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Abstract 

We investigate the productivity dispersion, i.e., allocation of workers among different 

levels of productivity and output, by employing the largest database for small and 

medium-sized companies, Credit Risk Database (CRD). Focusing on the manufacturing 

sector and small and medium levels of productivity, where more workers are 

distributed among higher levels of productivity, we have new empirical findings in a 

pivotal role of workers' allocation among different levels of output as a key to 

understand their allocation among varying levels of productivity. We also propose a 

stochastic process, mathematically a jump Markov process, in which workers are 

allocated to firms of differing output and productivity, interrupted by transitions to 

unemployment, where transitions are coupled with growth and contraction of firms’ 

output that relate to fluctuations of demand. 
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I. Introduction

The coming decade will see serious problems caused by ageing population and low birth-rate,
namely the problems of slow growth and low productivity, rising public spending and labor
shortages in our nation. As more people retire and fewer younger ones take their place,
the labor force will shrink, which results in a drop of output growth, if productivity does
not increases faster. Since the remaining workers will be older, they will be less productive.
Ageing-related spending is estimated to be much larger in the long-term than even the fiscal
burden of the financial crisis that we experience today (see IMF (2009)).

Labor and productivity also play central roles at the core of the problems of ageing
population with low birth-rate in any developed country. Policy making has to involve
utilization of bounded labor forces and maintaining productivity at a certain level. Good
understanding of labor allocation among different productivity levels is required for this
purpose; specifically the dynamics how workers are allocated and reallocated to industrial
sectors with varying levels of productivity under temporally and also spatially, i.e. from one
sector to another, changing demand.

Empirical studies have shown that productivity has dispersion among firms and sectors
(see Shinohara (1955); Salter (1960); Yoshikawa (2000a) for example). Since the productivity
dispersion relates to the notion of equilibrium in economics, it concerns the foundation of eco-
nomic theory as pointed out lucidly in the works (Yoshikawa, 2000a,b; Aoki and Yoshikawa,
2007). Recent availability of abundant data at firm-levels can provide one to uncover empir-
ical findings related to this important problem, and to obtain insight into the understanding
of labor and productivity dynamics at a macroscopic level in the following sense.

The study of productivity dispersion is aided by a large body of empirical studies in labor
economics (see Mortensen (2003) for example and references therein). Notably, Mortensen
(2003) concluded as saying that the problem of wage dispersion, namely why are similar
workers paid differently, reflects differences in employer productivity. The factors of ex-
ogenous labor turnover, job destruction and search friction prevent the labor market from
converging into a state of equilibrium in which all workers are employed by the firms of
highest productivity. Instead of such a static equilibrium, a steady-state allocation of labor
across firms of differing productivity is generated stochastically by a process of reallocation
of workers from less to more productive firms, including transitions to unemployment by job
destruction and other reasons for labor turnover. This is further supported by a growing
literature on the analysis of job flow (e.g. Davis et al. (1996); Albaek and Sorensen (1998)).

It should be remarked that the dynamical processes of allocation of labor across firms of
differing productivity are essentially of stochastic nature. Since the system has many degrees
of freedom —- millions of firms and workers —- the exact configuration of all degrees of
freedom is usually not known. Instead one can resort to statistical description in which each
state is assigned with a probability and stochastic transitions are given between those states.
Additionally, the stochastic states are subject to a few macroscopic variables, such as the
total number of workers and firms, and the total demand as given exogenously.

Following this reasoning, our recent papers with collaborators (Aoyama et al., 2008, 2009)
performed a series of studies on productivity dispersion by using large databases for Japanese
firms showing that

• productivity distribution has a heavy-tail, well characterized by a power-law for large
productivity,

• Pareto index for the heavy tail decreases in its value as the level of aggregation goes

2



from employees to firms, and from firms to sectors,

• theoretical explanation can be given by extending the argument of maximum entropy
and Boltzmann distribution advocated by Aoki-Yoshikawa (Aoki and Yoshikawa, 2007)
to assimilate fluctuation of aggregate demand by using the concept of superstatistics
in statistical physics (a weighted average of the Boltzmann distributions to take into
account of fluctuating demand or temperature in the Boltzmann factor,

• analysis of non-manufacturing (service) sector shows different characteristics from the
one of manufacturing sector, which seems to necessitate a further extension of the
concept of superstatistics,

among other things.
In this paper, we investigate how workers are allocated among different levels of pro-

ductivity by employing the largest database for small and medium-sized companies, Credit
Risk Database (CRD), covering a million small-business firms and fifteen million workers in
Japan. Since the different characteristics are present in non-manufacturing sector, we shall
focus on manufacturing sector for which we established the empirical findings stated above,
in the power-law regime basically for large productivity, where less workers are allocated
to firms with higher productivity. We will focus on the small and medium levels of pro-
ductivity, where more workers are distributed among higher levels of productivity, i.e. the
opposite behavior, and have new findings in the pivotal role of workers’ allocation among
different levels of output. We also propose a stochastic process, mathematically a jump
Markov process, in which workers are allocated to firms of differing output and productivity,
interrupted by transitions to unemployment. We argue that the stochastic process generates
a steady-state allocation of labor across firms of differing output and productivity resulting
in the distributions of workers, productivity and output.

In Section II, we investigate by using database explained in Section A to show distribu-
tions of productivity and workers first, then our new findings about the allocation of workers
among different productivity in Section B, and also about distributions of output and work-
ers and their scaling relation. Then we propose a stochastic process and provide theoretical
argument to explain the empirical findings briefly in Section III as a preliminary proposal.
We summary in Section IV with discussions.

II. Empirical Findings

A. Database

Following the previous work (Aoyama et al., 2009), we employ the Credit Risk Database
(CRD) as the largest database, which covers small and medium firms in Japan, in order to
calculate productivity, number of workers and other information at the level of firms. The
database includes a million small-business firms and fifteen million workers in the nation.
Since our concern is the distribution of workers among different levels of productivity at a
macroscopic scale, the coverage would be satisfactory for our purpose.

We select the firms in the manufacturing sector (defined by the primary business sector
of each firm according to the Japan Standard Industrial Classification) comprising of 0.2
million firms and 5 million workers in gross. Productivity c of each firm is then calculated
by

c =
Y

L
, (1)
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where Y is the value added and L is the labor measured in number of workers. In the
previous work (Aoyama et al., 2009), Y was calculated from the financial information in
the CRD (combined with a Nikkei database for large firms) by the method stated there.
We shall use, as a proximity of value added, output of firms measured simply by business
sales/profits. In a preliminary analysis, we can check the validity of our results here also for
the value-added based calculation, so shall demonstrate that the results are quite robust and
independent of a particular choice of proximate variables.

B. Distributions of Productivity and Workers

The productivity c has a unimodal and heavy-tailed distribution. Fig. 1 shows the probability
distribution function (PDF) denoted by Pc(c). The distribution has a heavy tail which can
be well characterized by a power-law for large c, namely

Pc(c) ∝ c−µc−1 , (2)

where µc is a constant called Pareto index. The power-law region can be represented more
appropriately by the cumulative PDF defined by

P>(c) =
∫ ∞

c

Pc(c′) dc′ , (3)

which is shown in Fig. 2. The standard MLE (maximum likelihood estimate) gives µc =
1.88(±0.10) for the power-law regime c > 3× 104 for the data shown (here and hereafter the
data refers to the year 2006 unless otherwise stated). The power-law fit is depicted by dotted
lines in Fig. 1 and Fig. 2. From Fig. 2, one can read that roughly 20% of the data points
fall in the power-law regime. The previous papers (Aoyama et al., 2008, 2009) studied the
power-law regime extending the work by Yoshikawa (2000b); Aoki and Yoshikawa (2007),
and showed that the superstatistics can successfully describe several properties in the regime.
In particular, we note that the power-law region extends for nearly two orders of magnitude
accounting for roughly 20% of the entire data , and that the Pareto index takes the value
µc ' 2, as previously shown (µc ' 2 ∼ 3 depending on years).

Let us now examine how workers are distributed among different levels of productivity.
To do so, we consider the joint PDF for the two variables of productivity c and the number
of workers L, PcL(c, L), whose marginal distribution is Pc(c):

Pc(c) =
∫ ∞

0

PcL(c, L) dL . (4)

We assume here and hereafter that the discrete variable L can be treated as a continuous
variable as a good approximation at least for the regime of sufficiently large L. Fig. 3 is the
scatter plot for PcL(c, L) depicted by gray points. To quantify how workers are allocated
among different levels of productivity in average, one can use the conditional average for the
number of workers who are present in a given level of c. This conditional average can be
calculated by

E[L|c] =
∫ ∞

0

LPL|c(L|c) dL , (5)

where PL|c(L|c) is the conditional probability defined by

PL|c(L|c) =
PcL(c, L)

Pc(c)
. (6)
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Figure 1: Probability distribution function (PDF) Pc(c) for productivity c = Y/L, where
Y is output (sales/profit in thousand yen) and L is labor input (number of
workers). The dotted line is a power-law fit Pc(c) ∝ c−µc−1 where µc =
1.88(±0.10) (maximum likelihood estimation).
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Figure 2: Cumulative PDF P>(c) for productivity. The dotted line is the same power-
law fit as in Fig. 1 (shifted upward for visibility).

5



101

102

103

103 104 105 106

L

c

E[L|c]

Figure 3: Scatter plot for the joint PDF of productivity c and number of workers L,
PcL(c, L) (gray points). The red curve shows the distribution of L among
different values of c in terms of conditional average E[L|c] as a function of c.
The range 104 < c < 105 includes the region where E[L|c] increases and then
decreases in its value.

Fig. 3 also shows the conditional average E[L|c] as a function of c depicted by a red curve.
In the power-law regime stated above (compare with the horizontal axis in Fig. 2) for large c,
approximately c > 3× 104, E[L|c] is a decreasing function of c. This regime was extensively
studied in Aoyama et al. (2008, 2009), and can be understood quite naturally. Namely, the
framework of the standard Boltzmann distribution proposed by Yoshikawa (2000b); Aoki and
Yoshikawa (2007) implies that for the higher the productivity the less workers are employed.
Since the superstatistics proposed by Aoyama et al. (2008, 2009) is the weighted average
of Boltzmann distributions, no matter how the weight is chosen, higher productivity means
less workers, provided that the temperature appearing in Boltzmann distributions, which is
proportional to macroeconomic demand, is positive.

Interestingly, in the other side of smaller value of productivity in the region c < 3 × 104

approximately, E[L|c] is an increasing function of c as clearly shown in Fig. 3.
This could be interpreted naturally as stating that more and more workers tend to move

from firms with lower level of productivity to those with higher level. However, this seems
beyond the scope of Boltzmann distribution or its extension to superstatistics.

One way to proceed is to consider superstatistics with negative temperature, which might
be worth pursuing in opening up a new direction of statistical framework. In this paper, we
proceed to take a different viewpoint in order to understand this novel empirical finding by
examining a joint distribution of workers and output, i.e. how workers are allocated among
different levels of output of firms, in what follows.
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C. Distributions of Workers and Output

Since c is defined in terms of Y and L by Eq.(1), one could use the variables (Y,L) instead
of (c, L), and vice versa, simply by a transformation of variables.

This leads us to consider the joint PDF PY L(Y,L), which is depicted in Fig. 4 by a scatter
plot for the pair of variables (Y,L). To quantify how workers are allocated among different
levels of output, one can use the conditional average for number of workers who are present
in a given level of Y :

E[L|Y ] =
∫ ∞

0

LPL|Y (L|Y ) dL , (7)

where PL|Y (L|Y ) is the conditional probability defined by

PL|Y (L|Y ) =
PY L(Y,L)

PY (Y )
. (8)

101
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Y

E[L|Y]

c=Y/L=104

105

Figure 4: Scatter plot for the PDF of output Y and number of workers L, PY L(Y, L)
(gray points). The red curve shows the conditional average E[L|Y ] as a func-
tion of Y . The diagonal band 104 < c < 105 refers to the corresponding
range depicted in Fig. 3. Left-upward and right-downward arrows correspond
to Y ' 105 and Y ' 107 respectively.

The conditional average E[L|Y ] is drawn by a red curve in Fig. 4. One can observe
that E[L|Y ] is a linear function of Y to a good accuracy in the most range of variables.
Actually, the standard OLS (ordinary least square) linear regression reveals the validity of
the equation:

log E[L|Y ] = α log Y + const. , (9)

where the parameter α can be estimated as

α = 0.70 ± 0.02 (with R2 = 0.992) , (10)
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Thus a larger number of workers are employed in firms with higher levels of output, in the
average sense, in nearly the entire range of variables.

In addition, a stronger property holds for the conditional distribution PL|Y (L|Y ). To
establish this finding, we examine a set of distributions, PL|Y (L|Y ), for different values of
Y as shown in Fig. 5. The range of the conditioning variable Y is chosen approximately as
105 < y < 107 such that it covers the corresponding range of 104 < c < 105 on the curve
of E[L|Y ] (see the arrows in Fig. 4). One can expect from Eq.(9), and also from the set of
distributions PL|Y (L|Y ) in the figure, that a scaling relation holds:

PL|Y (L|Y ) = Y −α Φ(Y −α L) , (11)

where Φ(·) is a scaling function.
The normalization of PL|Y (L|Y ) reads

1 =
∫ ∞

0

PL|Y (L|Y ) dL =
∫ ∞

0

Φ(η) dη , (12)

so the factor of Y −α in front of the scaling function Phi in Eq.(11) is simply for the normal-
ization.

It is easy to see that Eq.(9) is a consequence of the scaling relation (11). Indeed, Eqs.(7),
(11) lead to

E[L|Y ] = Y α

∫ ∞

0

η Φ(η) dη , (13)

which is equivalent to Eq.(9).
The scaling relation of Eq.(11) can be directly verified by choosing an appropriate value

of α and by scaling the values of Y and the height of PDFs to check if the different curves
of PL|Y (L|Y ) fall onto a single curve. Actually, by using the value of α obtained in Eq.(10),
one has Fig. 6 which evidently shows the collapse of curves onto a scaling function1.

D. Consequences from the scaling relation

We have immediate consequences from the scaling relation, Eq.(11). To see them, we note
first that under the change of variables from (c, L) to (Y,L) one has

PcL(c, L) = LPY L(cL, L) . (14)

It is then straightforward to see that

Pc(c) =
∫ ∞

0

PcL(c, L) dL =
∫ ∞

0

LPY L(cL, L) dL

=
∫ ∞

0

LPY (cL)PL|Y (L|cL) dL , (15)

by using Eqs.(8), (11) and (14).

1This graphical method can be augmented by a non-parametric statistical method such as a Kolmogorov-
Smirnov test.
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Figure 5: The conditional PDF PL|Y (L|Y ) for L under the condition that Y = constant.
The range of Y covers roughly from Y ' 105 (red leftmost curve) to Y ' 107

(violet rightmost curve), which correspond to left-upward arrow and to right-
downward arrows depicted in Fig. 5 respectively.
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Figure 6: The curves of conditional PDFs PL|Y (L|Y ) for different values of Y collapse
on a single curve after scaling the values of Y and the height of PDFs, which
shows the scaling relation in Eq.(11). The parameter α was determined from
the curve E[L|Y ] in Fig. 3 by using Eq.(9).
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The conditional average E[L|c] can be expressed similarly as

E[L|c] =
∫ ∞

0

LPL|c(L|c) dL =
1

Pc(c)

∫ ∞

0

L PcL(c, L) dL

=
1

Pc(c)

∫ ∞

0

LPY L(cL, L) dL

=
1

Pc(c)

∫ ∞

0

L2 PY (c L)PL|Y (L|cL) dL , (16)

due to Eqs.(6), (11) and (14).
If one can assume that the scaling relation, Eq.(8), is valid for wide ranges of variables,

Eq.(15) would be approximated by the following expression:

Pc(c) = c−α

∫ ∞

0

L1−α PY (cL) Φ(c−α L1−α) dL , (17)

and similarly for Eq.(16) as

E[L|c] =
c−α

Pc(c)

∫ ∞

0

L2−α PY (cL)Φ(c−α L1−α) dL . (18)

After numerically parametrizing functional forms for PY and Φ from the empirical data
by using a log-normal distribution and a polynomial approximation for log Φ of its argument
in log scale, one can calculate Pc(c) and E[L|c] numerically.

Thus we have two consequences from the scaling relation (11) for the allocation of workers
among different levels of output.

1. The fact that the power-law in the PDF Pc(c) holds for a wide range of productivity;
in addition, the origin of the value µc ' 2 ∼ 3, which is larger than the Zipf law µ = 1
for firm-size, i.e. for the number of workers and the output).

2. E[L|c] is an increasing function of c in a region corresponding to small productivity as
was shown in Fig. 3.

III. Stochastic model

Let us propose a stochastic process, mathematically a jump Markov process, in which workers
are allocated to firms of differing output, interrupted by transitions to unemployment. The
firms are subject to relative demand which are continually shocked by events such as changes
in tastes of consumers among many others, whose temporal variation is of relatively short
time-scale. The purpose of this section is merely a sketch of the model.

Suppose that there are K firms and Li workers in firm i. An individual can be either an
employee of a firm or not employed by any one of the firms, i.e. in unemployment at a given
moment of time. In a unit time interval dt, an individual is newly employed in the firm i
with a probability t+(Li) dt so that Li → Li + 1. Similarly, with a probability t−(L) dt, one
of the Li employees leaves so that Li → Li − 1. In addition, we suppose that a new firm is
born having a single worker with a probability p dt. On the other hand, a firm with L = 1
will exit with the probability t−(L = 1) dt.

Note that when Li → Li − 1, the leaving individual will not necessarily retain a job
at another firm right away. The worker can be in the state of unemployment. Similarly
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when Li → Li + 1, the recruited worker may be employed either from another firm or from
the state of unemployment. Thus the entire population consists of employees in the firms
and a “reservoir” of unemployed individuals, and the number of employees is not necessarily
conserved.

This model generically describes the stochastic process of (i) increase and decrease of
labor, (ii) entry of a new firm having a unit of labor, and (iii) exit of a firm who lost the last
unit of labor force.

A set of transition rates and entry probability specifies the jump Markov process. Let us
denote by NL,t the average number of firms having labor L at time t. It obeys the master
equation:

∂tN(L, t)
∂t

= t+(L − 1) N(L − 1, t) + t−(L + 1) N(L + 1, t)

−t+(L) N(L, t) − t−(L)N(L, t) + p δL,1 , (19)

where δL,1 is 1 if L = 1 and 0 otherwise.
The total number of firms is Kt ≡

∑∞
L=1 NL,t, and the total number of workers in firms

is Wt ≡
∑∞

L=1 LNL,t. It follows from Eq.(19) that

∂tKt = p − L−(1)N1,t (20)

∂tWt = p −
∞∑

L=1

(t−(L) − t+(L))NL,t (21)

We are interested in the stationary solution of Eq.(19) such that ∂tNL,t = 0. The
solution can be readily obtained by standard methods. Noting the boundary condition that
t−(1)N(L = 1) = p from Eq.(20) equated to zero, it is easy to show that

N(L) = N(1)
L−1∏
`=1

t+(L − `)
t−(L − ` + 1)

. (22)

Let us make a simple assumption on the transition rates. The employment (or unem-
ployment) of worker would depend on the number of workers retained at the moment. If the
number is larger, the larger is the chance of recruiting another worker. We argue shortly how
this assumption is related to the output of firms. A simple assumption would be that the
transition rates are of the form that t+(L) = a+ Lβ and t−(L) = a− Lβ , where β is assumed
to be greater than 1 for a moment. The stationary solution Eq.(22) becomes

N(L) =
N(1)

1 − N(1)/W(β)

(1 − N(1)/W(β))L

Lβ
' L−β e−L/L∗

. (23)

Here L∗ ≡ (N(1)/W(β))−1, and W(β) ≡
∑∞

L=1 LβN(L). We have used the relation a+/a− =
1−N(1)/W(β), which follows from (20) and (21), both equated to zero. Since it is reasonable
to suppose that N(1)/W(β) ¿ 1, we have made approximation in the second equality of (23).
The exponential cut-off works as x approaches to x∗, but the value of x∗ is practically quite
huge. Therefore, one has the power law distribution N(L) ∝ L−β for a wide range of L in
spite of the cut-off.

The present model can be understood easily with the help of an analogy of the formation
of “cities”. Imagine that N(L, t) is the number of cities with population L at time t. t+(L)
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corresponds to a birth in a city with population L, or an inflow into the city from another
city. Similarly, t−(L) represents a death or an exit of a person moving to another city. The
rates are the instantaneous probabilities that population of city with the current population
L either increases or decreases by one. They are, therefore, the entry and exit rates of one
person times population L, respectively. And a drifter forms his own one-person city with
the instantaneous probability p. In this model, dynamics of N(L, t), namely the average
number of cities with population L is given by Eq.(23). In the case of population dynamics,
one might assume that the entry (or birth) and exit (or death) rates of a person, a+ and
a− are independent of the size of population of the city in which the person lives. Then,
t+(L) and t−(L) become linear functions of L, namely, a+L and a−L. Even in population
dynamics, though, one might assume that the entry rate of a person into big city is higher
than its counterpart in small city because of the better job opportunity or the attractiveness
of “city life.” The same may hold for the exit and death rates because of congestion or
epidemics.

This analogy captures our essential assumption; workers employed in the same firm are
subject to the same aggregate shocks, which tend to increase or decrease the number of
workers. Here the aggregate shocks means the demand shocks which vary from one sector to
another, i.e. spatially, and also temporally. Thus our model can be interpreted as postulating
that the transition L → L + 1 at a moment is driven by the increase of output at a previous
time corresponding to the growth of demand, Y → Y + ∆Y (∆Y > 0). And similarly
L → L − 1 by the decrease of output or the shrink of demand, Y → Y − ∆Y at a previous
time. Then, for the simplest case of beta = 2 for the transition rates, since there are more or
less L2 times of leaving and recruiting of workers, the net increase (or decrease) of the number
of workers δL of the workers in a firm during an interval, would be linearly proportional to
L. This is the multiplicative process which gives rise to power-law behavior.

Moreover, the empirical findings obtained in Section II.C show that the allocation of
workers among different levels of productivity can be understood from their allocation among
varying levels of output. The latter can be characterized by the linear relation in Eq.(9) which
follows from the conditional distribution in Eq.(11) whose scaling function is given in Fig. 6.
One can assume a set of coupled stochastic dynamics, one for L as described so far and
the other for Y as a dynamics for the growth of firm-size reflecting the demand shocks.
Comparison of such a simulation with the empirical findings is to be given elsewhere.

IV. Summary and Discussions

By employing the largest database for small and medium-sized companies, Credit Risk
Database (CRD), covering a million small-business firms and fifteen million workers in Japan.
Since the different characteristics are present in non-manufacturing sector, we shall focus on
manufacturing sector for which we established empirical findings previously (Aoyama et al.,
2008, 2009) in the power-law regime basically for large productivity.

Focusing on the small and medium levels of productivity, we found that more workers are
distributed among higher levels of productivity, i.e. the opposite to our previous results, and
have new findings in the pivotal role of workers’ allocation among different levels of output.
Especially, the scaling relation related to the distribution of workers among varying levels of
output leads that (1) the fact that the power-law in the PDF Pc(c) holds for a wide range
of productivity; in addition, the origin of the value µc ' 2 ∼ 3, which is larger than the Zipf
law µ = 1 for firm-size including for the number of workers and the output), and that (2)
E[w|c] is an increasing function of c in a region corresponding to small productivity as was
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shown in Fig. 3.
We also sketch a stochastic process, mathematically a jump Markov process, in which

workers are allocated to firms of differing output and productivity, interrupted by transitions
to unemployment. We propose that the stochastic process generates a steady-state allocation
of labor across firms of differing output and productivity resulting in the distributions of
workers, productivity and output, although a full comparison of the model with the obtained
empirical facts should be done in a future work.

Our empirical finding of the scaling relation in Eq.(11) might be considered as a general-
ization of production function in the following sense. The concept of production function is a
functional relation between output Y , labor input L and capital input K, where one usually
assumes homogeneous production function, i.e. assumption of how output scales under a
scaling of K and L. Our discovery is a distributional generalization of production function,
which takes into account conditional distributions rather than conditional averages. This
insight can potentially lead to a new perspective to look at distributions of productivity,
labor, capital and output, as we have recently found (Aoyama and Fujiwara, 2010).

It should be also remarked that our argument along the conditional and joint distributions
has similarity in a recent paper by Toda (2009) in its application to labor demand (in its
Section 6). The argument of maximum entropy employed there as an analogous application
of thermodynamics and statistical mechanics might have relation to our analysis here. We
consider that this point is worth pursuing as a future work.
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