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Abstract

We construct a search-theoretic model à la Lagos and Wright (2005), that has

multiple steady-state equilibria, one of which may be interpreted as a state of fi-

nancial crisis. The key ingredient is the collateral-secured loan in the decentralized

matching market, in which the borrowers must put up their own land as collateral.

They borrow debt for intertemporal smoothing of the consumption stream and also

for factor payment in production. In the crisis state, the land price is low and the

debt for factor payment, i.e., liquidity, dries up. Facing a liquidity shortage, all sellers

choose not to participate in the matching market and the market is shut down due

to the search externality. This market disruption lowers the aggregate productivity,

while the low productivity justifies the low asset price in turn.

We may be able to derive a policy implication that collective debt reduction by

government intervention may solve the coordination failure and bring the economy

out of the crisis equilibrium.
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1 Introduction

In recent financial crises, asset-price collapses caused tightening of credit in the economy

where collateral-secured loans were widespread. Examples are Japan’s lost decade in the

1990s, the Asian currency crisis in 1997–1998, and the global financial crisis in 2008.

Real estate, such as commercial properties and/or housing assets, is used as collateral

for loans all over the world, and once the prices of collateral assets collapse, credit and

liquidity are severely tightened.

Macroeconomic theorists so far have proposed two different kinds of models for col-

lateral lending. In one strand of models collateral lending smooths consumption and

investment intertemporally (Kiyotaki and Moore 1997; Bernanke, Gertler, and Gilchrist

1999; Iacoviello 2005). In the other models collateral lending is modeled as an intratem-

poral debt that is used as an instrument for factor payment for production (Carlstrom

and Fuerst 1997, 1998; Jermann and Quadrini 2006; Mendoza 2006; Kobayashi, Naka-

jima and Inaba 2007; Kobayashi and Nutahara 2007). We call the instrument for factor

payment liquidity in this paper. Collateral lending works either as an intertemporal

smoother of consumption and investment or as an intratemporal liquidity in the respec-

tive strands of existing models.

In this paper, we propose a model in which collateral lending plays both roles of an

intertemporal smoother and of intratemporal liquidity. We show that the interaction

between the two roles of collateral lending causes multiple steady-state equilibria to

exist. There are two steady states, one of which is a bad equilibrium where the asset

price collapses and a decentralized matching market is disrupted due to a shortage of

liquidity. In the bad equilibrium, the land price is low and the intratemporal debt, i.e.,

liquidity, dries up because of the shortage of collateral. Consequently, the decentralized

matching market is disrupted: Since patient agents choose whether to participate in the

matching market, when the land price is low all patient agents choose not to participate

and the market is shut down. The participation choice by patient agents has an external

effect on impatient agents through search probability, which makes the bad equilibrium

a stable equilibrium. The market disruption lowers the aggregate productivity, while
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the low productivity justifies the low asset price in turn. We may be able to derive

an implication for “macroprudential policy” (Borio 2003, Bernanke 2008) or financial

crisis management: Collective debt reduction by impatient agents due to government

intervention may solve the coordination failure and bring the economy out of the crisis

equilibrium.

Related literature: This paper shows that an asset-price collapse can cause a po-

tentially persistent, maybe decade-long, recession due to a liquidity shortage. The mech-

anism proposed in this paper may be a possible explanation for persistent productivity

declines observed in various episodes of “great depressions.” See Kehoe and Prescott

(2002, 2007) and references therein for a neoclassical account for the great depressions in

the 20th century: In most of the episodes, productivity declines were the primal factor

that caused the depressions, while the root causes of productivity declines are left un-

explained in these research findings (see also Ohanian 2001). The mechanism of market

disruption in our model, that is, the disruption of transactions in the matching market, is

close to the disruption of the chains of production (or the division of labor among firms)

in Blanchard and Kremer (1997) and Kobayashi (2004, 2006). One contribution of this

paper is the model’s ability to analyze the relationship between the asset price and the

market disruption explicitly through adoption of the search-theoretic framework of Lagos

and Wright (2005). Although the Lagos-Wright framework is intended to contribute to

monetary theory (see Rocheteau and Wright 2005, and Lagos and Rocheteau 2005, for

application of this framework in the monetary theory literature), we use it to construct

essentially a “real” model in the spirit of Carlstrom and Fuerst (1997, 1998).

Two-agent example: Before presenting a formal model, we show a simple two-

agent example. Suppose that there exist continua of buyers and sellers with measure 1,

respectively. The economy continues two periods: t = 0, 1. The buyer’s utility comes

from his consumption at both t = 0 and t = 1, while the seller’s utility comes from his

consumption at t = 1 only. We assume that the buyer’s utility is b0 + βb1, where bi is

his consumption at t = i and that the seller’s utility is s1, which equals his consumption
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at t = 1. We assume that 1/2 < β < 1. Suppose that each buyer is endowed with K

units of consumption goods at t = 0 and nothing at t = 1. The consumption goods can

be consumed by both sellers and buyers. Each seller is endowed with nothing at t = 0

and 1 unit of intermediate goods at t = 1, which can be transformed into 2Q units of

consumption goods only by a buyer, where Q < K. The intermediate goods cannot be

consumed by anyone. At t = 1, a decentralized matching market opens and all buyers

participate in the market, while each seller must pay a cost (i.e., disutility) of κ to enter

the market if he decides to participate. In the matching market, buyers and sellers search

for their trading partners and matching of a seller and a buyer is made with matching

function Λ(1, µ), where 1 is the measure of buyers and µ is the measure of sellers who

participate in the matching market. We assume Λ(1, 1) = 1 and Λ(1, 0) = 0, that is,

the matching occurs with probability 1 if all sellers participate and the matching never

occurs if no sellers participate. If the match is made, the seller gives the intermediate

good in exchange for the consumption good. We assume for simplicity that an unspecified

market institution determines that the price of the intermediate good is Q, that is, the

seller gives one unit of the intermediate good in exchange for Q units of consumption

goods. At t = 0, each buyer chooses consumption, b0. If K − b0 ≥ Q, he can buy the

intermediate good and consume b1 = K − b0 + Q at t = 1. If K − b0 < Q, he cannot

buy the intermediate good and consume b1 = K − b0 at t = 1. There are two equilibria

for this example. In one equilibrium, no sellers participate in the matching market and

the buyers consume K, all their endowment, at t = 0 since b1 is discounted. Therefore,

b0 = K and b1 = 0. The sellers’ consumption at t = 1 is zero: s1 = 0. In another

equilibrium, all sellers participate and get the utility s1 − κ, where s1 = Q. The buyers

consume b0 = K − Q at t = 0 and b1 = 2Q at t = 1. The welfare is obviously higher

in the latter equilibrium than the former. The former corresponds to the financial crisis

and the latter corresponds to the normal state in our formal model in the next section.

In the next section, we present the model and show our basic results including policy

implication for financial crisis management. In Section 3, we consider a generalized model
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where multiple matching markets open sequentially in the daytime. Section 4 concludes.

In Appendix, we briefly describe a monetary version of our model.

2 Model

The model is a variant of the search-theoretic model developed by Lagos and Wright

(2005), in which we introduce collateral lending as a payment instrument just like Fer-

raris and Watanabe (2008). Unlike Ferraris and Watanabe’s model, in which lenders

give cash to the borrowers and the total amount of cash is exogenously given by the

government, banks in our model can costlessly create the payment instruments, which

may be interpreted as bank notes or promissory notes.

2.1 Setup

The model is a closed economy à la Lagos and Wright (2005), in which there are continua

of patient agents and impatient agents, who live forever. The measures of patient and

impatient agents are M and 1 respectively, while M is sufficiently large:

M ≫ 1. (1)

There is also a unit mass of banks that can create payment instruments (i.e., bank

notes) costlessly and lend them to agents as collateral-secured loans. Time is discrete

and continues from 0 to infinity: t = 0, 1, · · · ,∞. The numeraire is the consumption

good. For each date t, the market is open twice: the day market and the night market.

Agents can consume the consumption good only in the night market. The consumption

goods are not storable, that is, the consumption goods produced in the day market or

the night market of date t must be consumed in the date-t night market, otherwise they

perish before date t+1 begins. The day market is a decentralized search market in which

patient agents and impatient agents trade intermediate goods when they meet. A trade

in the day market is quid pro quo and no trade credit is available. The night market is

a centralized Walrasian market in which patient and impatient agents and banks trade

consumption goods, land, bonds issued by impatient agents, and bank notes.

5



In the day market, when a patient agent and an impatient agent meet each other,

the patient agent produces the intermediate good and sells it to the impatient agent

at a competitive market price. The impatient agent pays for the intermediate good by

giving the bank notes that she borrowed from a bank in the previous night market.

Patient agents need to pay a fixed cost for participating in the day market, and they

choose whether they participate in the day market or not at the beginning of each

period t. In the night market, impatient agents issue intertemporal bonds and patient

agents buy the bonds in exchange for the consumption good. Impatient agents also

borrow bank notes from banks and can hold productive assets, i.e., land. For simplicity

we assume that patient agents cannot hold land. Impatient agents have incomplete

commitment technology. Therefore, they cannot precommit to redemption of their bonds

nor repayment of their bank loans. However, the impatient agents can use land as

collateral for their bonds and bank loans. Banks have complete commitment technology:

They can commit themselves to pay one unit of consumption good in the night market

in exchange for one unit of bank note that they issued in the previous night market.

Therefore, bank notes are circulated as a payment instrument in the day market.

2.2 Optimization problem for patient agents

The state variable for a patient agent who enters the day market is the amount of bonds

that she hold from the previous period. She holds bonds issued by impatient agents as

her assets. When she enters the night market the bonds and the revenue she earned

in the day market are the state variables. We denote the value function for a patient

agent when she enters the day market by V p(dt−1) and that for the night market by

W p(nt, dt−1), where dt−1 is bond holding and nt is the revenue (i.e., bank notes) she gets

in the day market. Both dt−1 and nt are measured in the unit of the date-t consumption

good, that is, one unit of bond or bank note issued in the date-(t − 1) night market is a

claim to one unit of date-t consumption good.

At the beginning of the day market, a patient agent chooses whether she participate

in the day market by paying fixed cost κ for market participation. The Bellman equation
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for the patient agent is

V p(dt−1)

= max
{
−κ + α(µt)max

qt

[−γ(qt) + W p(ptqt, dt−1)] + {1 − α(µt)}W p(0, dt−1), W p(0, dt−1)
}

(2)

= max
{
−κ + α(µt)max

qt

[−γ(qt) + W p(ptqt, dt−1) − W p(0, dt−1)], 0
}

+ W p(0, dt−1),

(3)

where qt is the quantity of the intermediate good produced; γ(qt) is the cost for produc-

tion, which satisfies γ′(q) > 0, γ′′(q) > 0, and γ(0) = 0; pt is the competitive price of the

intermediate good; α(µt) is the matching probability for a patient agent with which she

meets an impatient agent in the day market, where µt (0 ≤ µt ≤ M) is the measure of

the patient agents who participate in the day market. The expected gain for a patient

agent from participating in the day market, π, is

π ≡ −κ + α(µt)max
qt

{−γ(qt) + W p(ptqt, dt−1) − W p(0, dt−1)}. (4)

Given the aggregate measure of participating patient agents, µt, a patient agent decides

to participate if π > 0; not to participate if π < 0; and is indifferent if π = 0. The

Bellman equation for the night market is

W p(nt, dt−1) = max
ct,ht,dt

ct − ht + βV p(dt), (5)

subject to ct ≤ dt−1 −
dt

1 + rt
+ nt + ht, (6)

where ct is the consumption, ht is the labor supply, rt is the real interest rate, and β

(0 < β < 1) is the intertemporal discount factor. To simplify the analysis, we make

the assumption that patient agents directly gain ct units of utility from consuming ct,

which simplifies the form of collateral constraint in the problem of impatient agents. As

is standard in the Lagos-Wright framework, we assume that the labor input in the night

market gives linear disutility and is transformed into the consumption good linearly. As

shown below, this convention simplifies the analysis greatly by making all agents choose
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the same value of dt, and degenerating the heterogeneity among agents with respect to

revenues in the period-t day market. Substituting ht in the budget constraint into (5),

we have

W p(nt, dt−1) = max
dt

dt−1 −
dt

1 + rt
+ nt + βV p(dt). (7)

The first-order condition (FOC) for (7) is

βV p
d (dt) =

1
1 + rt

. (8)

The envelope conditions for (7) are

W p
n(nt, dt−1) = 1, (9)

W p
d (nt, dt−1) = 1. (10)

These conditions imply that W p(nt, dt−1) = nt + dt−1 + W p
0 , where W p

0 ≡ W p(0, 0).

Therefore, the Bellman equation for the day market can be rewritten as

V p(dt−1) = max{−κ + α(µt) max
qt

[−γ(qt) + ptqt], 0} + dt−1 + W p
0 . (11)

Since the price of the intermediate good is determined competitively,1 FOC for qt is

pt = γ′(qt). (12)

The envelope condition, i.e., V p
d (dt−1) = 1, and (8) imply that

β(1 + rt) = 1. (13)

The measure of the patient agents who participate in the day market, µt, is determined

endogenously by participation decisions of individual agents. The gain from participation

π(µt) can be rewritten as

π(µt) = −κ + α(µt){−γ(qt) + ptqt}. (14)

1Although we assume for simplicity price-taking behavior of all agents in the matching market, we

can easily modify our model such that the trading scheme in the day market is a bilateral bargaining or

competitive search, following Rocheteau and Wright (2005).
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There exist multiple equilibria corresponding to different values of µt: µt = 0 can be

an equilibrium since π(0) = −κ < 0 and an impatient agent chooses not to participate

when π < 0; and the solution to π(µt) = 0 can be an equilibrium, too. Therefore, µt is

determined by the following equation in equilibrium:

µt[α(µt){ptqt − γ(qt)} − κ] = 0. (15)

2.3 Optimization problem for impatient agents

The state variables for an impatient agent who enters the decentralized day market are

the amount of bonds she issued in the previous night market (bt−1); the amount of bank

loans she borrowed in the previous night market (lt−1); and the land she purchased in the

previous night market (kt−1). The impatient agent borrows lt−1 from a bank in the form

of bank notes, that is, she is given lt−1 units of bank notes when she borrows from the

bank in the previous night market. Note that bt−1 and lt−1 are measured in the units of

date-t consumption good. The state variables when she enters the current night market

are bt−1, lt−1, kt−1, the remaining bank notes (n′
t), and the output she produced in the

day market (yt). In the date-t night market, the impatient agent must repay Rt−1lt−1

units of the date-t consumption good to the banks, where Rt−1 is the gross rate of return

on the bank loan. The Bellman equation for the day market is

V (lt−1, bt−1, kt−1) = max
yt,qt

α(µt)µtW (yt, n
′
t, lt−1, bt−1, kt−1)

+ {1 − α(µt)µt}W (0, lt−1, lt−1, bt−1, kt−1), (16)

subject to n′
t = lt−1 − ptqt (17)

n′
t ≥ 0, (18)

yt = Akθ
t−1q

1−θ
t , (19)

where V ( · ) is the value function for an impatient agent who enters the day market, W ( · )

is that for those who enters the night market, and α(µt)µt is the matching probability

of an impatient agent, meeting a patient agent in the day market.2

2We assume a standard constant-returns-to-scale matching function, Λ(µp, µi), for the day market,

where µp and µi are the measures of patient and impatient agents who participate in the day market. The
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The Bellman equation for the night market is

W (yt, n
′
t, lt−1, bt−1, kt−1) = max

c′t,h
′
t,lt,bt,kt

U(c′t) − h′
t + β′V (lt, bt, kt), (20)

subject to c′t + atkt + bt−1 + Rt−1lt−1

≤ yt + h′
t + ωtkt−1 + n′

t +
bt

1 + rt
+ atkt−1, (21)

bt + Rtlt ≤ at+1kt, (22)

lt ≥ 0, (23)

where at the beginning of the night market one unit of land generates the dividend ωt,

which is exogenously given by nature; at is the date-t land price; c′t is the consumption;

U(c) is the utility from the consumption, where U ′(c) > 0, U ′′(c) < 0, and U ′(0) = +∞;

h′
t is the labor supply; and β′ is the intertemporal discount factor that satisfies

0 < β′ < β < 1. (24)

To be more precise, the budget constraint should be written as c′t+atkt+bt−1+Rt−1lt−1+
lt

1+rt
≤ yt+h′

t+ωtkt−1+n′
t+

bt
1+rt

+atkt−1+ lt
1+rt

, where lt
1+rt

on the right-hand side (RHS)

and that on the left-hand side (LHS) cancel out. The interpretation is as follows: the

impatient agent borrows lt
1+rt

units of date-t consumption goods from the bank, which

appears on the RHS, while she immediately purchases lt units of the bank note, which is

just paper but can be used as a means of payment in the date-(t + 1) day market, from

the bank at price 1/(1+rt); therefore, another lt
1+rt

appears on the LHS. We also assume

the Lagos-Wright convention that h′
t gives linear disutility and is transformed into the

consumption good linearly. Because the impatient agent cannot precommit to repay bt

to the creditor (i.e., a patient agent) nor to repay Rtlt to the bank in the date-(t + 1)

night market, she must put up her land as collateral for bt + Rtlt when she borrows bt

and lt in the date-t night market. When the impatient agent repudiates her debt, the

creditors seize the collateral and sell it off in the date-(t+1) night market. Since there is

matching probability for a patient agent is Λ(µp, µi)/µp = Λ(1, µi/µp), while that for an impatient agent

is Λ(µp, µi)/µi = Λ(1, µi/µp)µp/µi. Since µp = µ and µi = 1 in our model, the matching probability for

a patient agent is α(µ) and that for an impatient agent is α(µ)µ, where α(µ) ≡ Λ(1, 1/µ).
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no further penalty for repudiation, the debtor surely diverts and defaults on the excess

amount of debt that exceeds the value of collateral. Therefore, there is no reason for the

creditors to lend more than the value of collateral.3 The Bellman equation (20) can be

rewritten as

W (yt, n
′
t, lt−1, bt−1, kt−1)

= max
c′t,lt,bt,kt

U(c′t) − c′t + yt − atkt + (ωt + at)kt−1 − Rt−1lt−1 + n′
t +

bt

1 + rt
− bt−1

+ β′V (lt, bt, kt),

subject to (22) and (23).

The FOCs are

U ′(c′t) = 1, (25)

1
1 + rt

− ξt + β′Vb(lt, bt, kt) = 0, (26)

β′Vk(lt, bt, kt) = at − ξtat+1, (27)

β′Vl(lt, bt, kt) + ηt − Rtξt = 0, (28)

where ξt and ηt are the Lagrange multipliers for (22) and (23), respectively. The envelope

conditions are

Wy(t − 1) = 1, Wl(t − 1) = −Rt−1, Wn′(t − 1) = 1,

Wb(t − 1) = −1, Wk(t − 1) = ωt + at,

where Wz(t − 1) is the derivative of W (yt, n
′
t, lt−1, bt−1, kt−1) with respect to z (=

yt, n
′
t, lt−1, bt−1, or kt−1). These conditions imply that W (yt, n

′
t, lt−1, bt−1, kt−1) = yt −

3Although we do not consider stochastic shocks to the asset prices in this paper, our model can be

easily generalized to a stochastic model. In such a case, the collateral constraint, (22), is rewritten as

bt + Rtlt ≤ Et[at+1]kt, where Et[ · ] is the mathematical expectations based on the information available

at date t. This is the risk neutrality of the patient agent that leads her to evaluate the value of collateral

as the mathematical expectation of the value of the asset in the next period. If the utility function of

the patient agents is not linear, the collateral constraint in the stochastic model is no longer as simple

as the one above.
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Rt−1lt−1 + n′
t − bt−1 + (ωt + at)kt−1 + W0, where W0 ≡ W (0, 0, 0, 0, 0). The Bellman

equation for the day market can be rewritten as

V (lt−1, bt−1, kt−1) = max
qt

α(µt)µt{Akθ
t−1q

1−θ
t − ptqt} + (1 − Rt−1)lt−1 − bt−1

+ (ωt + at)kt−1 + W0, (29)

subject to ptqt ≤ lt−1, (30)

The FOC is

pt =
(1 − θ)Akθ

t−1q
−θ
t

1 + xt
, (31)

where xt is the Lagrange multiplier for (30). The envelope conditions are

Vl(lt−1, bt−1, kt−1) = α(µt)µtxt, (32)

Vb(lt−1, bt−1, kt−1) = −1, (33)

Vk(lt−1, bt−1, kt−1) = ωt + α(µt)µtθAkθ−1
t−1 q1−θ

t + at. (34)

Note that the collateral constraint (30) becomes binding with probability α(µt)µt if it

binds at all, since it becomes relevant only when the impatient agent successfully matches

with a patient agent. Conditions (26)–(28) and (32)–(34) imply the following system of

equations that determines the dynamics of the models:

β′α(µt+1)µt+1xt+1 + ηt = Rtξt, (35)

1 = (1 + rt){ξt + β′}, (36)

at = ξtat+1 + β′
[
ωt+1 + α(µt+1)µt+1θAkθ−1

t q1−θ
t+1 + at+1

]
. (37)

2.4 Banks

A bank lends lt units of bank notes to an impatient agent in the date-t night market.

The bank has the commitment technology so that the bank can give one unit of the

consumption good in exchange for one unit of the bank note in the date-(t + 1) night

market. The borrower repays Rtlt in the form of the consumption good to the bank in

the date-(t + 1) night market, where Rt is determined competitively. If the borrower
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repudiates her debt, the bank can seize collateral from the borrower but cannot impose

any further penality on the borrower. The bank’s profit in units of the date-(t + 1)

consumption good is Rtlt−lt. In the date-t night market, the bank chooses lt to maximize

Rtlt − lt, where there is no restriction on the supply of lt. Therefore, in equilibrium,

Rt = 1. (38)

This result parallels that for the intraperiod debt in Carlstrom and Fuerst’s (1998) model.

Note that Rt = 1 is guaranteed by the fact that the bank can create costlessly an

unlimited amount of bank notes. If the bank needs to give cash to the borrower and the

total supply of cash is fixed exogenously, Rt may exceed 1 when the total amount of cash

is small. See Ferraris and Watanabe (2008) for this case.

2.5 Equilibrium

The total supply of land is fixed in this economy:

kt = K. (39)

The bond market clears:

∀t, Mdt = bt. (40)

The equilibrium of this economy is defined as follows.

Definition 1 A competitive equilibrium consists of prices, {pt, Rt, rt, at}, and quantities,

{ct, c
′
t, ht, h

′
t, qt, kt, dt, bt, lt, µt}, that satisfy that (i) given the prices, the quantities satisfy

(12) and (15), which are the optimality conditions for patient agents; (ii) given the prices

and {µt}, quantities solve impatient agents’ optimization problems, (20) and (29), and

banks’ optimization problem; and (iii) equilibrium conditions, (39) and (40), are satisfied.

The equilibrium path of this economy is described by the prices, {pt, Rt, rt, at, xt, ξt, ηt},

and the quantities, {c′t, qt, kt, bt, dt, lt, µt}, where they are the solution to the following

system of equations: (12), (13), (15), (22), (25), (30), (31), (35), (36), (37), (38), (39),
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(40), and

ηtptqt = 0. (41)

Equations (13) and (36) imply that 1 + rt = 1/β and ξt = β − β′. We can show the

following proposition:

Proposition 1 In equilibrium, either (qt, µt) = (qh, µh) or (qt, µt) = (0, 0), where qh =

q(µh) and µh is the solution to Π(µ) = κ; where Π(µ) ≡ α(µ){γ′(q(µ))q(µ) − γ(q(µ))}

and q(µ) is an increasing function defined by

γ′(qt)qθ
t =

α(µt)µt(1 − θ)AKθ

α(µt)µt + β
β′ − 1

. (42)

Proof: In equilibrium either ηt = 0 or ηt > 0. In the case where ηt > 0, the nonnegativity

condition (23) is binding. Since lt = ptqt = 0, qt = 0 in equilibrium. Equation (15)

implies that since the gain from participating in the day market is zero for a patient

agent, all patient agents decide not to participate and µt = 0 in this case. Therefore,

in equilibrium where ηt = 0, (qt, µt) = (0, 0). In the case where ηt = 0, it must be the

case that µt ̸= 0, since otherwise (35) implies that ξt = 0, which contradicts the fact

that ξt = β − β′ > 0. Therefore, µt > 0 when ηt = 0. With µt > 0, (35) implies that

xt = (β − β′)/{α(µt)µt}. Therefore, (12), (31), and (39) imply that qt satisfies (42).

Note that (42) determines qt as an increasing function of µt, that is, qt = q(µt), since

the left-hand side of (42) is monotonically increasing in qt and the right-hand side is

monotonically increasing in µt. Since µt > 0 and qt = q(µt) in the case where ηt = 0,

(15) implies that µt is determined by Π(µt) = κ. Since (42) implies that q(0) = 0,

Π(0) = 0. Since the matching probability for a patient agent, α(µ), converges to zero as

µ → ∞, it must be the case that limµ→∞ Π(µ) = 0. Since α(µ) is decreasing in µ and

γ′(q(µ))q(µ)− γ(q(µ)) is increasing in µ, Π(µ) has only one peak as shown in Figure 1 if

functional forms for α( · ) and γ( · ) are given appropriately.4

Figure 1

4For example we can set α(µ) = min{1, µ−δ} and γ(q) = qϵ, where 0 < δ < 1 < ϵ.
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We assume that κ is sufficiently small and functional forms for α( · ) and γ( · ) are

given appropriately such that there exists unique µ such that Π(µ) is increasing in µ for

0 ≤ µ ≤ µ and decreasing for µ ≥ µ. And we assume that κ is sufficiently small such

that Π(µ) = κ has exactly two solutions, µl and µh, where 0 < µl < µh < M . Note

that we assumed that the total measure of patient agents, M , is sufficiently large. Π(µ)

is increasing in the neighborhood of µl and decreasing in the neighborhood of µh. The

equilibrium with µ = µl is unstable because a slight deviation from µl is amplified by

participation decisions of individual agents. The equilibrium with µh is stable, since a

deviation from µh is corrected by participation decisions by individual agents. So we

can focus on the solution µt = µh. We have shown that for appropriate parameters and

functional forms, (qt, µt) = (qh, µh) in equilibrium where ηt = 0. Q.E.D.

Since there is no technological innovation nor capital accumulation in this model,

there are no time-varying state variables relevant to the aggregate dynamics of the econ-

omy. So any sequence of {qt, µt}∞t=0 that satisfies ∀t, (qt, µt) ∈ {(qh, µh), (0, 0)}, can be

an equilibrium path: Given any such sequence of {qt, µt}∞t=0, the sequence of {at, bt}∞t=0

is determined by (37) and

bt = at+1K − phqh
µt+1

µh
, (43)

where ph = γ′(qh). Therefore, an equilibrium path of this model is a sunspot equilibrium

in the sense that any path that satisfies Proposition 1 can be the equilibrium outcome

solely depending on the agents’ expectations.

2.6 Steady States

In what follows in this paper we focus on the steady-state equilibria. Steady-state values

of the asset price, a, and bonds, b, are determined by

a =
β′

1 − β
{ω + α(µ)µθAKθ−1q1−θ}, (44)

b + pq ≤ aK, (45)

(46)
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The welfare of patient and impatient agents is measured by the values of their value

functions at the beginning of the daytime in the steady state:

V p = d =
b

M
, (47)

V =
α(µ)µ
1 − β′ {AKθq1−θ − pq} +

ωK

1 − β′ −
1 − β

1 − β′ b, (48)

where V p and V are the welfare of patient and impatient agents, respectively. If we

define the total welfare of the economy in the steady state, E, as the sum of the patient

and impatient agents’ welfare, it can be written as

E ≡ MV p + V =
α(µ)µ
1 − β′ {AKθq1−θ − pq} +

ωK

1 − β′ +
β − β′

1 − β′ b. (49)

There exist two types of steady state in our model: one with (q, µ) = (qh, µh) and the

other with (q, µ) = (0, 0).

2.6.1 Normal state

We call steady state with (q, µ) = (qh, µh) the “normal state.” The asset price and the

amount of bond are determined by

an =
β′{ω + α(µh)µhθAKθ−1q1−θ

h }
1 − β

, (50)

bn = anK − phqh, (51)

where qh = q(µh) and ph = γ′(qh). In the equilibrium where µ is positive, collateral

is used to issue intertemporal bonds for consumption smoothing and also it is used to

borrow bank notes for factor payment in the decentralized day market. The day market

in which agents form chains of productions is operative in the equilibrium where µ > 0,

while it is shut down in the equilibrium we describe in the following section.

2.6.2 Crisis state

We call the steady state with (q, µ) = (0, 0) the “crisis state,” because the decentralized

day market is shut down in this steady state. The asset price and bonds are determined
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by

ac =
β′ω

1 − β
, (52)

bc = acK. (53)

Obviously from (50) and (52), the asset price is lower in the crisis state than in the

normal state: an > ac. The debt-asset ratio, b/(aK), is higher in the crisis state than in

the normal state:

bn

anK
=

1
anK

(anK − phqh) < 1 =
bc

acK
. (54)

It is shown as follows that the total welfare in the normal state, En, is higher than that

in the crisis state, Ec. Define ∆ ≡ (1 − β′)(En − Ec). Then (49) implies

∆ = α(µh)µh{AKθq1−θ
h − γ′(qh)qh} + (β − β′)

{
β′

1 − β
α(µh)µhθAKθq1−θ

h − γ′(qh)qh

}
.

(55)

Since (42) implies γ′(q)q = (1 − θ)β′α(µ)µAKθq1−θ/{β′α(µ)µ + β − β′} and {α(µ)µ +

β − β′}/{β′α(µ)µ + β − β′} < 1/β′, this equation implies

∆ >

{
1 +

(β − β′)β′

1 − β

}
θα(µh)µhAKθq1−θ

h > 0. (56)

Therefore, the total welfare, E, is higher in the normal state than in the crisis state.

2.7 Coordination failure in the crisis state and policy implications

In the date-t night market, impatient agents choose lt, given µt+1; and at the begin-

ning of date-(t + 1), the measure of participating patient agents, µt+1, is determined by

participation choices of individual patient agents, which are made taking µt+1 and lt as

given.

In the crisis state, patient agents collectively set µt+1 = 0 and impatient agents choose

lt = 0 for all t. Given that lt = 0, a patient agent has no incentive to participate in the

date-(t + 1) day market: If she participates, she can meet with an impatient agent with

probability 1 because µt+1 = 0. (Note that all impatient agents participate in the day
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market.) But the impatient agent has no payment instrument, and therefore the patient

agent can get nothing in the day market, while she must pay κ when she enters the day

market. Thus the expected gain from participation is negative for a patient agent.

Given that µt+1 = 0, an impatient agent has no incentive to borrow from a bank in

the date-t night market and bring bank notes into the date-(t+1) day market: Since she

can meet with a patient agent in the day market with zero probability, the bank notes

are useless. Meanwhile, she wants to maximize the amount of bonds that she issues, bt,

since the market rate, rt = β−1 − 1 is cheaper than her subjective rate of time discount,

i.e., (β′)−1 − 1. Therefore, all impatient agents set bt at its maximum possible value,

at+1K, and they set lt = 0.

Note that the coordination failure that causes the crisis equilibrium to exist occurs

due to the existence of both the intertemporal consumption loan, bt, and the loan for

intratemporal payment, lt. Both debts are necessary to make multiple equilibria. For

example, if we did not introduce consumption loan, bt, in our model, the crisis state

would be eliminated and the normal state would become the only steady-state equilib-

rium because lt is always positive under the collateral constraint, lt ≤ at+1kt. The novel

feature of our model, that is, the use of the collateral-secured loan as both intertem-

poral consumption loan and intratemporal liquidity, enables the multiple steady-state

equilibria to exist.

Policy implications: As we saw above, there is no incentive for impatient agents

to reduce their bonds individually in the crisis state. Therefore, the effectiveness of

a government intervention may be what is necessary to coordinate the expectations

and eliminate the crisis equilibrium. For example, if the government intervenes and

imposes the restriction that all impatient agents must set their intertemporal liabilities,

bt, such that bt ≤ at+1kt − phqh, then the crisis state is eliminated and the economy can

immediately jump to the normal state. The government-coordinated debt restriction

may be interpreted as a simplified model of the government policies during the episodes

of financial crises, such as the $ 700 billion TARP (Troubled Assets Relief Program)
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scheme initiated by the Treasury in 2008, in which the US government will buy and

dispose of the nonperforming assets and will ultimately bail out debt-ridden households

and firms. In past episodes of financial crises all over the world, the governments of the

crisis-affected countries undertook various crisis-management policies to urge financial

institutions to dispose of nonperforming assets and to reduce the debt burdens in the

private sector. In light of our model, we can consider that the essence of these crisis-

management policies may be to restrict bt in order to restore the supply of liquidity,

lt.

Another policy implication would be that if the binding collateral constraint for

borrowers is crucial in a financial crisis, policies targeted at lenders may not be effective

enough to attain economic recovery. For example, rehabilitation of the banking sector by

capital injections and liquidity provision to banks by the central bank may not effectively

resolve market disruptions due to a financial crisis unless the debt reduction of borrowers

is properly addressed.

3 Generalization – Chains of production

There may be several directions for generalization of this model. One of the most intrigu-

ing generalizations would be to incorporate fiat money into this model in a meaningful

way, while it turns out to be impossible in our patient-and-impatient-agents framework.

Because of the difference in time discount factors, impatient agents never hold nom-

inal money in a steady-state equilibrium. It is also easily shown that even when an

interest-bearing money, i.e., bank deposits, is introduced, the impatient agents do not

hold deposit money in a steady state (See Appendix).

In this section, we consider a generalization that makes our stylized model a little

closer to the reality of chains of production and business cycles by introducing multiple

matching markets which open distinct subperiods in the daytime. We can assume that

impatient agents go through the matching markets sequentially during the daytime, while

in each market they produce the consumption good using land and the intermediate

good produced by patient agents. We assume a simple structure of chains of production
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and an impatient agent, who could not produce in a matching market, cannot enter

the subsequent matching markets and must go to the night market directly; and only

an impatient agent who successfuly produces in a matching market can enter the next

matching market. In equilibrium, several matching markets may be operative, while the

other matching markets are shutdown. Although we have only two steady states in the

basic model, there arise naturally more than two steady-state equilibria in the generalized

model, each of which is distinguished by the number of open matching markets or,

equivalently, by the level of land prices. In a steady state with a higher land price,

more matching markets are operative. The steady states in the generalized model may

be interpreted as representing various stages in the business cycle, such as a boom, a

shallow recession, a deep recession, etc. Thus the generalized model may be potentially

useful to analyze both ordinary business cycles and extraordinary financial crises in a

unified framework.

The generalized model shows a new theoretical possibility of expectations-driven

business cycles: Changes in asset prices may cause changes in the current and future

productivity through changes in the expectations of the number of operative matching

markets, while the productivity changes justify the fluctuations in the asset prices. In

short, the generalized model shows that the expectations of the operative matching mar-

kets may drive the business cycles, while the expectations are justified by the induced

productivity changes.5 The features of our model are exactly the same as sunspot equi-

librium models in that the number of operative matching markets, the asset price, and

the aggregate productivity are endogenously selected from candidates of steady states,

and there is no selection mechanism that is based on economic fundamentals.

5This type of the expectations-driven business cycle may be interesting because in the existing models

of the expectations-driven business cycles pioneered by Beaudry and Portier (2004), the expectations on

future productivity is exogenously provided, while in our model the expectations change endogenously.

For examples of the existing models of the expectations-driven business cycles, see Christiano, Ilut, Motto

and Rostagno (2007), Jaimovich and Rebelo (2008), and Kobayashi, Nakajima, and Inaba (2007).
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3.1 Setup

The model is the same as the basic model described in the previous section except that

there are N subperiods in the daytime, where N ≥ 2, and a distinct matching market

opens in each subperiod. We call the matching market in the i-th subperiod the D-i

market, where i = 1, 2, · · · , N .

3.2 Optimization of impatient agents

An impatient agent enters the D-1 market in the first subperiod of the daytime of date

t, bringing lt−1 units of bank notes that are borrowed from a bank, bt−1 units of debt

obligations, and kt−1 units of land from the date-(t − 1) night market. The impatient

agent searches for a patient agent, and if she successfully meets a patient agent she buys

the intermediate good from the patient agent and produces the consumption good; and

only if she successfully produces in the D-1 market does she enter the D-2 market in

the second subperiod, bringing the output of the D-1 market and the remaining bank

notes. If she does not meet a patient agent in D-1 market, she cannot participate in any

subsequent markets in the daytime and must go directly to the night market. This process

is repeated N times, going from D-1 to D-N markets. In the D-i market, an impatient

agent meets a patient agent with probability α(µ(i)
t )µ(i)

t , where µ
(i)
t is the relative measure

of patient agents who participate in the D-i market, that is, the measure of participating

patient agents divided by the measure of impatient agents who participate in the D-i

market.6 We denote variables in the D-i market with the superscript (i).

The Bellman equation for the D-i market (1 ≤ i ≤ N) is as follows. The state

variables in the value function are y
(i−1)
t , the consumption good that the agent carries at

the beginning of the D-i market; n
(i−1)
t , the remaining bank notes that the agent carries

at the beginning of the D-i market; lt−1, the bank loan that the agent borrowed in the

6Using the relative measure, µ
(i)
t , the measure of impatient agents who participate in the D-i market

is written as
Qi−1

j=1 α(µ
(j)
t )µ

(j)
t and the measure of patient agents who participate in the D-i market is

[
Qi−1

j=1 α(µ
(j)
t )µ

(j)
t ]µ

(i)
t .
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date-(t − 1) night market; bt−1, the bond; and kt−1, the land.

V (i)(y(i−1)
t , n

(i−1)
t , lt−1, bt−1, kt−1) = max

y(i),q(i),n(i)
α(µ(i)

t )µ(i)
t V (i+1)(y(i)

t , n
(i)
t , lt−1, bt−1, kt−1)

+ {1 − α(µ(i)
t )µ(i)

t }W (y(i−1)
t , n

(i−1)
t , lt−1, bt−1, kt−1),

(57)

subject to n
(i)
t = n

(i−1)
t − p

(i)
t q

(i)
t , (58)

n(i) ≥ 0, (59)

y
(i)
t = A(i){kt−1}θ{q(i)

t }1−θ + y
(i−1)
t , (60)

where V (i)( · ) is the value function for an impatient agent entering the D-i market;

V (N+1)( · ) ≡ W ( · ); y
(0)
t = 0; and n

(0)
t = lt−1. Note that the production technology

given in (60) guarantees that the production in the D-i market is independent from

the output in the D-j market for i ̸= j. Note also that the assumption of chains of

production that only those who successfully produce in the D-i market can enter the

D-(i + 1) market greatly simplifies the analysis by avoiding the curse of dimensionality.

This is because this assumption guarantees that all impatient agents who participate

in a matching market have identical trading history and have identical values of state

variables.

Since the problem for an impatient agent in the night market is identical to the basic

model, the Bellman equation for the night market is

W (yt, nt, lt−1, bt−1, kt−1) = max
c′t,h

′
t,n

(0)
t+1,lt,bt,kt

U(c′t) − h′
t + β′V (1)(0, n

(0)
t+1, lt, bt, kt), (61)

subject to c′t + atkt + bt−1

≤ yt + h′
t + ωtkt−1 + nt − Rt−1lt−1 +

bt

1 + rt
+ atkt−1,

(62)

bt + Rtlt ≤ at+1kt, (63)

lt ≥ 0, (64)

n
(0)
t+1 ≤ lt. (65)
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The same arguments as those in the previous section imply that the value function for

the night market can be written as

W (yt, nt, lt−1, bt−1, kt−1) = yt + nt − Rt−1lt−1 − bt−1 + (ωt + at)kt−1 + W0. (66)

Using this expression, the reduced form of the value function V (1)( · ) is derived, given

{p(i)
t , µ

(i)
t }N

i=1: First, V (N)( · ) is solved using (66); and V (i)( · ) is solved backwardly

from i = N − 1 to i = 1. Thus we have

V (1)(0, n(0)
t , lt−1, bt−1, kt−1) =

N∑
i=1

max
q
(i)
t ,n

(i)
t

 i∏
j=1

α(µ(j)
t )µ(j)

t

[
A(i)kθ

t−1{q
(i)
t }1−θ − p

(i)
t q

(i)
t

]
− Rt−1lt−1 − bt−1 + (ωt + at)kt−1 + W0, (67)

subject to p
(i)
t q

(i)
t + n

(i)
t ≤ n

(i−1)
t , for i = 1, 2, · · · , N, (68)

n(i) ≥ 0, for i = 1, 2, · · · , N. (69)

Given {p(i)
t , µ

(i)
t }N

i=1, the FOCs are

p
(i)
t =

(1 − θ)A(i)kθ
t−1{q

(i)
t }−θ

1 + x
(i)
t

, (70)

x
(i−1)
t = β′α(µ(i)

t )µ(i)
t x

(i)
t + η

(i−1)
t , for i = 1, 2, · · · , N, (71)

where x
(i)
t and η

(i)
t are the Lagrange multipliers for (68) and (69), respectively, and the

FOCs for (61) and the envelope conditions for (67) imply that x
(0)
t = β−β′ and η

(0)
t = 0.

3.3 Optimization of the patient agent

We assume that at the beginning of each date a patient agent chooses whether she

participates in a decentralized matching market in the daytime. A patient agent can

participate in at most one market among D-1, · · · , D-N markets. Thus the optimization

problem for a patient agent is identical to the basic model. Therefore, µ
(i)
t , the relative

measure of patient agents who participate in the D-i market, is determined by[
α(µ(i)

t ){p(i)
t q

(i)
t − γ(q(i)

t )} − κ
]
µ

(i)
t = 0. (72)

If µ
(i)
t > 0, q

(i)
t is determined by the FOC:

γ′(q(i)
t ) = p

(i)
t . (73)
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3.4 Equilibrium

We can define a competitive equilibrium of the N -market model as follows.

Definition 2 A competitive equilibrium consists of prices, {{p(i)
t }N

i=1, Rt, rt, at}, and

quantities, {ct, c
′
t, ht, h

′
t, kt, dt, bt, lt, {q(i)

t , n
(i)
t , µ

(i)
t }N

i=1}, that satisfy that (i) given the prices,

the quantities satisfy (72) and (73), which are the optimality conditions for patient agents;

(ii) given the prices and {µ(i)
t }N

i=1, the quantities solve impatient agents’ optimization

problems, (67) and (61), and banks’ optimization problem; and (iii) equilibrium condi-

tions, (39) and (40), are satisfied.

The equilibrium values of variables in the D-i market are determined by solving (70), (71),

(72) and (73) forwardly, given x
(0)
t = β−β′ and η

(0)
t = 0, where η

(i)
t = 0 if the D-i market

is operative. There exist multiple steady-state equilibria. The D-i market is either open

or shutdown for i = 1, 2, · · · , N in a steady-state equilibrium. Since the assumption of

chains of production guarantees that if µ
(i)
t = 0 then µ

(j)
t = 0 for all j ≥ i + 1, there

exist at most N + 1 steady-state equilibria: Each equilibrium is distinguished by the

number of the matching markets that are not shutdown. We can define I-equilibrium

(I = 0, 1, · · · , N) as a steady-state equilibrium where the first I matching markets are

operative, that is, µ(i) > 0 for 1 ≤ i ≤ I and µ(i) = 0 for I +1 ≤ i ≤ N . In I-equilibrium,

the equilibrium variables in the D-i market are determined by the following system of

equations, given x(0) = β − β′:

p(i) =
(1 − θ)A(i)kθ

t−1{q(i)}−θ

1 + x(i)
, (74)

x(i−1) = β′α(µ(i))µ(i)x(i), (75)

α(µ(i)){p(i)q(i) − γ(q(i))} − κ = 0, (76)

γ′(q(i)) = p(i), (77)

for i = 1, 2, · · · , I; and q(i) = µ(i) = 0 for i = I + 1, · · · , N .

The values of {p(i), q(i), µ(i), x(i)}N
i=1 are determined by solving the system of equations

(74)–(77) forwardly from i = 1 to i = N , given x(0) = β−β′. Note that if the D-i market
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is open in both I-equilibrium and I ′-equilibrium, the values of variables in the D-i market

are identical in I- and I ′-equilibria for I ̸= I ′.7

The asset price in I-equilibrium is determined by

a(I) =
β′{ω +

∑I
i=1[

∏i
j=1 α(µ(j))µ(j)]θA(i)Kθ−1{q(i)}1−θ}

1 − β
, (78)

or, equivalently, a(I) = a(I − 1) + β′

1−β [
∏I

j=1 α(µ(j))µ(j)]θA(I)Kθ−1{q(I)}1−θ. Obviously,

a(I) is increasing in I, that is, the asset price is higher in the equilibrium where more

matching markets are operative. The amount of bonds in I-equilibrium is determined

by

b(I) = a(I)K −
I∑

i=1

p(i)q(i). (79)

The welfare of an agent can be defined as the value of her value function at the beginning

of the daytime in the steady state. Thus the welfare of a patient agent in I-equilibrium,

V p(I), and that of an impatient agent, V (1)(I), are

V p(I) = d(I) =
b(I)
M

, (80)

V (1)(I) =
1

1 − β′

ωK − (1 − β)b(I) +
I∑

i=1


i∏

j=1

α(µ(j))µ(j)

(
A(i)Kθ{q(i)}1−θ − p(i)q(i)

) .

(81)

We can define the total welfare of the economy in I-equilibrium by E(I) ≡ MV p(I) +

V (1)(I), which is written as

E(I) =
1

1 − β′

ωK + (β − β′)b(I) +
I∑

i=1


i∏

j=1

α(µ(j))µ(j)

(
A(i)Kθ{q(i)}1−θ − p(i)q(i)

) .

(82)

7Note also that for a certain range of parameter values there may exist J(≤ N) such that the above

system of equations (74)–(77) has no positive solution {p(i), q(i), µ(i), x(i)} for i = J . In this case, D-J ,

D-(J + 1), · · · , D-N markets are always shutdown in any equilibrium. In this case, there exist only J

steady-state equilibria: 0-, 1-, · · · , (J − 1)-equilibria.
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It is shown, as follows, that E(I) is increasing in I, that is, the welfare of the economy

increases as the number of operative matching markets increases. Define ∆(I) ≡ (1 −

β′){E(I) − E(I − 1)}.

∆(I) =
[{

1 +
(β − β′)β′θ

1 − β

}
Γ(I) − {Γ(I) + β − β′} 1 − θ

1 + x(I)

]
A(I)Kθ{q(I)}1−θ, (83)

where Γ(I) =
∏I

i=1 α(µ(i))µ(i). Since x(I) = (β − β′)/[(β′)IΓ(I)] and {Γ(I) + β −

β′}(β′)I/{(β′)IΓ(I) + β − β′} < 1, it is shown that

∆(I) >

{
1 +

(β − β′)β′

1 − β

}
θΓ(I)A(I)Kθ{q(I)}1−θ > 0, (84)

which implies that E(I) > E(I − 1) for all I ≥ 1.

Policy implications: Multiple steady-state equilibria arise in this generalized model

due to the same coordination failure that we discussed in the previous section. This

model is essentially a sunspot equilibrium model and the equilibrium selection depends

on the macroeconomic expectations. Government policy or regulation that restricts the

amount of debt issued by impatient agents may improve the coordination failure and

may change the equilibrium. For example, if the government imposes the restriction

that bt ≤ at+1kt −
∑J

i=1 p(i)q(i), then the candidates of the steady-state equilibrium that

can be realized become restricted to J-, (J + 1)-, · · · , N -equilibria. In other words, the

steady states from 0-equilibrium to (J − 1)-equilibrium are eliminated from the candi-

dates of realizable steady-state equilibrium. Therefore, this model implies that monetary

policy and/or financial regulations that restrict the aggregate level of debt may raise the

aggregate productivity and asset prices through increasing liquidity, which enhances eco-

nomic transactions in decentralized matching markets. This policy implication may be

consistent with the historical episodes of financial crises. Japan and Sweden, for example,

experienced collapses of land prices and the emergence of nonperforming loans problems

almost simultaneously in the early 1990s. Sweden disposed of bad loans aggressively in

1992–1994, and then attained a V-shaped economic recovery in the middle of the 1990s,

while Japan postponed the disposal of nonperforming loans and its debt-ridden economy

experienced slow growth that lasted a decade.
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4 Conclusion

In this paper, we propose a model in which a collateral-secured loan is used to smooth

consumption intertemporally and also used as a payment instrument, i.e., liquidity, in-

tratemporally. We show that the interaction between the two roles of collateral lending

causes multiple steady-state equilibria to exist. The role of liquidity to mitigate the

search friction in the decentralized market plays the key role to generate the multiple

equilibria. In our basic model, there are two stable steady states, one of which is a bad

equilibrium where the asset price collapses and the decentralized matching market is

disrupted due to a shortage of liquidity. In the bad equilibrium, the land price is low

and the intratemporal debt, i.e., liquidity, dries up because of the shortage of collateral.

Consequently, the decentralized matching market is shut down, since sellers choose not

to participate in the market facing buyers’ liquidity shortage. This market disruption

lowers the aggregate productivity, while the low productivity justifies the low asset prices

in turn. The asset price is lower and the debt/asset ratio, bt/(at+1K), is higher in the

bad equilibrium. Therefore, a policy implication for financial crisis management is that

if the government imposes the restriction that all impatient agents must set their debt

burden, bt, such that bt ≤ at+1kt − phqh, the crisis state is then eliminated and the

economy may jump to the normal state. This result seems to support the effectiveness

of debt reduction policy as financial crisis management. Thus our analysis in this paper

may shed some light on the assessment of policies for financial crisis management that

are explicitly concerned with asset prices and the aggregate amount of debt.
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A Appendix

In this Appendix, we confirm that our results in the previous section hold even if we

introduce money into our model. As is the case for Carlstrom and Fuerst’s (1997) model,

the setting of our model with two different types of agents, patient and impatient, implies

that impatient agents do not hold cash for payment in a steady-state equilibrium. In

this Appendix, we consider a slightly stronger form of money than cash. We confirm

that money does not matter for our results in a modified version of our model in which

we introduce deposit money that can earn interest.

We assume that agents can hold intertemporal bank deposits that earn interest at

the rate rd
t , instead of bonds. Impatient agents can use the principal and interest from

their deposits as a payment instrument in the decentralized market in addition to the

bank notes that they borrow from banks.

A.1 Optimization of patient agents

Since patient agents hold bank deposit, dt, instead of bonds, bt, we get the Bellman

equations for our monetary model by substituting dt and rd
t for bt and rt in the previous
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section. Note that dt is measured in the units of the date-(t + 1) consumption good.

V p(dt−1) = max {−κ + α(µt)[−γ(qt) + W p(ptqt, dt−1) − W p(0, dt−1)], 0} + W p(0, dt−1),

(85)

and

W p(lt, dt−1) = max
dt

dt−1 −
dt

1 + rd
t

+ lt + βV p(dt). (86)

Similar arguments as those in the previous section imply

β(1 + rd
t ) = 1. (87)

A.2 Optimization of impatient agents

Since impatient agents can hold bank deposits, d′t, as their assets, we need to include d′t

as the state variables. In this modified model, impatient agents borrow intertemporal

loans, bt, from banks instead of borrowing from patient agents directly. The interest rate

for bt is rt, where rt ≥ rd
t . The Bellman equation for the day market is

V (lt−1, bt−1, d
′
t−1, kt−1) =α(µt)µt max

yt,qt,lt,d′′t

W (yt, n
′
t, lt−1, bt−1, kt−1)

+ (1 − α(µt)µt)W (0, lt−1, lt−1 + d′t−1, bt−1, kt−1), (88)

subject to n′
t = d′t−1 + atkt−1 − ptqt, (89)

n′
t ≥ 0, (90)

yt = Akθ
t−1q

1−θ
t , (91)

where n′
t is the total of bank notes and deposits that the impatient agent brings into the

night market. The Bellman equation for the night market is

W (yt, n
′
t, lt−1, bt−1, kt−1) = max

c′t,lt,bt,d′t,kt

U(c′t) − c′t + yt − at{kt − kt−1} + ωtkt−1 + n′
t −

d′t
1 + rd

t

− Rtlt

+
bt

1 + rt
− bt−1 + β′V (lt, bt, d

′
t, kt), (92)

subject to bt + Rtlt ≤ at+1kt + d′t. FOCs and envelope conditions for bt and d′t imply

1 = (1 + rt)ξt + β′(1 + rt)(1 + α(µt+1)µt+1xt+1), (93)

1 ≥ β′(1 + rd
t ){1 + α(µt+1)µt+1[Rt+1 + Rt+1xt+1 − 1]}, (94)
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where d′t = 0 if (94) holds with strong inequality. Therefore, equations (93) and (94)

imply that d′t = 0 if Rt+1 = 1 and rd
t < rt, which, we will show below, is the case in the

equilibrium.

A.3 Optimization of banks

Banks accept deposits dt from patient agents and d′t from impatient agents, and invest

them into intertemporal lending bt and the real cash reserve mt under a technological

constraint that total deposits8 cannot exceed ϕmt where ϕ (ϕ > 1) is a technological

parameter for production of payment services. The optimization problem of a bank in

period t is written as follows:

max
lt,bt,dt,d′t

bt +
mt

1 + πt
− (dt + d′t) + (Rt − 1)lt, (95)

subject to
bt

1 + rt
+ mt + lt ≤

dt + d′t
1 + rd

t

+ lt, (96)

dt + d′t
1 + rd

t

≤ ϕmt, (97)

where πt is the inflation rate. Note that lt denotes the bank notes lent to impatient

agents. The bank’s problem can be rewritten as follows: Given rt, rd
t and Rt,

max
lt,mt

[(rt − rd
t )ϕ + (1 + πt)−1 − (1 + rt)]mt + (Rt − 1)lt. (98)

Since lt < ∞ and mt < ∞ in the equilibrium,

Rt = 1, (99)

1 + rt =
β−1ϕ − (1 + πt)−1

ϕ − 1
. (100)

As long as 1 + πt ≥ β, rt exceeds rd
t = β−1 − 1, and therefore, d′t = 0 from (93) and (94).

It is easily shown that qualitatively the same results as those in Section 2 hold for the
8Here we make a slightly problematic assumption that the intraperiod bank notes, lt, that the bank

issues in the day market are not constrained by cash holdings of the bank. Otherwise the constraint (97)

would be dt +d′
t + lt ≤ ϕmt and the intraperiod rate of interest would exceed one, that is, Rt > 1. In this

case, the analysis would be complicated and our results would hold only for a certain range of parameter

values. For simplicity, we assume in this paper that the constraint for the bank is (97).
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steady-state equilibria of the model in this Appendix as long as 1 + π ≥ β, since d′t = 0

in this case.
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Figure 1: Determination of the measure of participating patient agents in Normal State
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