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I. Introduction

The standard economic analysis postulates that the marginal products of a production

factor such as labor are all equal across firms, industries, and sectors in equilibrium. Oth-

erwise, there remains a profit opportunity, and this contradicts the notion of equilibrium.

Factor endowment, together with preferences and technology, determines equilibrium in

such a way that the marginal products are equal across sectors and firms.

A bold challenge to this orthodox theory was given by Keynes (1936). He pointed

out that the utilization of production factors is not full, and therefore, factor endowment

is not an effective determinant of equilibrium. In the General Theory, Keynes identi-

fied the less than full utilization of production factor with the presence of involuntary

unemployment of labor. Many controversies revolved around the theoretically ambigu-

ous notion of “involuntary” unemployment. However, for Keynes’ economics to make

sense, the existence of involuntary unemployment is not necessary. More generally, it is

enough to assume that there is underemployment in the economy in the sense that the

marginal products are not uniform at the highest level. In effect, what Keynes said is that

in the demand-constrained equilibrium, productivity of production factor differs across

industries and firms.

There are, in fact, several empirical findings which strongly suggest that productivity

dispersion exists in the economy. The celebrated Okun’s Law is an example. The standard

assumption on the neoclassical production function entails that the elasticity of output

with respect to labor input (or the unemployment rate) is less than one. Okun (1962),

however, found this elasticity to be three for the U.S. economy. This finding turns out to

be so robust that it has eventually become known as Okun’s Law.

2



Okun attempts to explain his own finding by resorting to several factors. They are

(a) additional jobs for people who do not actively seek work in a slack labor market

but nonetheless take jobs when they become available; (b) a longer workweek reflecting

less part-time and more overtime employment; and (c) extra productivity. On cyclical

changes in productivity, he argues as follows:

“I now believe that an important part of the process involves a downgrad-

ing of labor in a slack economy—high-quality workers avoiding unemployment

by accepting low-quality and less-productive jobs. The focus of this paper is

on the upgrading of jobs associated with a high-pressure economy. Shifts in

the composition of output and employment toward sectors and industries of

higher productivity boost aggregate productivity as unemployment declines.

Thus the movement to full employment draws on a reserve army of the un-

deremployed as well as of the unemployed. In the main empirical study of

this paper, I shall report new evidence concerning the upgrading of workers

into more productive jobs in a high-pressure economy.” (Okun (1962, p.208))

Okun well recognized and indeed, by way of his celebrated law, demonstrated that there

exists dispersion of labor productivity in the economy.

Another example is wage dispersion, an observation long made by labor economists.

Mortensen (2003), for example, summarizes his analysis of wage dispersion as follows.

“Why are similar workers paid differently? Why do some jobs pay more

than others? I have argued that wage dispersion of this kind reflects differences

in employer productivity. . . . Of course, the assertion that wage dispersion is
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the consequence of productivity dispersion begs another question. What is

the explanation for productivity dispersion? ” (Mortensen (2003, p.129))

To this question, Mortensen’s explanation is as follows:

“Relative demand and productive efficiency of individual firms are contin-

ually shocked by events. The shocks are the consequence of changes in tastes,

changes in regulations, and changes induced by globalization among others.

Another important source of persistent productivity differences across firms

is the process of adopting technical innovation. We know that the diffusion of

new and more efficient methods is a slow, drawn-out affair. Experimentation

is required to implement new methods. Many innovations are embodied in

equipment and forms of human capital that are necessarily long-lived. Learn-

ing how and where to apply any new innovation takes time and may well

be highly firm-specific. Since old technologies are not immediately replaced

by the new for all of these reasons, productive efficiency varies considerably

across firms at any point in time.” (Mortensen (2003, p.130))

It is important to recognize that the processes Mortensen describes are intrinsically

stochastic. Because there are millions of firms in the economy, it is absolutely impossible

for economists to pursue the precise behavior of an individual firm although no doubt each

firm tries to maximize profits, perhaps dynamically, under certain constraints. Therefore,

we must explore such stochastic dynamics in the economy as a whole by a different

method. In this paper, we pursue such a stochastic approach.

The “stochastic approach” was indeed once popular in diverse areas of study such as

income distribution and firm (city) size: primary examples are Champernowne (1973) and
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Ijiri and Simon (1977). However, the stochastic approach eventually lost its momentum.

According to Sutton (1997), the reason is as follows:

“It seems to have been widely felt that these models might fit well, but were

“only stochastic.” The aim was to move instead to a program of introducing

stochastic elements into conventional maximizing models.” (Sutton (1997,

p.45))

This trend is certainly in accordance with the motto of mainstream macroeconomics.

However, Sutton, acknowledging the importance of the stochastic approach, argues that1

“a proper understanding of the evolution of structure may require an anal-

ysis not only of such economic mechanisms, but also of the role played by

purely statistical (independence) effects, and that a complete theory will need

to find an appropriate way of combining these two strands.” (Sutton (1997,

p.57))

Actually, as the system under investigation becomes larger and more complicated, the

importance of the stochastic approach increases. In fact, it is almost the definition of

macro-system to which the basic approach based on statistical physics can be usefully ap-

plied. In natural sciences such as physics, chemistry, biology and ecology, the “stochastic

approach” is routinely taken to analyze macro-system. Why not in macroeconomics?

1Incidentally, Sutton (1997), evidently having the central limit theorem in mind, identifies what

he calls “purely statistical” effects with the effects of independent stochastic variables. However, the

method of statistical physics is effective even when stochastic variables are correlated, that is they are

not independent.
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In what follows, we first explain the concept of stochastic macro-equilibrium. Next,

we present an empirical analysis of productivity dispersion across Japanese firms. Then,

we present a theory which can explain the observed distribution of productivity. The

theoretical analysis which we offer follows the standard method of statistical physics, and

abstracts from microeconomic analysis of the behavior of an individual agent. We believe

that as Sutton (1997) suggests, our analysis complements the standard search theoretical

approach, which pays careful attention to microeconomic behavior. Finally, we discuss

implications of our analysis and a possible direction of future research.

II. The Stochastic Macro-equilibrium

Tobin (1972) proposed the concept of stochastic macro-equilibrium in his attempt to

explain the observed Phillips curve. He argues that

“[it is] stochastic, because random intersectoral shocks keep individual

labor markets in diverse states of disequilibrium; macro-equilibrium, because

the perpetual flux of particular markets produces fairly definite aggregate

outcomes. ” (Tobin (1972, p.9))

His argument remained only verbal. However, as we will see shortly, the fundamental

principle of statistical physics, in fact, provides the exact foundations for the concept of

macro-equilibrium. A case in point is productivity dispersion in the economy.

We consider the economy in which there are K firms with their respective productiv-

ities c1, c2, . . . . Without loss of generality, we can assume

(1) c1 < c2 < · · · < cK .
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Labor endowment is N . We distribute nk workers to the k-th firm. Thus, the following

equality holds:

(2)
K∑

k=1

nk = N.

The neoclassical theory takes it for granted that nK is N while nk (k 6= K)′s are

all zero. Instead, in what follows, we seek the most probable distribution of produc-

tivity across workers under suitable constraints.2 The possible number of a particular

configuration (n1, n2, . . . , nK), w{n} is

(3) w{n} =
N !∏K

k=1 nk!
.

Because the total number of possible configurations is KN , the probability of occurrence of

such a configuration, P{n}, on the assumption of equal probabilities for all configurations,

is given by

(4) P{n} =
1

KN

N !∏K
i=1 ni!

.

Following the fundamental principle of statistical physics, we postulate that the con-

figuration {n1, n2, . . . , nK} that maximizes P{n} under suitable constraints is realized in

equilibrium. The idea is similar to the method of maximum likelihood in statistics or

econometrics.

It is extremely important to recognize that this analysis is consistent with the stan-

dard assumption in economics that economic agents maximize their objective functions.

As each particle satisfies the Newtonian law of motion, and maximizes the Hamiltonian in

physics, in the economy, to be sure, all the micro agents optimize. However, constraints

2The productivity ck corresponds to allowed energy level, and workers to distinguishable particles in

statistical physics.
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facing these micro agents, and even their objective functions keep changing due to id-

iosyncratic shocks. The situation is exactly the same as in physics where we never know

the initial conditions for all the particles. In the economy, the number of micro agents is

less than the counterpart in physics, which is typically 1023, but still there are 106 firms

and 107 households! It is simply impossible and meaningless to analyze micro behavior

of agents in great detail. For studying the macro-system, we must regard the behaviors

of micro agents as stochastic even though their behaviors are purposeful. It is the funda-

mental principle of statistical physics that we observe the state of the macro-system that

maximizes the probability, (4).

Toward our goal, we define the following quantity;

(5) S =
ln P{n}

N
+ ln K ' 1

N

(
N ln N −

K∑
k=1

ni ln ni

)
= −

K∑
k=1

pk ln pk,

where pk is defined as

(6) pk ≡ nk

N
.

Here, we assume that N and nk are large, and apply the Stirling formula:

(7) ln m! ' m ln m − m for m À 1.

The quantity S corresponds to the Boltzmann-Gibbs entropy. Note that the maximization

of S is equivalent to that of P{n}.

We maximize S under two constraints. One is the normalization condition

(8)
K∑

k=1

pk = 1.

This is, of course, equivalent to the resource constraint,
∑K

k=1 nk = N. The other con-

8



straint requires that the total output (GDP) Y is equal to the aggregate demand D̃,

(9) N

K∑
k=1

ckpk = Y = D̃.

For convenience, we define aggregate demand relative to factor endowment, D as follows:

(10) D =
D̃

N
.

In what follows, we simply call D the aggregated demand. As we will shortly see, the

aggregate demand, D determines the state of stochastic macro-equilibrium.

We maximize the following Lagrangian form:

(11) S − α

(
K∑

k=1

pk − 1

)
− β

(
K∑

k=1

ckpk − D

)
.

Differentiating (11) with respect to pi, we obtain

(12) ln pk + (1 + α) + βck = 0.

This yields

(13) pk = e−(1+α) e−βck .

The normalization condition or the resource constraint (8) determines α so that the

distribution we seek is obtained as follows:

(14) pk =
1

Z(β)
e−βck .

Thus, the distribution which maximizes the probability (4) under two constraints, (8)

and (9), is exponential. We may call it the equilibrium distribution. The exponent of

the equilibrium distribution is the Lagrangian multiplier β corresponding to the aggregate

demand constraint in (11).
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This exponential distribution is called the Maxwell-Boltzmann distribution. Here,

Z(β) is what is called the partition function in physics, and makes sure that the pk’s sum

up to one.

(15) Z(β) ≡
K∑

k=1

e−βck .

The exponent β is equivalent to the inverse of temperature, 1/T in physics. Equations

(9) and (14) yield the following:

(16) D =
1

Z(β)

K∑
k=1

cke
−βc = − d

dβ
ln Z(β).

This equation relates the aggregate demand D to the exponent of the distribution β by

way of the partition function Z(β). Note that at this stage, the distribution of produc-

tivity ck is arbitrary. Once it is given, the partition function Z(β) is defined by equation

(15), and it, in turn, determines3 the relation between D and β.

Suppose that the distribution of productivity across firms is uniform, that is, ck = k∆c,

where ∆c is a constant. Then, from (14), we obtain

(17) Z(β) =
K∑

k=1

e−βk∆c = e−β∆c
1 − e−β(K−1)∆c

1 − e−β∆c
' 1

β∆c

,

under the assumption that β∆c ¿ 1 and βK∆c À 1. Therefore, in this case, we

know from equations (15) and (16) that the exponent of the equilibrium exponential

distribution, β is equal to the inverse of aggregate demand:

(18) D = − d

dβ
ln Z(β) = − d

dβ
ln

(
1

β∆c

)
=

1

β
.

3This is exactly the same as in the standard analysis in statistical physics where the relation between

the average energy (D) and the temperature (T = 1/β) is determined once the energy levels (ck) are

given for the system under investigation.
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Because the inverse of β is temperature, in this case, aggregate demand is equivalent to

temperature.

In summary, under the assumption that the productivity dispersion across firms is

uniform, the equilibrium distribution of productivity across workers becomes exponential,

namely the Maxwell-Boltzmann distribution with the exponent equal to the inverse of

the aggregate demand D (Yoshikawa (2003); Aoki and Yoshikawa (2007)):

(19) pk =
nk

N
=

e−
ck
D

ΣK
k=1e

− ck
D

.

When the aggregate demand D is high, the distribution becomes flatter, meaning that

production factors are mobilized to firms or sectors with high productivity, and vice versa.

Figure I shows two distributions of productivity corresponding to high aggregate demand

D1 and low D2.

The present analysis provides a solid foundation for Okun’s argument that in general,

production factors are under-utilized, and that workers upgrade into more-productive

jobs in a “high-pressure” economy. So far, so good. However, the Boltzmann-Gibbs

distribution is precisely exponential. Does it really fit our empirical observation? We

next turn to this question.

III. Stylized Facts

In this section, we empirically explore how productivity is actually distributed. Before we

proceed, we must point out that what we observe is the average productivity c, defined

by c = Y/L, where Y is the output, and L the labour input. What matters theoretically

is, of course, the unobserved marginal productivity cM defined by

(20) cM =
∂Y

∂L
.
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We will shortly discuss the relationship between the distributions of these two different

productivities. There, we will see that the difference between c and cM does not affect

our results on the empirical distributions.

Another problem is that we measure L in terms of the number of workers, as such data

is readily available. One might argue that theoretically, it is more desirable to measure

L in terms of work-hours, or for that matter, even in terms of work efficiency units.

The effects of these possible “measurement errors” can also be handled in a similar way,

which we will explain in subsection B. That is, we can safely ignore the measurement

error problem as well for our present purpose.

A. Empirical Distributions

We use the Nikkei-NEEDS database, which is a major representative database of the

listed firms in Japan. The details of this database are given in Appendix A, together

with a brief description of the data-fitting.

We study productivity distributions at three aggregate levels, namely, across workers,

firms, and industrial sectors. In order to explain empirical distributions, we find the

continuous model more convenient than the discrete model. Accordingly, we define, for

example, the probability density function of firms with productivity c as P (F)(c). The

number of firms with productivity between c and c + dc is now KP (F)(c)dc. It satisfies

the following normalization condition:

(21)

∫ ∞

0

P (F)(c) dc = 1.

In section II, we explained that equilibrium productivity dispersion across workers

becomes the exponential distribution under the assumption that the distribution of pro-
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ductivity across firms is uniform. Here, P (F)(c) is not restricted to be uniform. Rather,

the distribution P (F)(c) is to be determined empirically. We analogously define P (W)(c)

for workers, and P (S)(c) for industrial sectors. We denote their respective cumulative

probability distributions by P
(S,F,W)
> (c):

(22) P
(∗)
> (c) =

∫ ∞

c

P (∗)(c′) dc′ (∗ = S, F, W).

Because the cumulative probability is the probability that a firm’s (or worker’s or sector’s)

productivity is larger than c, it can be measured by rank-size plots, whose vertical axis

is the [rank]/[the total number of firms] and the horizontal axis c. The rank-size plot

has advantages in that it is free from binning problems, which haunt probability density

function (pdf) plots, and also that it has less statistical noise. For these reasons, in

what follows, we will show the cumulative probability rather than the probability density

function.

The productivity distribution across firms, to be exact log P
(F)
> (c) obtained from the

Nikkei-NEEDS data, is plotted in Figure II for the year 2005. The dots are the data

points; each dot corresponds to a firm whose position is determined from its rank and

the productivity c. For reference, the power, exponential, and log-normal distributions

are shown in the diagram. The exponential and log-normal distributions are represented

by their respective curves while the power-law by a straight line whose slope is equal to

the power exponent.

Evidently, the uniform distribution implicitly assumed in the analysis in section II

does not fit the actual data at all. For small c (low-productivity), the log-normal law

(dash-dotted curve) fits well, and for large c (high-productivity), the power-law (broken

line) fits well, with smooth transition from the former to the latter at around log c ' 2.
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The result shown in Figure II is for the year 2005, but the basically same result holds

good for other sample periods.

Cumulative probability P
(F)
> (c) for large c can be, therefore, represented by the fol-

lowing power distribution:

(23) P
(F)
> (c) '

(
c

c0

)−µF

(c À c0).

where c0 is a parameter that defines the order of the productivity c.4 The power exponent

µF is called the Pareto index, and c0 the Pareto scale. The probability density function

is then given by the following:

(24) P (F)(c) = − d

dc
P

(F)
> (c) ' µF

c−µF−1

c−µF
0

(c À c0).

Next, we explore the productivity dispersion across industrial sectors. The Nikkei-

NEEDS database defines 33 sectors. The productivity distribution across these sectors

for the year 2005 is plotted in Fig. III. We observe that once again, the power-law (a

straight line in the diagram) fits the data pretty well. The same result holds true for all

the sample years.

Finally, the productivity distribution across workers is plotted in Figure IV for the

year 2005. Again, we observe that the power-law (broken line) fits the data very well for

large c. A casual observation of Figure IV may make one wonder whether the share of

workers for which the power-law fits well may be small. This impression is wrong. In

fact, the fitted range is approximately, say, log P
(W)
> (c) ∈ [−0.4,−3.1], which translates

to the rank of the workers

[10−0.4, 10−3.1]×[Total number of workers] ' [1.52 × 106, 3.04 × 103]

4We note that c0 has the same dimension as c, so that P
(F)
> (c) is dimensionless, as it should be.
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This means that some 1.52 million workers, that is, 39% of all workers fit the power-law.

The values of the Pareto indices obtained are shown in Figure V for three levels of

aggregation. We note that the Pareto index decreases as the aggregation level goes up

from workers to firms, and from firms to the industrial sectors.

B. Marginal vs. Average Productivity

Before we conclude this section, we digress into the relationship between the marginal and

average productivities of labor. Theoretically, the marginal productivity matters while

what we observe and, therefore, used in the above analysis is the average productivity.

To explore the relation between the two productivities, c and cM, we assume the Cobb-

Douglas production function:

(25) Y = AK1−αLα (0 < α < 1).

Equation (25) leads us to the following relation:

(26) cM = α c.

In general, the value of α differs across firms. Therefore, the distribution of cM is, in

general, different from that of c.

However, thanks to (26), we can relate the pdf of cM, PM(cM) to the joint pdf of c

and α, Pc,α(c, α) as follows:

PM(cM) =

∫ 1

0

dα

∫ ∞

0

dc δ(cM − αc)Pc,α(c, α)

=

∫ 1

0

dα

α
Pc,α

(cM

α
, α

)
.(27)

In general, Pc,α(c, α) can be written as follows,

(28) Pc,α(c, α) = P (F)(c)P (α | c).
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Here, P (α | c) is the conditional pdf; it is the pdf of α for the fixed value of productivity

c. It is normalized as follows:

(29)

∫ 1

0

P (α | c) dα = 1,

for any value of c. We have already seen that P (F)(c) obeys the power-law for large c:

(30) P (F)(c) = µF
c−µF−1

c−µF
0

.

From (30), (28), and (27), we obtain the following:

(31) PM(cM) = µF
c−µF−1
M

c−µF
0

∫ 1

0

dα α−µMP
(
α

∣∣∣ cM

α

)
.

Here, we assumed that P (α | c) does not extend too near α = 0 so that cM/α stays in the

asymptotic region. From (31), we can conclude that if α and c are independent, namely

(32) P (α | c) = Pα(α),

then, the distribution of marginal productivity PM(cM) also obeys the power law with the

identical Pareto index µF as for the average productivity:

(33) PM(cM) ∝ c−µF−1
M .

In conclusion, to the extent that α and c are independent, the distribution of the unob-

served marginal productivity obeys the power-law with the same Pareto index as for the

observed average productivity. A sample Monte-Carlo simulation result is shown in Figure

VI. Because this is the log-log plot, the gradient of the straight region is equal to the

Pareto index. The equality of the Pareto indices is clearly seen.

In our analysis, L is the number of workers. Theoretically, it would be desirable to

measure L in terms of work-hours or for that matter, even in terms of work efficiency.
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We can apply the above analysis to the case where the problem is measurement error by

simply interpreting α in (26) as such measurement error rather than a parameter of the

Cobb-Douglas production function. Thus, to the extent that the average productivity c

and measurement error α are independent, the distribution of “true” productivity obeys

the power-law with the same exponent as for the measured productivity. We conclude that

the power-laws for productivity dispersion across workers, firms, and industry obtained

above are quite robust.

C. Summary of Empirical Observations

We summarize the empirical observations as two stylized facts:

I. The distribution of productivity obeys the Pareto distribution (i.e. the power-

law for the high-productivity group) at every level of aggregation, that is, across

workers, firms, and industrial sectors.

II. The Pareto index, namely the power exponent decreases as the level of aggregation

goes up: µW > µF > µS (Figure V).

As we explained in section II, under the assumption that the distribution of produc-

tivity across firms is uniform leads to the exponential distribution of productivity across

workers. Obviously, this model does not fit the empirical observations. In the next sec-

tion, extending the basic framework, we present a theoretical model that explains the

above stylized facts.
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IV. Theory

In this section, we develop a new theoretical model that explains two stylized facts in three

steps: First, we discuss the generic framework that explains the power-law distribution

for firm’s productivity. Secondly, we extend the basic model explained in section II by

incorporating the stylized fact that productivity distribution across firms is not uniform,

but rather obeys the power-law. Because the extended model still fails to explain the

stylized facts, we take the third step; we propose the superstatistics framework. It can

explain two stylized facts presented in section III.

A. A Firm’s Productivity Dispersion: A Model of Jump Markov Process

The standard economic analysis takes it for granted that all the production factors enjoy

the highest marginal productivity in equilibrium. However, this is a wrong characteriza-

tion of the economy. The fact is that production factors cannot be reallocated instanta-

neously in such a way that their marginal products are equal in all economic activities.

Rather, at each moment in time, there exists a dispersion or distribution of productivity

as shown in the preceding section. Evidently, an important reason why the marginal

products of workers are not equal is, as Mortensen (2003) suggests, that there are differ-

ences in productivity across firms. To describe the dynamics of firm’s productivity, we

employ a continuous-time jump Markov process. Using the Markov model, we can show

that the power-law distribution is a generic consequence under a reasonable assumption.

Suppose that a firm has a productivity denoted by c. In a small time interval dt,

the firm’s productivity c increases by a small amount, which we can assume is unity

without loss of generality, with probability w+(c) dt. We denote it as w+(c) because this
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probability w+ depends on the level of c. Likewise, it decreases by unity with probability

w−(c) dt. Thus, w+(c) and w−(c) are transition rates for the processes c → c + 1 and

c → c − 1, respectively.

We also assume that a new firm is born with a unit of productivity with probability

p dt. On the other hand, a firm with c = 1 will cease to exist if its productivity falls to

zero; Thus the probability of exit is w−(c = 1) dt. A set of the transition rates and the

entry probability specifies the jump Markov process.

Given this Markov model, the evolution of the average number of firms having pro-

ductivity c at time t, n(c, t), obeys the following master equation:

∂n(c, t)

∂t
=w+(c − 1) n(c − 1, t) + w−(c + 1) n(c + 1, t)

− w+(c) n(c, t) − w−(c) n(c, t) + p δc,1 ,(34)

Here, δc,1 is 1 if c = 1 and 0 otherwise. This equation shows that the change in n(c, t)

over time is nothing but the net inflows to the state c.

The total number of firms is given by

(35) Kt ≡
∞∑

c=1

n(c, t).

We define the aggregate productivity index C as follows:

(36) Ct ≡
∞∑

c=1

c n(c, t).

It follows from (34) that

d

dt
Kt = p − w−(1) n(1, t),(37)

d

dt
Ct = p −

∞∑
c=1

(w−(c) − w+(c)) n(c, t).(38)
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We consider the steady state. It is the stationary solution of (34) such that ∂n(c, t)/∂t =

0. The solution n(c) can be readily obtained by the standard method. Setting (37) equal

to zero, we obtain a boundary condition that w−(1) n(1) = p. Using this boundary

condition, we can easily show

(39) n(c) = n(1)
c−1∏
k=1

w+(c − k)

w−(c − k + 1)
.

Next, we make an important assumption on the transition rates, w+ and w−. Namely,

we assume that the probabilities of an increase and a decrease of productivity depend

on the firms current level of productivity. Specifically, the higher the current level of

productivity, the larger a chance of a unit productivity change. This assumption means

that the transition rates can be written as w+(c) = a+ cα and w−(c) = a− cα, respectively.

Here, a+ and a− are positive constants, and α is greater than 1. Under this assumption,

the stationary solution (39) becomes

(40) n(c) =
n(1)

1 − n(1)/C(α)

(1 − n(1)/C(α))
c

cα
' c−α e−c/c∗ .

where

c∗ ≡ (n(1)/C(α))
−1 and C(α) ≡

∞∑
c=1

cαn(c).

We have used the relation a+/a− = 1 − n(1)/C(α), which follows from (37) and (38).

The approximation in (40) follows from n(1)/C(α) ¿ 1. The exponential cut-off works

as c approaches to c∗. However, the value of c∗ is practically quite large. Therefore, we

observe the power-law distribution n(c) ∝ c−α for a wide range of c in spite of the cut-off.

We note that the power exponent µ for the empirical distribution presented in section III

is related to α simply by

µ = α − 1.
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The present model can be understood easily with the help of an analogy to the for-

mation of cities. Imagine that n(c, t) is the number of cities with population c at time

t. w+(c) corresponds to a birth in a city with population c, or an inflow into the city

from another city. Similarly, w−(c) represents a death or an exit of a person moving to

another city. The rates are the instantaneous probabilities that the population of a city

with the current population c either increases or decreases by one. They are, therefore,

the entry and exit rates of one person times population c, respectively. And a drifter

forms his own one-person city with the instantaneous probability p. In this model, the

dynamics of n(c, t), namely the average number of cities with population c is given by

equation (34). In the case of population dynamics, one might assume that the entry (or

birth) and exit (or death) rates of a person, a+ and a− are independent of the size of

population of the city in which the person lives. Then, w+(c) and w−(c) become linear

functions of c, namely, a+c and a−c. Even in population dynamics, though, one might

assume that the entry rate of a person into a big city is higher than its counterpart in a

small city because of the better job opportunity or the attractiveness of “city life.” The

same may hold for the exit and death rates because of congestion or epidemics.

It turned out that in the dynamics of firm productivity, both the “entry” and “exit”

rates of an existing “productivity unit” are increasing functions of c, namely the level

of productivity a part of which that particular unit happens to be; to be concrete, they

are a+c and a−c. Thus, w+(c), for example, becomes a+c times c which is equal to a+c2.

Likewise, we obtain w−(x) = a−x2. This is the case of α = 2, the so-called Zipf law (see

Sutton (1997)). 5

5See Ijiri and Simon (1975); Marsili and Zhang (1998) for the formation of cities whose sizes obey the

Zipf law. Our present model of productivity dynamics has, in fact, a very close analogy to the dynamics
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There is also a technical reason why we may expect α to be larger than two. From

(40), we can write the total number of firms and the aggregate productivity index as

K =
n(1)

Γ(α)

∫ ∞

0

tα−1

et − 1 + n(1)/C(α)

dt ,(41)

C =
n(1)

Γ(α − 1)

∫ ∞

0

tα−2

et − 1 + n(1)/C(α)

dt ,(42)

where Γ(z) is the gamma function defined by Γ(z) =
∫ ∞

0
tz−1etdt. In the limit as n(1)/C(α)

goes to zero, the integral in (41) is finite for α > 1, while the integral in (42) tends to be

arbitrarily large for 1 < α < 2. Therefore, for the finiteness of both (41) and (42), it is

reasonable to assume that α ≥ 2.

In summary, under the reasonable assumption that the probability of a unit change

in productivity is an increasing function of its current level c, we obtain the power-

law distribution as we actually observe. Now, economists are prone to take changes in

productivity as “technical progress.” That is why the focus of attention is so often on

R & D investment. However, if productivity growth is always technical progress, its

decrease must be “technical regression,” the very existence of which one might question.

At the firm level, an important source of productivity change is actually a sectoral shift

of demand; when demand for product A increases, for example, productivity at the firm

producing A increases, and vice versa. Fay and Medoff (1985) indeed document such

changes in firm’s labor productivity by way of changes in the rate of labor hoarding.

Stochastic productivity changes, which our Markov model describes, certainly include

technical progress, particularly in the case of an increase, but at the same time represent

allocative demand disturbances, the importance of which Davis et al. (1996) have so

of city size. It is indeed mathematically equivalent to the model of Marsili and Zhang (1998) which

analyzed dynamics of city size, except for an additional assumption that n(1)/C(α) = p.
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persuasively demonstrated in their book entitled Job Creation and Destruction. The

empirical observation on productivity dispersion and our present analysis suggest that

the probability of a unit allocative demand disturbance depends on the current size of

firm or sector.

B. The Stochastic Macro-equilibrium Once Again

The basic framework explained in section II presumes that productivity dispersion across

firms, namely P
(F)
> (c) is uniform. However, P

(F)
> (c) actually obeys the power-law. Having

clarified the generic origin of power-law distribution for c, we now turn our attention to

the productivity dispersion across workers. We must extend the theory of the stochastic

macro-equilibrium explained in section II under the assumption that P
(F)
> (c) is the power-

distribution.

In order to develop the new theoretical framework, it is better to adapt the continuous

notation we introduced previously. An example is

(43) K
∞∑

k=1

n(ck) −→ K

∫ ∞

0

P (F)(c)dc.

In the continuous model, equations (5), (8) and (9) read

S = −K

∫ ∞

0

(p(c) ln p(c)) P (F)(c)dc,(44)

K

∫ ∞

0

p(c) P (F)(c)dc = 1,(45)

K

∫ ∞

0

c p(c) P (F)(c)dc = D,(46)

respectively. Here, we have replaced pk = nk/N by continuous function p(c). Note that

because the distribution of productivity across firms is no longer uniform, but is P (F)(c),
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the corresponding distribution across workers, P (W)(c), is

(47) P (W)(c) ≡ Kp(c)P (F)(c).

Using P (W)(c), we can rewrite equations (44), (45) and (46) as follows:

S = −
∫ ∞

0

P (W)(c) ln
P (W)(c)

P (F)(c)
dc + [const.],(48) ∫ ∞

0

P (W)(c) dc = 1,(49) ∫ ∞

0

c P (W)(c) dc = D.(50)

Here, [const.] in equation (48) is an irrelevant constant term.

We maximize S (equation (48)) under two constraints, (49) and (50), by means of

calculus of variation with respect to P (W)(c) to obtain

(51) P (W)(c) =
1

Z(β)
P (F)(c) e−βc.

Here, as in section II, β is the Lagrangian multiplier for the aggregate demand constraint,

(46), and the partition function Z(β) is given by

(52) Z(β) =

∫ ∞

0

P (F)(c) e−βcdc.

It is easy to see that constraint (49) is satisfied. Constraint (50) now reads

(53) D =
1

Z(β)

∫ ∞

0

c P (F)(c) e−βcdc.

This equation is equivalent to:

(54) D = − d

dβ
ln Z(β).

It is straightforward to see that equations (51) and (52) are the counterparts of equations

(14) and (15), respectively, under the assumption that the productivity dispersion across

firms is not uniform, but is P
(F)
> (c).
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Because the productivity distribution across firms, P (F)(c), obeys the Pareto law, the

relation between the aggregate demand D and β (or the temperature) is not so simple

as shown in equation (18), but is, in general, quite complicated. However, we can prove

that the power exponent β is a decreasing function of the aggregate demand D. Thus,

the fundamental proposition that when the aggregate demand is high, production factors

are mobilized to firms and sectors with high productivity (Figure I), holds true in the

extended model as well. We provide the proof in Appendix B.

Now, we explore productivity dispersion in this extended model. The productivity

dispersion across workers P (W)(c), relates to that across firms P (F)(c), by way of equation

(51). The latter obeys the power law. Figure VII shows examples of the productivity

distributions across workers for several different values of D, given P (F)(c). The solid

curve is for firms with µF = 1.5. The dashed lines are the corresponding distributions for

workers with different values of D. All of them have strong suppression for large c due to

the exponential factor e−βc. They are in stark contrast to the power-law. Note that the

power-law corresponds to a straight line in the figure, which shows the relation between

ln P > (c) and ln c. The only way to reconcile the distribution (51) with the observed

power-law is to assume an extremely small value of β so that the Boltzmann factor e−βc

becomes close to one, and does not suppress P (W)(c). This trick, however, does not work

because, in this case, it yields the Pareto index µW of the worker’s productivity distri-

bution equal to that of the firm’s distribution, µF. It is inconsistent with the empirical

observation that µW > µF (Figure V). Comparing Figures IV and VII, we conclude that

the extended model still fails to explain the observations. We must seek a new theoretical

framework.
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C. A Worker’s Productivity Dispersion under Fluctuating Aggregate Demand

The theoretical framework explained so far implicitly assumes that the aggregate demand

D is constant. Plainly, this is an oversimplification; D fluctuates.

A Macro-system under fluctuations of an external environment can be analyzed with

the help of superstatistics or “statistics of statistics” in statistical physics (Beck and

Cohen, 2003).6 In this theory, the system goes through changing external influences, but

is in equilibrium at the limited scale in time and/or space, in which the temperature may

be regarded as constant and the Boltzmann distribution is achieved. In other words, the

system is only locally in equilibrium; globally seen, it is out of equilibrium. In order to

analyze such a system, superstatistics introduces averaging over the Boltzmann factors.

Depending on the weight function used for averaging, it can yield various distributions,

including the power-law (Touchette and Beck, 2005).

GDP of a particular year is certainly a scalar constant when the year is over. How-

ever, it actually fluctuates daily if those fluctuations cannot be practically measured. Ac-

cordingly, the macro environment surrounding firms keeps changing almost continuously.

Differences by region, industry, and sector can also be taken care of by the superstatistics

approach. When the aggregate demand D changes, the new stochastic process condi-

tioned by new D allows production factors to move to a different equilibrium. Averaged

over various possible equilibria, each of which depends on a particular value of D, the

resulting distribution becomes different from any of each equilibrium distribution.

Specifically, in superstatistics, the familiar Boltzmann factor, exp(−βc) is replaced by

6There are several model cases where superstatistics was applied successfully. Among them, the

Brownian motion of a particle going thorough a changing environment provides a good analogy to our

case (Beck, 2006).
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the following weighted average:

(55) B(c) =

∫ ∞

0

f(β) e−βcdβ,

Here, the weight factor f(β) represents the changing macroeconomic environment. Note

that because β is a monotonically decreasing function of D, the weight factor f(β) cor-

responds to changes in the aggregate demand. With this weight factor, the probability

distribution of worker’s productivity, (51), is now replaced by the following:

(56) P (W)(c) =
1

ZB

P (F)(c)B(c).

Here, the partition function ZB is also redefined as

(57) ZB =

∫ ∞

0

P (F)(c)B(c)dc.

We now examine whether P (W)(c) in equation (56) obeys the power-law for high

productivity c. The integration in equation (55) is dominated by the small β (high

demand) region for large c. We assume the following behavior of the pdf f(β) for β → 0,

(58) f(β) ∝ β−γ (γ < 1),

where the constraint for the parameter γ comes from the convergence of the integration

in equation (55). The proportional constant is irrelevant because P (W)(c) is normalized

by ZB. This leads to the following B(c) for large c:

(59) B(c) ∝ Γ(1 − γ) cγ−1.

Substituting (59) into Equation (56), we find that the productivity distribution across

workers obeys the power-law;

(60) P (W)(c) ∝ c−µW−1,
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with

(61) µW = µF − γ + 1.

Because of the constraint γ < 1, this leads to the inequality

(62) µW > µF.

This agrees with our empirical observation (Figure V or stylized Fact II in section III.C).

Because β is related to D by way of equation (54), the pdf fβ(β) of β is related to

pdf fD(D) of the (fluctuating) D as follows:

(63) fβ(β)dβ = fD(D)dD.

As is noted several times, small β corresponds to high aggregate demand D. In particular,

the following relation holds7 for β → 0:

(64) 〈c〉0 − D ∝

β for 2 < µF;

βµF−1 for 1 < µF < 2.

This leads to8

(65) fD(D) ∝ (〈c〉0 − D)−δ ,

with

(66) γ − 1 =

{
δ − 1 for 2 < µF;

(µF − 1)(δ − 1) for 1 < µF < 2.

Here, the parameter δ is constrained by

(67) δ < 1

7The proof is to be given on request.
8At µF = 2, we need additional logarithmic factors for f(β), but the power of β is essentially the

boundary case between the above two, γ = δ.
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from the normalizability of the distribution of fD(D), which is consistent with the con-

straint γ < 1 and equation (66).

Equation (65) means that changes in the aggregate demand D follows the power-

law. Gabaix (2005) indeed demonstrates that idiosyncratic shocks to the top 100 firms

explain a large fraction (one third) of aggregate volatility for the U.S. economy. This

is a characteristic of power-law. In any case, D is not constant, but fluctuates now.

Accordingly, the problem is not a relation between the productivity dispersion across

workers and the level of D, but rather how the distribution depends on the way in which

D fluctuates.

Figure VIII shows an example of the relation between the distribution of D, fD(D)

near the upperbound 〈c〉0 and the cumulative productivity distribution of workers P
(W)
> (c).

In the figure, the solid curves correspond to the large value of δ whereas the broken curves

to the small value. Figure VIII demonstrates that as the distribution of D becomes skewed

toward large D, the tail of the productivity distribution becomes heavier. Roughly speak-

ing, when D is high, the productivity dispersion becomes skewed toward the higher level,

and vice versa.

Combining equations (61) and (66), we reach the following relation between the Pareto

indices:

(68) µW =

{
µF − δ + 1 for 2 < µF;

(µF − 1)(−δ + 1) + µF for 1 < µF < 2.

This relation between µW and µF is illustrated in Figure IX. As noted previously, because

of the constraint δ < 1, equation (68) necessarily makes µW larger than µF. This is in

good agreement with our empirical finding. Incidentally, equation (68) has a fixed point

at (µW, µF) = (1, 1); the line defined by equation (68) always passes through this point
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irrespective of the value of δ. The Pareto index for firms is smaller than that for workers,

but it cannot be less than one, because of the existence of the fixed point (1,1).

The superstatistics framework presented above may apply for any adjoining levels

of aggregation; instead of applying it for workers and firms, we may apply it for firms

and industrial sectors. Then, we can draw the conclusion that as we go up from firms to

industrial sectors, the Pareto index again goes down, albeit for a different value of δ. This

is illustrated in Fig. X. Because of the existence of the point (1, 1), as the aggregation

level goes up, the Pareto index is driven toward 1, but not beyond 1. At the highest

aggregation level, it is expected to be close to one. This is again in good agreement with

our empirical finding that the Pareto index of the industrial sector µS is close to one (see

Figure V).

In summary, the superstatistics framework successfully explains two empirical findings

we have summarized in section III.C. Furthermore, given the measured values of µW and

µF, the relation (68) can be used to determine the value of δ:

(69) δ =


µF − µW + 1 for 2 < µF;

µF − µW

µF − 1
+ 1 for 1 < µF < 2.

The result is shown in Figure XI. Recall that δ is the power exponent of the distribution

of aggregate demand D. Therefore, low δ means the relatively low level of the aggregate

demand. In Figure XI we observe that the aggregate demand was high during the late

1980s, while beginning in the early 90s, it declined to the bottom in 2000-2001, and then

turned up afterward. It is broadly consistent with changes in the growth rate during the

period.
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V. Implications

The standard economic analysis takes it for granted that production factors move fast

enough from low to high productivity firms and sectors, and that as a consequence, sooner

or later they enjoy the same (highest) marginal productivity; otherwise, it contradicts

the concept of equilibrium. However, we have some evidences suggesting that there is

always productivity dispersion in the economy. As we referred to in the Introduction,

Mortensen (2003) analyzing wage dispersion argued that there is productivity dispersion

across firms. Okun (1973) also argued that a part of the reason why we obtain Okun’s

law is “the upgrading of workers into more-productive jobs in a high-pressure economy.”

In this paper, we have provided a solid foundation for Okun’s argument. The most

important point of Okun’s argument and also our present analysis is that the allocation

of production factors is not independent of the level of the aggregate demand. Rather, it

depends crucially on the aggregate demand. As we explained in section II, the funda-

mental principle of statistical physics indeed tells us that it is impossible for production

factors to achieve the same (highest) level of productivity. Rather, we must always ob-

serve a distribution of productivity in the economy. Moreover, the theory indicates it

is an exponential distribution (the Maxwell-Boltzmann), the exponent of which depends

inversely on the level of aggregate demand. As the aggregate demand rises, production

factors are mobilized to high-productivity firms and sectors just as Okun argued.

In section III, we showed that there does indeed exist distributions of productivity

across workers, firms, and sectors. A serious problem for the theory of stochastic macro-

equilibrium is, however, that the observed distribution of productivity across workers is

not exponential, but obeys the power-law. We reconciled this empirical observation with
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the basic theory by introducing the assumption that productivity dispersion across firms

obeys the power-law rather than being uniform, and also another plausible assumption

that the aggregate demand is not constant, but fluctuates.

In section IV, first, we explained how the power distribution of productivity across

firms arises in a simple stochastic model. To obtain the power-law distribution, we

need to make a crucial assumption that the higher the current level of productivity, the

greater the probability of either a unit increase or decrease of productivity. Obviously,

the probability of either a birth or a death is greater in a city with a large population

than in a small city. By analogy, the above assumption seems quite natural.

The “size effect” in productivity (or TFP) growth has been much discussed in endoge-

nous growth theory because its presence evidently contributes to endogenous growth. See,

for example, Solow (2000). In growth theory, an increase in productivity is mostly iden-

tified with pure technological progress so that it is directly linked to R & D investment.

However, to obtain the power distribution of productivity across firms, we must assume

the significant probability of decrease in productivity. This suggests strongly that pro-

ductivity changes facing firms are caused not only by technical progress, but also by the

allocative disturbances to demand. Incidentally, Davis, Haltiwanger, and Schuh (1996)

report that unlike job creation, job destruction for an industry is not systematically re-

lated to total factor productivity (TFP) growth; Namely, job destruction occurs in high

TFP growth industries as frequently as in low TFP growth industries (their Table 3.7 on

page 52). This fact also suggests the presence of the significant demand reallocation.

As Davis, Haltiwanger and Schuh (1996) rightly emphasize, the allocative demand

shocks play a very important role in the macroeconomy. At the same time, the aggregate

demand also plays a crucial role because the allocation of resources and production factors
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depends crucially on the level of aggregate demand. Put simply, the frontier of the

production possibility set is a never-never land. The higher the level of aggregate demand,

the closer the economy is to the frontier.

Appendix A. Notes on Data used in section III.A

As noted in section III, we used the Nikkei-NEEDS (Nikkei Economic Electronic Data-

bank System) database for analysis of empirical distribution of productivity. This database

is a commercial product available from Nikkei Media Marketing, Inc. (2008) and contains

financial data of all the listed firms in Japan. As such, it is a well-established and repre-

sentative database, widely used for various purposes from research to practical business

applications. For our purpose, we used their 2007 CD-ROM version and extracted data

for the period between 1980 and 2006. It covers some 1,700 to 3,000 firms and four million

to six million workers.

We have found that in certain cases, the productivity calculated is unrealistically large.

For example, firms that became stock-holding firms report huge reductions of the number

of employees, while maintaining the same order of revenues in the year. This results in

absurd values of labor productivity c for that year. Because of these abnormalities, we

have excluded top-ten firms in terms of productivity each year. This roughly corresponds

to excluding firms with productivity c > 109 yen/person. We experimented with the

analyses of several different cuts, i.e., with cutting top-twenty firms, and so on. The

results obtained remained basically the same as reported in the main text.

The values of the Pareto indices µW, µF, µS given in this paper are determined by

fitting the data with the GB2-distribution described in Kleiber and Kotz (2004) by the
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maximum likelihood method.

Appendix B. The Relationship between Aggregate Demand D and the

Exponent β

In this appendix, we prove the following three basic properties (i)–(iii) of the temperature-

aggregate demand relation (54) in Macro-Equilibrium:

(i) The temperature T = 1/β is a monotonically increasing function of the aggregate

demand D. We can prove it using equation (54) as follows:

dD

dT
= − 1

T 2

dD

dβ
= β2 d2

dβ2
ln Z(β) = β2

(
〈c2〉β − 〈c〉2β

)
≥ 0.(70)

where 〈cn〉β is the n-th moment of productivity defined as follows:

(71) 〈cn〉β ≡ 1

Z(β)

∫ ∞

0

cnP (F)(c) e−βc dc.

Comparing (53) and (56), we know that 〈c〉β = D. This is a natural result. As

the aggregate demand D rises, workers move to firms with higher productivity. It

corresponds to the higher temperature according to the weight factor e−βc.

(ii) For T → 0 (β → ∞),

(72) D → 0.

This is evident from the fact that in the same limit the integration in Eq. (53) is

dominated by c ' 0 due to the factor e−βc, and the integrand has the extra factor

of c compared to the denominator Z(β).
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(iii) For T → ∞ (β → 0),

(73) D →
∫ ∞

0

c P (F)(c) dc (= 〈c〉0).

This can be established based on the property (i) because D = 〈c〉β → 〈c〉0 as

β → 0 and Z(0) = 1.

An example of the relation between D and T ≡ 1/β is given in Figure XII.
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Figure I: Productivity Distribution Predicted by the Stochastic

Macro-equilibrium Theory for Two Different Values of

the Aggregate Demand D, D1 > D2 Notes: The values of β are

obtained from equation (18) for D1 = 20 and D2 = 100.
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Figure II: Productivity Distribution across Firms (2005) Notes: The

productivity c is in the unit of 106yen/person. The best fit for the

exponential law and the power law is obtained for 10 < c < 3000.
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Figure III: Productivity Distribution across Business Sectors (2005)
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Figure IV: Productivity Distribution across Workers (2005)
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Figure V: Pareto Indices of the Productivity Distributions across

Workers, Firms, and Industrial Sectors
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Figure VI: Rank-Size Log-log Plots of the Simulation Results Notes:

Distribution for c is for the Monte-Carlo data generated from a P (c)

with µM = 1.5. Data for cM is then created with Pα(α) distributed

from α = 0.5 to 1 uniformly.
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Figure VII: Productivity Distributions across Workers and Firms

Notes: The solid curve is for firms with µF = 1.5, while the dashed

curves are for workers with β = 0.01, 0.1, 1, respectively. When β

is small enough, the distribution across workers is close to that of

firms. As β increases, the distribution across workers is suppressed

for large c due to the exponential factor e−βc.
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Figure VIII: The Distribution of the Aggregate Demand D, fD(D)

(left) and the Corresponding Cumulative Productiv-

ity Distribution P
(W)
> (c) (right) Notes: The solid curves are

for δ = −1 whereas the broken curves are for δ = −2. The pro-

ductivity distribution of firms is chosen to have µF = 1.5.
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Figure IX: Relation between µW and µF (68) Notes: The solid line is the

relation (68), and the filled circle is the data.
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Figure X: Changes of the Pareto Index as the Aggregation Level

changes in Two Steps, each with a Different Value of δ
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Figure XI: The values of δ calculated from Equation (68) for

Japanese Listed Firms
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Figure XII: The Relation between the Aggregate Demand D and

the Temperature T (= 1/β) Notes: For a productivity distri-

bution of firms with µF = 1.5.
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