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Abstract

Using a simple stochastic growth model, this paper demonstrates that the
coefficient of variation of aggregate output or GDP does not necessarily go to
zero even if the number of sectors or economic agents goes to infinity. This
phenomenon known as non-self-averaging implies that even if the number of
economic agents is large, dispersion can remain significant, and, therefore,
that we can not legitimately focus on the means of aggregate variables. It,
in turn, means that the standard microeconomic foundations based on the
representative agent has little value for they are expected to provide us with
dynamics of the means of aggregate variables.

The paper also shows that non-self-averaging emerges in some represen-
tative urn models. It suggests that non-self-averaging is not pathological
but quite generic. Thus, contrary to the main stream view, micro-founded
macroeconomics such as a dynamic general equilibrium model does not pro-
vide solid micro foundations.

Key Words: Non-self averaging phenomena, Power laws, Micro foudna-
tions.
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1 Introduction

The contribution of the literature on endogenous growth ranging from Romer
(1986) and Lucas (1988) to Grossman and Helpman (1991), and Aghion and
Howitt (1992), has been to endogenize the underlying sources of sustained
growth in per-capita income. The main analytical exercises in these papers
are to explicitly consider the optimization by the representative agent in
such activities as education, on-the-job training, basic scientific research, and
process and product innovations. This approach is not confined to the study
of economic growth, but actually originated in the theory of business cycles.
Arguably, the rational expectations model by Lucas (1972, 73) opened the
door to modern “micro-founded” macroeconomic theory. In the field of the
theory of business cycles, it is now represented by the real business cycle
theory (Kydland and Prescott (1982)):

“Real business cycle models view aggregate economic vari-
ables as the outcomes of the decisions made by many individual
agents acting to maximize their utility subject to production pos-
sibilities and resource constraints. As such, the models have an
explicit and firm foundation in microeconomics. (Plosser, 1989,
p.53).”

This is the basic tenor which applies not only to the theory of busienss
cycles, but also to the endogenous growth literature, or for that matter to
the whole macroeconomic thoery. Lucas (1987) declared against the old
macroeconomics.

“The most interesting recent developments in macroeconomic
theory seem to me describable as the reincorporation of aggrega-
tive problems such as inflation and the business cycle within the
general framework of “microeconomic” theory. If these develop-
ments succeed, the term ‘macroeconomic’ will simply disappear
from use and the modifier ‘micro’ will become superfluous. We
will simply speak, as did Smith, Ricardo, Marshall and Walras,
of economic theory (Lucas, (1987; p.107-108)).”

In this paper, we argue that this research program which prevails in modern
macroeconomics is misguided.

Whether in growth or business cycle models, the fundamental cause for
often complex optimization exercises is that they are expected to lead us
to our better understanding dynamics of the means of aggregate variables.
The standard model thus begins with the analysis of the optimization of the
representative agent, and translates it into the analysis of the economy as a
whole.

Economists doing these exercises are, of course, well aware that economic
agents differ, and that they are subject to idiosyncratic (or microeconomic)
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shocks. As we will observe in the final section, idiosyncratic shocks are indeed
the key factor in Lucas (1972, 73)’s theory of business cycles. However, their
analyses premise that those microeconomic shocks and differences cancel out
each other, and that the behaviors of aggregate variables are represented by
their means which, in turn, can be well captured by the analysis based on
the representative agent.

The point is best illustrated by the Poisson model which is so widely used
in economics ranging from labor search theory to endogenous growth models
(e.g. Aghion and Howitt (1992)). Suppose that the Poisson parameter is
λ which designates the instantaneous probability that an “event” such as
technical progress and job arrival occurs. This probability which pertains
to one economic agent is assumed to commonly apply to all the agents and
also exogenously gien —— the crucial assumption! Then, given the same
Poisson process with parameter λ for each individual agent, we obtain the
Poisson process with the parameter λN for the economy as a whole where
there are N economic agents. The mean and the standard deviation of the
number of “events” in the macroeconomy are λN and

√
λN , respectively.

The coefficient of variation defined as the standard deviation divided by the
mean, is, therefore,

√
λN/λN = 1/

√
λN . Thus, in the Poisson model, when

the number of economic agents N becomes large (N →∞), the coefficient of
variation approaches zero. This property known as self-averaging provides
us with justification for our concentrating on the means of variables in macro
models; The macroeconomy certainly consists of a large number of economic
agents. Now, because the mean depends basically on λ, it is natural to
explore how λ is determined in models. Indeed, in standard models, λ is
endogenously determined as an outcome of economic agents’ optimization
and market equilibrium. The Poisson model is just an example. We all know
that a considerable part of every main stream macroeconomics paper is now
devoted to this kind of micro optimization exercise.

So far, so fine. There is, however, an important point that the stan-
dard Poisson model tacitly presumes the representative agent; Economic
agents are homogenous in that they face the same unchanged instantaneous
probability that an “event” occurs to them. Microsoft and small grocery
store on the street face “idyosyncratic” or micro shocks which come from
the same probability distribution! This crucial assumption is also made in
the well-known rational expectations model of Lucas (1972, 73), or for that
matter in all micro-founded macroeconomic models. When we drop this cru-
cial assumption, we realize that the standard microeconomic foundations for
macroeconomics are actually wholly misguided.

Specifically, using simple stochastic models, this paper demonstrates that
a tacit and yet the fundamental assumption underlying endogenous growth
and real business cycle theories, namely the law of large numbers, is not gen-
erally tenable. We show that even if the number of economic agents is large,
the behavior of the macroeconomy can not be generally well approximated
by the means. The implication is that analyses based on the representative
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agent which generate the means of stochastic time paths of aggregate vari-
ables, have little value. Put it another way, the standard mico-foundations
are not actually true micro-foundations.

Before we proceed to the model, we explain “non-self-averaging,” the cru-
cial concept for our purpose. The term ”non-self-averaging” is extensively
used in the physics literature (see Sornette (2000, p.369)), but is not known
in economics. “Non-self-averaging” means that a size-dependent (i.e. ”ex-
tensive” in physics) random variable X of the model has the coefficient of
variation that does not converge to zero as model size goes to infinity. The
coefficient of variation (C.V.) of an extensive random variable, X, defined
by

C.V.(X) =

√
variance(X)

mean(X)
.

is normally expected to converge to zero as model size (e.g. the number
of economic agents) goes to infinity. In this case, the model is said to be
“self-averaging.” We have already shown that the popular Poisson model
has this self-averaging property. However, in many models, we are led to
non-self-averaging.

The notion of non-self-averaging is important because non-self-averaging
models are sample dependent, and some degree of impreciseness or disper-
sion remains about the time trajectories even when the number of economic
agents go to infinity. This implies that focus on the mean path behavior
of macroeconomic variables is not justified. It, in turn, means that sophisti-
cated optimization exercises which provide us with information on the means
have little value.

In what follows, we first demonstrate this point using the two-parameter
Poisson-Dirichlet model. We next show that based on urn models, non-self-
averaging is not confined to a particular model which we present in the next
section, but is actually quite generic. The final section offers concluding
discussion on the implications of non-self-averaging for macroeconomics.

2 Non-self-averaging in a Growth Model

In this section, we present a simple innovation driven growth model in which
aggregate output or GDP is non-self-averaging.

The Model

Following the literature on endogenous growth, we assume that the economy
grows by innovations. Innovations are shochastic events. There are two kinds
of innovations in our model. Namely, an innovation, when it occurs, either
raises productivity of one of the existing sectors, or creates a new sector.
Thus, the number of sectors is not given, but increases over time.
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By the time nth innovation occurs, the total of Kn sectors are formed
in the economy wherein the i-th sector has experienced ni innovations (i =
1, 2, . . . , Kn). By definition, the following equality holds:

n1 + n2 + · · ·+ nk = n (1)

when Kn = k. If n-th innovation creates a new sector (secotor k), then
nk = 1.

The aggregate output or GDP when n innovations have occured is denoted
by Yn. Yn is simply the sum of outputs in all the sectors, yi.

Yn =
Kn∑
i

yi. (2)

Output in secotr i grows thanks to innovations which stochastically occur
in that sector. Specifically, we assume

yi = ηγni . (η > 0, γ > 1) (3)

For our purpose, it is convenient to rewrite equation (1) as follows.

n =
n∑
j

jaj(n) (4)

In equation (4), aj(n) is the number of sectors where j innovations have
occurred. The vector a(n) consisting of aj(n), is called partition vector 1.
With this partition vector, a(n), Kn can be expressed as

Kn =
n∑
j

aj(n). (5)

Using the following approximation

γni = exp(ni ln γ)) ≈ 1 + ln(γ)ni,

we can rewrite equation (3) as

yi = η + η ln(γ)ni. (6)

Thus, from equations (1), (2), (4), (5) and (6), we obtain

Yn ≈ Kn + β

n∑
j

jaj(n). (7)

where β = ln(γ) > 0. Here, without loss of generality, we assume that η is
one. Obviously, the behavior of the aggregate output, Yn depends on how
innovations occur.

1See chapter 2 of Aoki and Yoshikawa (2006) for partition vector.
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The Poisson-Dirichlet Distribution of Innova-

tions

We now describe how innovations stochastically occur in the model. An
innovation follows the two-parameter Poisson-Dirichlet (PD) distribution.2

Given the two-parameter PD (α, θ) distribution, when there are k clus-
ters of sizes ni, (i = 1, 2, . . . , k), and n = n1 + n2 + · · · + nk, an innovation
occurs in one of the existing sectors of “size” ni with probability rate pi:

pi =
ni − α

n + θ
. (8)

The “size” of sector i, ni is equal to the number of innovations that have
already occurred in sector i. The two parameters α and θ satisfy the following
conditions:

θ + α > 0, and 0 < α < 1.

With α = 0 there is a single parameter θ, and the distribution boils down to
the one-parameter PD distribution, PD(θ).

pi is the probability that an innovation occurs in one of the existing
sectors. Now, a new sector emerges with probability rate3 p:

p = 1−
k∑
1

ni − α

n + θ
=

θ + kα

n + θ
. (9)

It is important to note that in this model, sectors are not homogeneous
with respect to the probability that an innovation occurs. The larger sector i
is, the greater the probability that an innovation occurs in sector i becomes.
Moreover, there probabilities change endogenously as ni changes over time.

In the two-parameter PD(α, θ) distribution, the probabilitiy that the
number of sectors increases by one in n + 1 conditional on Kn = k, is given

2Kingman invented the one-parameter Poisson-Dirichlet distribution to describe ran-
dom partitions of populations of heterogeneous agents into distinct clusters. The one-
parameter Poisson-Dirichlet model is also known as Ewens model, (Ewens (1972)); See
Aoki (2000a, 2000b) for further explanation. The one-parameter model was then ex-
tended to the two-parameter Poisson-Dirichlet distributions by Pitman; See Kingman
(1993), Carlton (1999), Feng and Hoppe(1998), Pitman (1999, 2002), and Pitman and Yor
(1996), among others. Aoki (2006) has shown that the two-parameter Poisson-Dirichlet
models are qualitatively different from the one-parameter version because the former is
not self-averaging while the latter is. These models are therefore not exponential growth
models familiar to economists but they belong to a broader class of models without steady
state constant exponential growth rate. None of the previous works, however, have com-
paratively examined the asymptotic behavior of the coefficient of variation of these two
classes of models.

3Probabilities of new types entering Ewens model, are discussed in Aoki (2002, Sec.10.8,
App. A.5).
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by4

Pr(Kn+1 = k + 1|K1, . . . , Kn = k) = p =
θ + kα

n + θ
. (10)

On the other hand, the corresponditing probability that the number of sectors
remains unchanged is

Pr(Kn+1 = k|K1, . . . , Kn = k) =
∑

i

pi =
n− kα

n + θ
. (11)

We show that this two-parameter PD model is non-self averaging. It is
interesting to observe that the one parameter PD model (α = 0) is self-
averaging. Before se proceed, it may be helpful to say a few words why the
two-parameter PD model is non-self averaging. The answer lies in (10) and
(11). In this model, innovations occur in one of the two different types of
sectors, one, the new type and the other, known or pre-existing types. The
probability that an innovation generates a new sector is (θ + Knα)/(n + θ),
and the probability that an innovation occurs in one of the existing sectors is
(n−Knα)/(n + θ), where Kn is the number of types of sectors in the model
by the time n innovations occurred. These probabilities and their ratio vary
endogenously, depending on the histories of how innovations occured. In
other words, the mix of old and new sectors evolve endogenously, and is
path-dependent. This is the reason why non-self averaging emerges in the
two parameter PD model. We note that in one parameter PD model in
which α = 0, two probabilities (10) and (11) become independent of Kn, and
that the model becomes self-averaging.

Now, the standard endogenous growth literature focuses on profit motives
for innovations. The name “endogenous growth” comes from explicit analysis
of innovations as outcomes of profit-seeking activities. There is no denying
that innovations are at least partly outcomes of intentional profit-seeking
activities. However, we skip such analysis in the present analysis. The basic
reason is that aggregate output, Yn is non-self averaging. To explain this
point in detail is, in fact, the purpose of this paper.

GDP is Non-self Averaging

Given the model, we are interested in the behavior of GDP, namely Yn.
Specifically, we would like to see whether or not Yn is self-averaging. Toward
this goal, we first normalize Yn by nα. Then, from equation (7), we obtain

4Because the following inequality holds:

θ + kα

n + θ
>

θ

n + θ
,

we observe that the probability that a new sector emerges is higher in the two-parameter
PD model than in the one-parameter PD model.
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Yn

nα
=

Kn

nα
+ βΣn

j

aj(n)

nα
. (12)

In what follows, we show that Yn is non-self-averaging. Toward this goal,
we first define partial sums of Kn and Yn up to l(< n), Kn(1, l) and Yn(1, l),
as follows:

Kn(1, l) = Σl
j=1aj(n) (13)

and

Yn(1, l) = Kn(1, l) + βŶn(1, l) (14)

where

Ŷn(1, l) = Σl
j=1jaj(n). (15)

Yamato and Sibuya (2000; p.7 their prop. 4.1 and 4.2) showed that given l,
Kn(1, l)/nα and Ŷn(1, l)/nα converge in distribution as n approaches infinite
(−→ d) as follows:

Kn(1, l)

nα
−→d C1(l)L (16)

and

Ŷn(1, l)

nα
−→d C2(l)L (17)

where

C1(l) = 1− (1− α)[l]

l!

C2(l) =
(2− α)[l−1]

(l − 1)!
.

Here, [j] in C1(l) and C2(l) denotes an ascending factorial:

x[j] = x(x + 1) . . . (x + j − 1).

The random variable L in (16) and (17) has the probability density function
gα,θ(x):

gαθ(x) =
Γ(θ + 1)

Γ(θ/α + 1)
x

θ
α gα(x) (18)
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where gα is the density of the Mittag-Leffler distribution5 with parameter
α. Pitman (1999) also showd the a.s.convergence. See Yamato and Sibuya
(2000, p.8).

It is shown by Yamato and Sibuya and by Pitman that

Kn

nα
−→d L, (19)

Kn

nα
−→ L a.s. (20)

and

C.V.

(
Kn

nα

)
−→ C.V.(L) > 0. (21)

Because C1(l) and C2(l) are constant in (16) and (17), for each fixed l, and
α > 0, we obtain

C.V.

(
Kn(1, l)

nα

)
−→ C.V.(L) > 0, (22)

and

C.V.

(
(Ŷn(1, l)

nα

)
−→ C.V.(L) > 0. (23)

Therefore, given (14), we obtain

C.V.

(
(Yn(1, l)

nα

)
−→ C.V.(L) > 0 (24)

Thus, for sufficiently large l,

C.V.

(
Yn

nα

)
−→ C.V.(L). (25)

Mittag-Leffler function gα(x) has the property that its p th moment is
given by∫ ∞

0

xpgα(x)dx =
Γ(p + 1)

Γ(pα + 1)
(p > −1). (26)

Thus, using (18) and (26), we can obtain the first and second moments of L,
Eα,θ(L) and Eα,θ(L

2) as follows:

Eα,θ(L) =
Γ(θ + 1)

αΓ(θ + α)
, (27)

5See Blumenfeld and Mandelbrot (1997), Erdely, A., W.Magnus, F Oberhettinger, F.G.
Tricomi (1953-1954), or Pitman (1999) on Mittag-Leffler function.
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and

Eα,θ(L
2) =

(θ + α)Γ(θ + 1)

α2Γ(θ + 2α)
. (28)

The variance of L, var(L) is, therefore,

var(L) = Eα,θ(L
2)− [Eα,θ(L)]2 = γα,θ

Γ(θ + 1)

α2
, (29)

where

γα,θ :=
θ + α

Γ(θ + 2α)
− Γ(θ + 1)

[Γ(θ + α)]2
. (30)

The coefficient of variation of L is given by

C.V.(L) =

√
var(L)

Eα,θ(L)
=

√
γα,θ

Γ(θ + 1)
Γ(θ + α). (31)

Note that γα,θ defined by (30) is zero when α = 0, but that it is positive
when α > 0. Therefore, C.V.(L) is zero in the one-parameter PD model
(α = 0), but is positive in the two-parameter PD model (α > 0).

Now, we have shown above that C.V.(Yn/n
α) converges to C.V.(L). Thus,

thanks to (25) and (31), we finally obtain

C.V.

(
Yn

nα

)
→
√

γα,θ

Γ(θ + 1)
Γ(θ + α). (32)

The right-hand side of (32) does not approach zero even if n goes to infinity
in the two-parameter PD model (α > 0). Thus, we have established the
following proposition.

Proposition
In the two-parameter Poisson-Dirichlet model, the aggregate output Yn is
non-self averaging.

3 Non-self-averaging in Triangular Urn Mod-

els

In the previous section, we considered a simple innovation-driven growth
model in which GDP is non-self-averaging. Stochastic events are not con-
fined to innovations, of course. To name but a few, job offer, any profit
opportunity, and discovery of new resources are all stochastic. No wonder,
modern macroeconomics —— rational expectations models, real business cy-
cle theory, labor search theory, and endogenous growth theory —— explicitly
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takes into account stochastic “shocks” in respective models. Most models can
be interpreted as a variety of stochastic processes.

Now, many stochastic processes can be interpreted as urn models. For
example, a random walk model on a finite set of states whereby the boundary
states are reflecting is equivalent to the famous Ehrenfest urn model. More
generally, by drawing balls not uniformly but at random times governed
by exponential distribution, urn models can be reinterpreted as stochastic
processes as shown by Athrea and Karlin (1968).

An important characteristic of urn models is that such processes are path
dependent. Feller (1968; p.119) calls path-dependence “aftereffect.” Namely,
he says that “it is conceivable that each accident has an aftereffect in that
it either increases or decreases the chance of new accidents.” An obvious
example would be contagious diseases. Indeed, in an classical paper by
Eggenberger and Polya (1923), an urn model was introduced to describe
contagious diseases; In Polya’s urn scheme, the drawing of either color in-
creases the probability of the same color at the next drawing, and we are
led to such path-dependence as seen in contagious diseases. We can easily
conceive path-dependent phenomena in economics. They can be described
by urn models. For example, Winter, Kaniovski and Dosi (2000) analyze in-
dustrial dynamics with innovative entrants by urn models. In this section, we
show that a class of urn models lead to non-self averaging. They are meant
to demonstrate that non-self-averaging is not pathological but is generic.

Balanced Triangular Urn Models

Using the scheme of Flajolet Gabarro and Pkari (2005), we describe urns
with two types of balls, black and white. The balls may be interpreted as
sectors or innovations. The color of balls represent different kinds. The
interpretation is quite flexible.

We can describe this urn model by the replacement matrix M . Specif-
ically, we use a 2 × 2 triangular matrix M , with elements m1,1 = a > 0,
m1,2 = b − a, b > a, m2,1 = 0, and m2,2 = b. This matrix M specifies that
if a black ball (ball 1) is drawn, it is returned to the urn together with a
additional black balls, and b−a white balls. If a white ball (ball 2) is drawn,
then it is returned to the urn together with b white balls; No white ball is
added in this case, and therefore, the replacement matrix M is triangular.
The urn is called balanced because the two row sums of M are equal (both
equal to b). It means that the total number of balls in the urn is the same
regardless of the color of a ball drawn.

In what follows, we show that the stochastic process described by this
urn model is non-self-averaging. Non-self-averaging is caused by the fact
that the generating mechanism, that is the mix of balls of two types is path-
dependent for the same reason as the PD model in the preceeding section.
Note that in this model, the ratio of black and white balls is path-dependent,
and varies endogenously; The number of balls of each types being put into
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the urn clearly depends on the way two types of balls have been drawn in
the past.

Suppose that there are r black balls and s white balls after n draws.
This composition of the types of balls is represented by a monomial as urvs.
Then, there are altogether a0 + b0 + b × n balls in the urn, where a0 and
b0 are the numbers of initial black and white balls; Recall that the urn is
balanced. Now, with r black balls in the urn, there are r ways of picking
a black ball, each such draw results in a additional black balls and b − a
additional white balls. Therefore, after a draw of a black ball, the monomial
urvs is transformed into rur+avs+b−a. Likewise, a draw of a white ball changes
the monomial into survs+b−a. This evolution is represented by the following
operator Γ:

Γ = ua+1vb−a ∂

∂u
+ vb+1 ∂

∂v
. (33)

All possible compositions of this urn at time n is represented by a poly-
nomial in u and v, fn(u, v). Using the operator Γ defined by (33), we have

fn+1(u, v) = Γfn(u, v). (34)

By defining the exponential generating function

H(z, u, v) =
∑
n≥0

fn(u, v)zn/n!, (35)

we obtain its first-order partial differential equation

ua+1vb−a ∂H

∂u
+ vb+1∂H

∂v
=

∂H

∂z
. (36)

This equation can be solved by the method of characteristics, see Aoki
(2002, A.1), for example. The partial differential equation (36) is converted
into a set of ordinary differential equations.

du/dt = ua+1vb−a,

dv/dt = vb+1,

and

dz/dt = −1.

Eliminating dt from the above, we obtain

dv

vb+1
= −dz (37)

and

du

ua+1
=

dv

va+1
(38)
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The equation for v can be integrated directly. Then the other equation is
integrated yielding two constants of integration. The general solution is a
function of these two constants of integration. To be concrete, suppose that
a = 1 and b = 2. Then, we obtain the first integral as follows:

φ1(z, u, v) = z − 1

2v2
(39)

and

φ2(z, u, v)− 1

v
− 1

u
. (40)

Hence,

H(z, u, v) = h

(
z − 1

2v2
,
1

v
− 1

u

)
(41)

where

H(0, u, v) = un. (42)

With this generating function, H(z, u, v), we can obtain the probability dis-
tribution of Xn, the number of black balls at time n. Note that because the
urn is balanced, and the total number of balls at n is not random, once we
know the number of black balls, we automatically know the number of white
balls as well. Puyhaubert (2005) establishes the following results:

E(Xn) =
aΓ
(

ao+a
a

)
Γ
(

to
b

)
Γ
(

ao

a

)
Γ
(

to+a
b

) n
a
b + 0(1) (43)

and

E(X2
n) =

a2Γ
(

ao+2a
a

)
Γ
(

to
b

)
Γ
(

ao

a

)
Γ
(

to+2a
b

) n
2a
b + 0(n

a
b ). (44)

As we have seen it in the previous section, we can show that C.V.(Xn) re-
mains positive even if n approaches infinite. Thus, we have established the
following proposition.

Proposition: The number of black balls in the balanced triangular urn
model is non-self-averaging.

Non-Balanced Triangular Urn Models

Janson (2006) examins triangular urns which are not balanced. Specifically,
Janson (2006; Theorem 1.3) derives that when the replacement matrix M
consists of m1,1 = a = c + d, m1,2 = c, m2,1 = 0, and m2,2 = d, we obtain

n−d/aXn →d W, (45)
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where Xn is the number of black balls, and n is the number of drawings. The
variable W has a generalized Mittag-Leffler distribution with moments

E(W/d)p =
Γ((a0 + b0)/a)Γ(a0/d + p)

Γ(b0/d)Γ(a0 + b0 + d/a)
. (p = 1, 2, . . . .) (46)

By identifying two parameters θ and α in the PD model in the following
way:

a0 + b0

a
= θ + 1, (47)

and

b0

d
=

θ

α
, (48)

we can observe that these two Mittag-Leffler moment expressions are the
same as L in the two-parameter PD model presented in the previous secdtion.
This fact means that two distributions are identical because the moments of
Mittag-Leffler distributions uniquely determine the distribution (Bingham,
Goldie, Teugels (1987, 391)). Janson (2006; Theorem 1.3) shows that de-
pending on parameters of the replacement matrix, namely a, c, and d, Xn,
the number of black balls, becomes non-self-averaging6.

We can summarize this analysis as follows.

Proposition: In non-balanced triangular urn models, depending on the val-
ues of parameters, non-self-averaging emerges. Non-self-averaging is generic
in the sense that a set of parameters for which non-self-averaging emerges is
not of measure zero.

4 Concluding Discussion

Almost all the economic opportunities such as job offer, discoveries of new
technology, market, and resources are stochastic. Modern micro-founded
macroeconomics —— Lucas’ rational expectations model, real business cy-
cle theory, labor search theory, and endogenous growth theory —— rightly
takes into account stochastic events. However, in these micro-founded mod-
els, it is taken for granted that as the number of agents goes to infinity, any

6Janson (2005; Theorem 1.3) shows that the behavior of the model is determined by
the relataive sizes of the eigenvalues of the replacement matrix M . In the triangular urn,
λ1 = max(a, d) and λ2 = min(a, d). With λ2 ≤ λ1/2, the composition of the urn is
effectively determined by the outcome of the large number of later draws, each having
a negligible effect. On the other hand, if λ2 ≥ λ1/2, the imbalance caused by the first
random draw magnifies at a sufficient rate to remain important for large number draws, n.
Because the element (1,2) is zero, type 1 balls do not affect type 2 balls and no smoothing
effects on the type 2 balls are caused by the large number of type 1 draws. This explains
why no normal distributions emerge for d less than a/2.
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micro or “idyosyncratic” fluctuations vanish, and that well defined deter-
ministic macroeconomic relations prevail. That is, self-averaging is tacitly
presumed. However, if model is non-self-averaging, dispersion remains even
if the number of economic agents become infinite. It means that we can not
focus on the means of macro variables. This, in turn, means that sophisti-
cated optimization and market equilibrium exercises which provide us with
dynamics of the means of macro variables have, in fact, little value.

Self-averaging emerges when every agent is assumed to face the same
unchanged “well-behaved” probability distribution such as the normal and
the Poisson distributions. This is indeed the standard assumption in micro-
founded macroeconomics. Lucas (1972, 73)’s famous model of business cycles
is a primary example. It is instructive to trace his model in detail. Lucas
begins to model a supplier’s behavior in each individual market as follows;

“Quantity supplied in each market will be viewed as the prod-
uct of a normal (or secular) component common to all markets
and a cyclical component which varies from market to market.
Letting z index markets, and using ynt and yct to denote the logs
of these components, supply in market z is:

(1) yt(z) = ynt + yet(z)

. . . . . . The cyclical component varies with perceived, relative prices
and with its own lagged value:

(3) yct(z) = γ [Pt(z)− E(Pt | It(z))] + λyc,t−1(z)

Where Pt(z) is the actual price in z at t and E(Pt | It(z)) is
the mean current, general price level, conditioned on information
available in z at t, It(z).

Given this framework, he goes on to the information structure of the
economy.

“The information available to suppliers in z at t comes from
two sources. First, traders enter period t with knowledge of the
past course of demand shifts, of normal supply ynt, and of past
deviations yc,t−1, yc,t−2, . . .. While this information does not per-
mit exact inference of the log of the current general price level,
Pt, it does determine a “prior” distribution on Pt, common to
traders in all markets. We assume that this distribution is knwon
to be normal, with meand P̄t (depending in a known way on the
above history) and a constant variance σ2. Second, we suppose
that the actual price deviates form the (geometric) economy-wide
average by an amount which is distributed independently of Pt.
Specifically, let the percentage deviation of the price in z from the
average Pt be denoted by z (so that markets are indexed by their
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price deviations from average) where z is normally distributed,
independent of Pt, with mean zero and variance τ 2. Then the
observed price in z, Pt(z) (in logs) is the sum of independent,
normal variates

(4) Pt(z) = Pt + z

The information It(z) relevant for estimation of the unobserved
(by suppliers in z at t), Pt consists then of the observed price
Pt(z) and the history summarized in P̄t (Lucas(1973; p.328))”.

The assumption of rational expectations then permits suppliers in indi-
vidual markets to make efficient inferences on the relative prices. This leads
to micro supply functions. Given micro supply functions, the aggregate sup-
ply function, is trivially derived.

“To utilize this information, suppliers use (4) to calculate the
distribution of Pt, conditional on Pt(z) and P̄t. This distribution
is (by straightforward calculation) normal with mean:

(5) E(Pt | It(z)) = E(Pt | Pt(z), P̄t) = (1− θ)Pt(z) + θP̄t

where θ = γ2/(σ2 + γ2), and variance θσ2. Combining (1), (3),
and (5) yields the supply function for market z:

(6) yt(z) = ynt + θγ[Pt(z)− P̄t] + λye,t−1(z)

Averaging over markets (integrating with respect to the distribu-
tion of z) gives the aggregate supply function:

(7) yt = ynt + θγ(Pt − P̄t) + λ[yt−1 − yn,t−1]

(Lucas(1973; p.328))”

As is well known, the aggregate supply function is the core of Lucas’
rational expectations model of business cycles. In this model, the crucial
assumption is his equation (4) above. More specifically, the random variable
z is assumed to be normally distribution with mean zero and variance τ 2.
That is, each supplier faces the same probability distribution of micro shock
although a realization of such a shock, of course, differs across suppliers.

This assumption is taken by most economists as innocuous. However,
it actually means that Microsoft and small grocery store on the street face
micro shocks drawn from the same unchanged probability distribution! It
presumes homogeneity with respect to the probability distribution of micro
shocks, and extremely unrealistic. Lucas’ model emphasizes the role of micro
shocks which by definition differ across sectors or agents. In this sense, it
rejects the representative agent. However, like other micro-founded macro
models, it is built on the crucial premise that every agent faces the same
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unchanged probability distribution of micro shocks. This assumption entails
self-averaging. Specifically, in his model, one can easily obtain the aggregate
supply function by “averaging over markets (integrating with respect to the
distribution of z.)” Note that his aggregate output yt (his equation (7)) is
nothing but the mean of stochastic aggregate output.

We must discard the assumption that micro agent or sector faces the same
unchanged probability distribution of micro shocks. Under the more realistic
assumption that each agent or sector faces a different probability distribu-
tion of micro shocks, and that such a probability distribution endogenously
changes over time, in general, non-self-averaging can emerge. Examples we
present in this paper are extremely simple. Despite their simplicity, each sec-
tor or agent is assumed to be subject to a different probability distribution
of micro shocks, and such a probability distribution endogenously changes
over time. In these examples, non-self-averaging emerges.

In fact, income distribution, firms size distribution, distribution of stock
price change, and many other distributions of important economic variables
are now known to obey power-laws that entail non-self-averaging (See Man-
tegna and Stanley (2000)). Thus, shouldn’t we be ready to expect non-self-
averaging in the economy?

Non-self-averaging deprives us of a justification for our focusing on means.
It, in turn, means that such sophisticated microeconomic analyses as infinite
horizon stochastic dynamic programming which are common in macroeco-
nomic models, and are expected to give us the exact mean time paths of
aggregate variables, have, in fact, little value. Those analyses provide us
with no foundations for macroeconomic analyses because time paths of macro
variables are sample dependent in any way.

Summing up, macroeconomics must seek different microeconomic founda-
tions from the standard optimization of the representative agent (See Aoki
and Yoshikawa (2006)). Contrary to the motto of modern micro-founded
macroeconomics, it is actually useful to separate macroeconomics from so-
phisticated optimization exercises. Solow(2000), for example, suggests that
we might reasonably separate macroeconomic growth theory from microeco-
nomic analysis of technical progress.

“It may be too strong a statement, but only a little too strong,
to suggest that growth theory “proper” is the study of the long-
run behavior of an economy conditional on A(t). But then there
is a separate, though closely related, field of study that is con-
cerned with A(t) itself, or more generally with the understanding
of the process of technological change. It goes without saying
that the results of this second branch of economics will be of
central importance to growth theory. One of the advantages of
this distinction is that the economics of technical change will
certainly involve considerations — about industrial organization,
management, practices, and other such things — that have little
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in common with the macroeconomics of growth, but are essential
to the economics of technology. (Solow (2000), p.101)”

Non-self-averaging leads us to the same conclusion. The point is actually not
confined to the theory of growth, but more widely applies to macroeconomics.
Macroeconomics is better freed from too much of optimization exercises. This
is the fundamental implication of non-self-averaging for macroeconomics. In
this paper, we have demonstrated that once we drop the dubious assumption
that agents or sectors face the same probability distribution of micro shocks,
non-self-average can emerge.
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