn⟩⟨d−νn

nn ⟩
) (

d−νn
1 + d−νn

2 + · · ·+ d−νn
ξj

)
exp

(
ρ+ wNδN⟨ξnn⟩⟨d−νn

nn ⟩
)
t

(102)

where we assumed that the weight of the network is wij = wN .
We study the symmetric case where the network is regular, so that the

distances between any connected firms are the same, d, termed as typical
distance, as illustrated in Fig.35.

Then the above equation (102) becomes

A(ξj, t) = Ann(0)ξj exp
(
ρ+ wNδN⟨ξnn⟩d−νn

)
t (103)

The growth rate is given by gA = ρ+ wNδN⟨ξnn⟩d−νn

36



d

d

d d
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5.2.1 Network Formation: Linking Cost

We introduce a linking mechanism by imposing a linking cost on each. The
firm’s problem consists of two stages. In the first stage, the firm chooses
how many links they make; at the second stage, they maximize their profit
represented by Eq.(87). We assume that linking ξj edges with d distant firms
requires C(ξj; d) unit labor force, given by

C(ξj; d) = CNξ
µw

j dµd (104)

Thus, the cost is wC(ξj; d).
Then, we return to the firm’s problem. It follows from the arguments so

far that the firm solves the following problem

max
ξj

πj(ξj)− wC(ξj; d)

⇒ ∂πj(ξj)

∂ξj
=

∂wC(ξj; d)

∂ξj
(105)

We solve the symmetric solution in which every firm has the same degree. In
the symmetric case, every firm is the same; thus, they pay the same amount
of cost and receive the same amount of knowledge spillover. To solve Eq.(105)
with substituting Eq.(103), we have

ξ =

(
1

CNµwV

σ − 1

σ

I

w

) 1
µw

d−
µd
µw (106)

Because this is the symmetric case, then ξj = ξ = ⟨ξ⟩ = ⟨ξnn⟩ ∀j holds
true. Remember that the symmetric case is the regular network. We use the
market clearing condition for labor, with the household supplying L labor
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force inelastically, thus;

L =

∫ V

1

lj(ξj)dj +

∫ V

1

C(ξj; d)dj (107)

Substituting Eq.(106) into C(ξj; d), then above Eq.(107) transforms to

L =
σ − 1

σ

I

w

1 + µw

µw

(108)

By Eq.(108), the degree becomes

ξ =

(
1

(1 + µw)CN

L

V

) 1
µw

d−
µd
µw (109)

From now on, we will normalize Ann(0) = 1. Then the TFP A(ξ, t; d) evolves
as

A(ξ, t; d) = exp

[
ρ+ wNδN

(
1

(1 + µw)CN

L

V

) 1
µw

d−
µd
µw

−νn

]
t (110)

The growth rate is given by

gA ≡ Ȧ(ξ, t; d)

A(ξ, t; d)
= ρ+ wNδN

(
1

(1 + µw)CN

L

V

) 1
µw

d−
µd
µw

−νn (111)

We also have

Xj(ξj) =
Aj(ξj)

σ∫ V

1
Ai(ξi)σ−1di

L
µw

1 + µw

(112)

lj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

L
µw

1 + µw

(113)

πj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

wL

σ − 1

µw

1 + µw

(114)

U =

(∫ V

1

Aj(ξj)
σ−1dj

) 1
σ−1

L
µw

1 + µw

(115)

We could continue the argument with general parameters, but instead
we use specific values to discuss the implication of the model. To do so,
we substitute νn = 1, µd = 2, and µw = 2. The spillover into firm-j from
adjacent firms with νn = 1 is A1/d+A2/d+A3/d+ · · · . Thus, νn = 1 means
that spillover dies out as d−1. The cost function with µd = 2 and µw = 2
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becomes C(ξ; d) = CNξ
2d2. This means that the cost function and marginal

cost increase both in degree and distance. For simplicity, we assume ρ = 0.
We have the degree of the firms in the economy as

ξ =

(
1

3CN

L

V

) 1
2

d−1

∼ d−1 (116)

We also have the growth rate of the economy as

gA = wNδN

(
1

3CN

L

V

) 1
2

d−2

∼ d−2 (117)

Proposition 5 (Growth Rate and Distance).

• The degree of the firm is inversely proportional to distance as d−1.

• The growth rate is quadratic inversely proportional to distance as d−2.

By applying knowledge spillover equation, Eq.(16), we obtained some
interesting results as to growth rate and distance.

5.3 Degree Dependent Network Depreciation Rate

We have assumed so far that the depreciation rate is constant even when an
agent has very great degree. Instead of this assumption, we now analyze the
solution with the degree dependent network depreciation rate δN(ξ) = δNξ

−η.
Because in reality the more links a firm has, the less average spillover from one
adjacent firm the firm receives, we study degree dependent spillover model.
As discussed in Section 2.2, 0 ≤ η < 1. In this case, as is discussed in the
same section, the knowledge spillover equation becomes

Aj(ξj, t+△t) = (1 + ρ△t)Aj(ξj, t) + δNξ
−η

∑
i∈∂j

wjid
−νn
ij Ai(ξi, t)△t (118)

δN(ξ) = δNξ
η with 0 ≤ η < 1 means that as degree increases, the total

spillover from all the adjacent agents also increases; however, the spillover
from one adjacent agent on average decreases. Then, we also solve the sym-
metric case which is a regular network. The degree ξ is

ξ =

(
1− η

µw + 1− η

L

V

1

CN

) 1
µw

d−
µd
µw (119)
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TFP A(ξ, t) evolves as

A(ξ, t) = exp

[
ρ+ wNδN

(
1− η

µw + 1− η

L

V

1

CN

) 1−η
µw

d−
µd
µw

(1−η)−νn

]
t (120)

The growth rate, gA, is given by

gA(ξ) ≡
Ȧ(ξ, t)

A(ξ, t)
= ρ+ wNδN

(
1− η

µw + 1− η

L

V

1

CN

) 1−η
µw

d−
µd
µw

(1−η)−νn (121)

We also have

Xj(ξj) =
Aj(ξj)

σ∫ V

1
Ai(ξi)σ−1di

L
µw

µw + 1− η
(122)

lj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

L
µw

µw + 1− η
(123)

πj(ξj) =
Aj(ξj)

σ−1∫ V

1
Ai(ξi)σ−1di

wL

σ − 1

µw

µw + 1− η
(124)

U =

(∫ V

1

Aj(ξj)
σ−1dj

) 1
σ−1

L
µw

µw + 1− η
(125)

Now, we stop the analysis by using general exponent parameters, and we
substitute specific values into them. We employ the same values as before,
νn = 1, µw = 2, µd = 2. Then, the degree and growth rate are

ξ =

(
1− η

3− η

L

V

1

CN

) 1
2

d−1

∼ d−1 (126)

gA =

(
1− η

3− η

L

V

1

CN

) 1−η
2

d−2+η

∼ d−2+η (127)

where we assumed ρ = 0.

5.4 Endogenously Determined Distance

In the models so far, the distance between connected firms are exogenously
given. In the following, we will study the model in which the distance between
firms is also determined endogenously.
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The cost function for a firm to link to one d distant firm in terms of labor
is given by

c(d) = cNd
µd (128)

Spillover does not die out as distance increases. The effect of distance appears
in the linking cost function, Eq.(128), only. The firm’s decision rule for
network formation is as follows; if a firm is less distant than or equal to
critical distance dc then the firm links to that firm; on the other hand, if a
firm is more distant than critical distance, then the firm does not link to that
firm. Therefore, all the firms less distant than or equal to dc link to the firm.
Our problem is to find critical distance dc. Let x denote the density of the
firms in the region. The total linking cost for the firm, TC(d), is given by

TC(d) =

∫ dc

0

drc(r)2πrx =
2πxcN
µd + 2

dµd+2 (129)

This equation clearly explains what c(d) means. Because the firm connects
to all the firms that are less distant than or equal to dc, the degree of the
firms are

ξ = πd2cx (130)

The network is regular. The same as before, the firm’s problem is two stage
game; in the first stage, the firm solves network formation problem; in the
second stage, the firm maximizes profit. The second stage problem is already
solved in Section 5.1 and the profit is given by π(ξ). The firms’ network
formation problem in the first stage is

max
dc

π(ξ(dc))− wTC(dc) (131)

Solving Eq.(131) for dc, we have

dc =

[
σ − 1

σ

I

w

1

cNπxV

] 1
µd+2

(132)

By labor market clearing condition, we have

L =

∫ V

1

l(ξj)dj +

∫ V

1

TC(dc)dj (133)

The above equation becomes

L =
σ − 1

σ

I

w

µd + 4

µd + 2
(134)
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Substituting Eq.(134) into Eq.(132), we have

dc =

(
µd + 2

µd + 4

L

cNπV

) 1
µd+2

x
− 1

µd+2 (135)

Then, the degree is

ξ = πd2cx = π

(
µd + 2

µd + 4

L

cNπV

) 2
µd+2

x
µd

µd+2 (136)

From the above discussions we have the following inequalities:

∂dc
∂x

∝ − 1

µd + 2
x
−µd+3

µd+2 < 0
∂2dc
∂x2

∝ µd + 3

(µd + 2)2
x
− 2µd+5

µd+2 > 0 (137)

∂ξ

∂x
∝ µd

µd + 2
x
− 2

µd+2 > 0
∂2ξ

∂x2
∝ − 2µd

(µd + 2)2
x
−µd+4

µd+2 < 0 (138)

∂dc
∂cN

∝ − 1

µd + 2
c
−µd+3

µd+2

N < 0
∂2dc
∂c2N

∝ µd + 3

(µd + 2)2
x
− 2µd+5

µd+2 > 0 (139)

∂ξ

∂cN
∝ − 2

µd + 2
x
−µd+4

µd+2 < 0
∂2ξ

∂c2N
∝ 2(µd + 4)

(µd + 2)2
x
− 2µd+6

µd+2 > 0 (140)

For simplicity we assume ρ = 0, then the growth rate is

gA = δNwNπ

(
µd + 2

µd + 4

L

cNπV

) 2
µd+2

x
µd

µd+2 (141)

and we have the following inequalities:

∂gA
∂x

∝ µd

µd + 2
x
− 2

µd+2 > 0
∂2gA
∂x2

∝ − 2µd

(µd + 2)2
x
−µd+4

µd+2 < 0 (142)

∂gA
∂cN

∝ − 2

µd + 2
x
−µd+4

µd+2 < 0
∂2gA
∂c2N

∝ 2(µd + 4)

(µd + 2)2
x
− 2µd+6

µd+2 > 0 (143)

We let S denote the region size. We are going to see how 1/S affects, because
we want to know how the parameters change as the region size decreases. We
keep the number of firms in the region, V , constant. Even if we increase the
density of the firm in the region, the number of the firms is the same. We are
interested in comparing the economies that are different only in the densities,
x.Therefore, increasing the density, x, is equivalent to decreasing the region
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size with keeping the number of the firms, V , the same. The critical distance
dC , the degree ξ, and the growth rate gA in terms of the region size are given
by

dc =

(
µd + 2

µd + 4

L

cNπV

) 1
µd+2

(
1

S

)− 1
µd+2

(144)

ξ = π

(
µd + 2

µd + 4

L

cNπV

) 2
µd+2

(
1

S

) µd
µd+2

(145)

gA = δNwNπ

(
µd + 2

µd + 4

L

cNπV

) 2
µd+2

(
1

S

) µd
µd+2

(146)

Then, we have the following equations:

∂dc
∂(1/S)

∝ − 1

µd + 2
(1/S)

−µd+3

µd+2 < 0
∂2dc

∂(1/S)2
∝ µd + 3

(µd + 2)2
(1/S)

− 2µd+5

µd+2 > 0

(147)

∂ξ

∂(1/S)
∝ µd

µd + 2
(1/S))

− 2
µd+2 > 0

∂2ξ

∂(1/S)2
∝ − 2µd

(µd + 2)2
(1/S)

−µd+4

µd+2 < 0

(148)

∂gA
∂(1/S)

∝ µd

µd + 2
(1/S))

− 2
µd+2 > 0

∂2gA
∂(1/S)2

∝ − 2µd

(µd + 2)2
(1/S)

−µd+4

µd+2 < 0

(149)

From the inequalities (137)-(143), (147)- (149), we have Fig.36-Fig.38.

Proposition 6 (Endogenously determined distance).
In summary we have, the following properties:

• As the density of the firms in the region, x, increases, the growth rate,
gA, increases.

• As the linking cost, CN , increases, the growth rate decreases.

• As the region size decreases, the growth rate increases.

6 Network Formation

First, we return to the starting point, knowledge spillover equation, Eq.(16).
We provide it again below for convenience.

Aj(ξj, t+△t) = (1 + ρ△t)Aj(ξj, t) +
∑
i∈∂j

wjiδNAi(ξi, t)△t (150)
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dc

x

ξ

ｘ
gA

ｘ

Figure 36: Density

dc

CN

ξ

CN

gA

CN

Figure 37: Cost

dc

1/S

ξ

1/S

gA

1/S

Figure 38: Area

This equation suggests that a rational agent wants to link to high TFP agents
to receive large knowledge spillover. A high TFP agent attracts more links
than a low TFP agent does. We show that because our knowledge spillover
equation has this characteristic, it works well with stochastic network for-
mation mechanisms ( Barabasi and Albert (1999); Dorogovtsev et al. (2000);
Krapivsky et al. (2000); Krapivsky and Redner (2001)). We combine our
framework with the stochastic network formation mechanisms in this or-
der. Although an agent does not know the network structure of knowledge
spillover or even the degrees of the other agents, the nature of the solution of
our knowledge spillover equation let the problem being that of degree. Note
that in stochastic network formation mechanisms that will be discussed, an
agent decision problem is not explicitly considered. The decision is only
stochastic not deterministic. The agent decision problem is implicitly con-
sidered behind the stochastic network formation mechanisms; however, the
mechanisms must be related to the deterministic network formation mecha-
nisms in which agent decision problems are explicitly considered.

Network Formation 1 First, we introduce a stochastic mechanism in
which the probability that an agent with Aj unit of TFP attracts a new link
is given by

Pr(Aj) =
Aj∑
i Ai

(151)
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At each time step, one new agent–“the firm”–enters the existing network and
links tom existing firms with probability Pr(Aj). This process continues. We
let p(A(ξ), s, t) denote the probability that the firm that entered the network
at time s has A(ξ) unit TFP at time t. The process can be described by the
following master equation:

p(A(ξ), s, t+ 1) =
mA(ξ − 1)∑

iA(ξi)
p(A(ξ − 1), s, t) +

(
1− mA(ξ)∑

iA(ξi)

)
p(A(ξ), s, t)

(152)

This is because the firm of A(ξ − 1) increases the degree by 1 in probability
m · Pr(A(ξ − 1)). We investigate asymptotic degree distribution as time t
approaches infinity. We let p(A) denote such a distribution presented as

p(A) = lim
t→∞

∑
s

p(A, s, t)

t
(153)

We take the summation,
∑t+1

s=1, of both sides of Eq.(152), noting p(A, t +
1, t) = 0, because at time t, by definition, the firm that enters at time t + 1
cannot exist. Then the equation becomes

t+1∑
s=1

p(A(ξ), s, t+ 1) =
mA(ξ − 1)∑

iA(ξi)

t∑
s=1

p(A(ξ − 1), s, t) +

(
1− mA(ξ)∑

i A(ξi)

) t∑
s=1

p(A(ξ), s, t)

(154)

Substituting Eq.(153) into the above Eq.(154) to find asymptotic distribu-
tion, we obtain

(t+ 1)p(A(ξ)) =
mA(ξ − 1)∑

i A(ξi)
tp(A(ξ − 1)) +

(
1− mA(ξ)∑

i A(ξi)

)
tp(A(ξ))

(155)

Remember that the solution of knowledge spillover equation is

A(ξ) = ξ exp(ρ+ δNw⟨ξnn⟩)t (156)

Because at each time step m links are added to the network, if we total the
degrees of all the vertices in the network at time t , we obtain 2mt edges
because every single link is counted twice. Thus,

∑
i ξi ∼ 2mt. We have the
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following probability using Eq.(156):

mPr(A(ξ − 1)) =
mA(ξ − 1)∑

iA(ξi)

=
m(ξ − 1) exp(ρ+ δNw⟨ξnn⟩)t∑

i ξi exp(ρ+ δNw⟨ξnn⟩)t

=
ξ − 1

2t
(157)

Substituting Eq.(157) into Eq.(155), we find

(t+ 1)p(A(ξ)) =
ξ − 1

t
t · p(A(ξ − 1) +

(
1− ξ

2t

)
t · p(A(ξ)) (158)

which becomes

p(A(ξ)) =
ξ − 1

ξ − 2
p(A(ξ − 1)) (159)

To solve this equation, we have

p(A(ξ)) =
Const

ξ(ξ + 1)(ξ + 3)
∼ ξ−3 (160)

which can be read as p(A(ξ)) = p(ξ) ∼ ξ−3. It suggests that the network
generated by the simple stochastic mechanism described by Eq.(151) is a
scale-free network with the exponent 3.

Network Formation 2 In stead of Eq.(151), we have the following prob-
ability that a vertex with TFP A(ξ) attracts a new link, represented as

Pr(Aj) =
Aj + A0∑
i(Ai + A0)

(161)

Remember that at each time step, a new vertex links to m existing vertices,
and the master equation is

p(A(ξ), s, t+ 1) = m
A(ξ − 1) + A0∑

i(A(ξi) + A0)
p(A(ξ − 1), s, t) +

(
1−m

A(ξ) + A0∑
i(A(ξi) + A0)

)
p(A(ξ), s, t)

(162)

We assume that the constant A0 grows as ξ0 exp(ρ + δNw⟨ξnn⟩)t. Note that
there is no agent indexed by 0, so A0 is just a constant. Because A(ξ, t) ∼
ξ exp(ρ+ δNw⟨ξnn⟩)t, so that the probability, Eq.(161), becomes

(ξj + ξ0) exp(ρ+ δNw⟨ξnn⟩)t∑
i(ξi + ξ0) exp(ρ+ δNw⟨ξnn⟩)t

∼ ξj + ξ0∑
i(ξi + ξ0)

(163)
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Then the master equation becomes

p(A(ξ), s, t+ 1) = m
ξj + ξ0∑
i(ξi + ξ0)

p(A(ξ − 1), s, t) +

(
1−m

ξj + ξ0∑
i(ξi + ξ0)

)
p(A(ξ), s, t)

(164)

We let ξ̄(s, t) denote the mean degree of the vertex entering the network
at time s when the time is t. As time t passes, the vertex entering the network
at time s has more links. If t < s, ξ̄(s, t) = 0 because before time s such
vertices, by definition, do not exist in the network. Then it follows that

∂ξ̄(s, t)

∂t
= m

ξj + ξ0∑
i(ξi + ξ0)

(165)

With the initial condition, ξ̄(t, t) = m, we have the solution,

ξ̄(s, t) ∼ (
t

s
)

m
2m+ξ0 (166)

With the familiar formula of the delta functions,
∫
δ(g(x))dx =

1

g(x)′
|x:g(x)=0,

the degree distribution at time t, P (ξ, t), is represented as

P (ξ, t) =
1

t

∫ t

0

dsδ(ξ − ξ̄(s, t))

= −1

t

(
∂ξ̄(s, t)

∂s

)−1

(167)

By these two Eqs.(166) and (167), we have the scale-free degree distribution:

P (ξ) = t−1∂s(ξ, t)

∂ξ

∼ ξ−(3+ξ0/m) (168)

where, ξ0 is the degree of corresponding vertex with A0 TFP level. 3 + ξ0/m
can take (2,∞].

Network Formation 3 We have another stochastic network formation
mechanism, in which a vertex attracts a new vertex edge by the probability
represented as

Pr(Aj) =
Ax

j∑
iA

x
i

(169)

47



The master equation is

p(A(ξ), s, t+ 1) = m
Ax

j∑
i A

x
i

p(A(ξ − 1), s, t) +

(
1−m

Ax
j∑

iA
x
i

)
p(A(ξ), s, t)

(170)

In a similar argument to those preceding, this process generates degree
distribution:

P (ξ) ∼ ξ−x exp[−µξ1−x/(1− x)] (171)

where 0 < x < 1 and µ is defined by µ =
∫ 1

0
dzκx(x), and κ(s/t) = ξ̄(s, t)

As we have seen, the solution of our framework has the property that
the TFP level is proportional to its degree at each time. Our framework
works well with stochastic network generating mechanisms as shown in this
study. The property of our framework would be helpful in understanding
the network formation mechanism. We believe that the property of our
framework is helpful not only for a stochastic network formation mechanism
but also for the deterministic agent decision network formation problem.

7 Conclusion

We introduce knowledge spillover equation, Eq.(16), and solve it. We find
some characteristics as follows:

1. Growth rate gA of each agent does not depend on degree ξ. It is common
across all the vertices regardless of their degree ξ. The growth rate is
given by gA = ρ+ wδN⟨ξnn⟩

2. Growth rate is dependent on network structure.

3. The level of productivity A is proportional to degree ξ

We also study knowledge spillover equation for its relationship with exist-
ing models, the CES spillover, multi-technology, hierarchical network, bethe
approximation, and numerical simulation.

We compare the growth rates among different representative network
structures: regular, random, and scale-free networks. We find that the
growth rate in scale-free networks is the largest and the smallest in regu-
lar networks. In the perspectives of the growth rate, the scale-free network
is the optimal of these three representative networks.

We apply knowledge spillover equation to the model with distance and en-
dogenous network formation, and we find the relationship between distance,
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region size and growth rate. We show that the distance and the region size
significantly affect growth rate.

We also apply knowledge spillover equation to network formation mech-
anism.

To conclude, we construct a workable tool for analyzing knowledge spillover.
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