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Abstract 

 
This paper investigates whether Varian’s (1994) compensation mechanism can work in a 
laboratory. The results show that this mechanism does not work as in the theory. We found that 
the magnitude of penalties crucially affects subjects’ behavior.  
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1. Introduction 

 How can we reduce emissions of greenhouse gases? It is one of the urgent issues in the 

world. However, there are some difficulties in solving this problem such as how to decide who 

reduces how much and how to design institutions that can implement the socially optimal 

allocation of emissions. The third session of the Conference of the Parties to the United Nations 

Framework Convention on Climate Change (UNFCCC) was held in Kyoto in 1997. It stipulated 

the target quota of greenhouse gases (GHGs) among the respective countries (Kyoto Protocol). In 

order to achieve this target, the Protocol decided to employ mechanisms such as emissions 

trading, joint implementation and the clean development mechanism. Before countries can begin 

emissions trading, however, rules must be negotiated and agreed on to ensure cooperation 

among all countries.  

 Emissions trading is one of the ways to minimize the cost of reducing GHGs. It has 

already been used to trade SO2 and leaded gasoline in the US. Theoretically, if the market of 

emission permits is perfectly competitive, the allocation of GHGs in the market is efficient. That 

is, the cost of reducing the targeted GHGs is minimized regardless of the initial allocation of 

permits (Montgomery (1972)). A governmental agency does not need to know the cost functions 

of pollution sources. It needs only to decide the initial allocation of the emission permits and the 

market implements the efficient allocation automatically. However, there is no guarantee that the 

market is always perfectly competitive. If an agent who can supply many permits (such as 

Russia) and an agent who demands many of the permits (such as Japan) both enter the market, it 

is not guaranteed that the trading is made at a competitive equilibrium price. Depending on the 

initial allocation, they might lead the market to an inefficient allocation (Hahn (1984), Misiolek 

and Elder (1989)).  

 Contrary to this prediction, Varian (1994) described a class of compensation 

mechanisms whose subgame-perfect Nash equilibria implement socially efficient allocations in 

an environment in which there are only a few agents involved.  

 This paper examines whether this mechanism can work in a laboratory. Our design 
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deals with the simplest case of only one demander and one supplier in the market. We found 

that few subjects chose the unique subgame-perfect Nash equilibrium. Many subjects 

coordinated implicitly toward a more profitable (but not socially optimal) outcome and some 

subjects chose Nash equilibria that were not subgame-perfect.  

 The paper is organized as follows. Section 2 presents the compensation mechanism. 

Section 3 describes the experimental design and procedures. Section 4 presents experimental 

results. Section 5 discusses the results. Section 6 offers conclusions. 

 

2. The Compensation Mechanism in the Context of Emissions Trading 

 Consider a market involving two players who are assigned a certain amount of GHGs 

emissions to reduce. We assume their cost functions for reducing the emissions are increasing 

and strictly convex and call the assigned quota of emissions reduction 2) 1,(i  =iw . By 

introducing the following mechanism according to Varian (1994), the market can achieve the 

competitive equilibrium at its subgame-perfect Nash equilibrium even if only two players are 

involved. The mechanism consists of the following two stages:  

Stage 1. Each player i simultaneously and independently offers a price for reducing emissions, 

2)) 1,(i ( =ip . 

Stage 2. After observing 2p , player 1 chooses the amount of emissions reduction to trade  with 

player 2 (denoted z  hereafter). If the two announced prices in stage 1 are different, only player 

1 has to pay a penalty to the regulator of this market. The payoffs to player 1 and player 2 are 

given by 

   ,)()( 2
212111 ppzpzwcU −−++−= α ,0>α                                 (1) 

 .)( 1222 zpzwcU −−−=                                               (2) 

 The third term of the payoff function of player 1 is a penalty term. Although we chose 

the term to be a quadratic form with a positive number coefficient α for expositional purpose, it 

can be anything as long as the penalty is positive when the two prices are different and zero 
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when they are the same. The payoff function of player 1 consists of the cost of reducing the 

amount of emissions after trading, the trade payment and any penalty, while the payoff function 

of player 2 consists of the cost of reducing the amount of emissions after trading and the trade 

payment. 

  To show that this mechanism can implement the efficient allocation at its unique 

subgame-perfect Nash equilibrium, we solve the problem of player 1 in the second stage first. 

The objective function of player 1 in the second stage is given by 

 .)()( 2
212111 ppzpzwcUMax

z
−−++−= α                                    (3) 

Player 1 will choose z , which satisfies the following first –order condition: 

 ( )  .211 pzwc =+′                                                            (4) 

 This condition means that player 1 will decide z so that the marginal cost of reducing a 

unit of emissions is equal to the price determined by player 2 in the first stage. Since the cost 

function of player 1 is increasing and strictly convex, the following inverse function is derived 

from equation (4): 

 ).( 2pfz =                                                                 (5) 

 Substitute (5) into (4) and differentiate it with respect to 2p . We obtain the following 

equation: 

 .0)()( 1
12 >′′=′ −cpf                                                         (6) 

 This equation means that as the price offered by player 2 increases, player 1 will prefer 

to reduce more emissions.  

 In the first stage, both players announce trading prices simultaneously and 

independently. For player 1, by differentiating her payoff function with respect to 1p , we obtain 

the following first-order condition: 

  .21 pp =                                                                   (7) 

 This condition minimizes the penalty for player 1. On the other hand, since player 2 
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knows that 2p  affects z  through the function )( 2pf , we obtain the following condition by 

differentiating the payoff function of player 2 with respect to 2p : 

  .0)()( 212 =′−′ pfpc                                                        (8) 

 From equation (6), this condition is reduced to 

  .12 pc =′                                                                   (9) 

 We now check the second-order condition. We can obtain the second derivative by 

differentiating the left –hand-side of equation (8) with respect to 2p  as follows: 

 ).()()]([ 212
2

22 pfpcpfc ′′−′+′′′−                                            (10) 

 The first term of equation (10) is negative because of the curvature assumptions on the 

cost function of player 2; the second term becomes zero as a result of the condition given in 

equation (9). Therefore the second-order condition is locally satisfied. To satisfy the condition 

globally, however, minor restrictions have to be imposed on the marginal cost of palyer 2 and 

the second-order derivative of )( 2pf . From (4), (7) and (9), we find that this subgame-perfect 

Nash equilibrium satisfies the condition for efficiency. Although this is the unique 

subgame-perfect Nash equilibrium in this game, there exist many Nash equilibria, too. To be 

precise, a Nash equilibrium results when the players choose the same price (any price!) in the 

first stage, and player 1 chooses z  to maximizes her payoff given player 2’s price.  

 

3. Experiment Design and Procedures 

3.1 Experimental Design 

 In the experiments, a profit maximizing individual tries to minimize her cost as much 

as possible. The cost functions of player 1 and player 2 are given by 

 ,1)player by  amountsreduction (5.05.37 2
1 +=c

 .2)player by  amountsreduction (75.0 2
2 =c  

 These equations show that player 1 has fixed costs (=37.5) and a lower marginal cost, 
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while player 2 does not have any fixed cost but has a higher marginal cost. From the social point 

of view, player 1 should reduce more emissions than player 2. Their payoff functions are given 

by 

 ),(})(5.05.37{ 2
2

11 penaltyAzpzw ⋅−+++−=π                              (11) 

 .)(75.0 1
2

22 zpzw −−−=π                                                  (12) 

 The variable A in equation (11) equals zero if 1p  is equal to 2p , and if 1p  is not 

equal to 2p , it equals one.  

 In the experiment, players were assigned initial amounts of emissions to reduce ( 1w =5 

and 2w =10). Each player simultaneously chooses a price 15} ,  1, ,0{∈ip in the first stage 

without knowing the price decided by the other player. In the second stage, only player 1 

chooses a quantity 10} ,  4,- ,5{−∈z after observing the price decided by player 2. Although 

Varian’s compensation mechanism does not specify the magnitude of the penalty or the form of 

it, different amounts of penalty or different forms of penalty could affect subjects’ behaviors in 

different ways. Since we are interested in whether the magnitude of the penalty would change 

subjects’ behaviors, we examined a low penalty (penalty=10) and a high penalty case (penalty=50). 

To simplify the experimental design, we chose a lump-sum penalty instead of a quadratic form 

as in equation (1). Such modification does not change the original theoretical prediction. With the 

parameters mentioned above, the unique subgame-perfect Nash equilibrium is 

}4 ,9 ,9{} , ,{ 21 =zpp .  

 

3.2 Experimental Procedures 

 Two sessions were conducted using Osaka University undergraduates from various 

majors in 1997. In each session, twenty subjects (ten pairs) were seated in the same classroom. 

One session was run for the low penalty treatment, and the other was run for the high penalty 

treatment. Each subject participated in only one of the sessions. They were told before the 
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experiment began that the experiment game would be repeated 20 periods. In our experiment, 

we did not use any words implying that we were concerned with environmental issues. In 

addition, we used the word “fee” in place of the word “penalty.” Throughout the experiments, 

communication among subjects was not allowed. Subjects were told to play either role A 

(=player 1) or role B (=player 2) and we explained that they were to produce a certain amount of 

goods rather than tell them that they were trying to reduce emissions. To give them full 

information about payoffs, we explained and practiced both roles before they knew which role 

they were assigned. All the pairs of player 1 and player 2 were the same throughout the 

experiment, but they did not know who their partner was. The actual payment in the low 

penalty treatment was determined by 

 periods). 20for  payoff total(2yen5000 +                                  (13) 

 The actual payment in the high penalty was determined by 

 periods). 20for  payoff total(2yen6000 +                                   (14) 

 As explained in section 2 and shown in equations (11) and (12), payoffs of both players 

are negative since they consist mostly of costs for reducing emissions.1 Therefore we gave 

subjects seed money at the beginning of the experiment (5,000 yen in the low penalty treatment 

and 6,000 yen in the high penalty treatment (one US dollar=121yen). Players could receive 

positive payments by trying to minimize the second term of the above equations (13) and (14). 

Not to give subjects the impression that one role was more advantageous than the other before 

the experiment began, we assigned the same payment formula to both player 1 and player 2. 

 Both the low penalty treatment session and the high penalty treatment session lasted 

about 160 minutes. In the low penalty treatment, player 1s earned 3,695 yen (about 30.50 US 

dollars) and player 2s earned 3,645 yen (about 30.10 US dollars) on average. In the high penalty 

                                                  
1 Since the task subjects were given in our experiments was negatively framed (that is, subjects 
were told to lose profits as the experiment proceeded instead of earning positive profits), there 
may exist the effect of “loss aversion” (Kahneman and Tversky (1979)). A possible direction for 
future research is to examine the case where the experimental task is described in a positively  
framed way.  
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treatment, player 1s earned 3,240 yen (about 26.80 US dollars) and player 2s earned 3,543 yen 

(about 29.30 US dollars) on average. 

 

4. Results 

4.1 The Low Penalty Treatment 

 Table 1 presents the complete results of this treatment. Since the payoffs of both players 

are negative, we omit minus signs from the payoffs so that they indicate the total costs for 

reducing emissions including the trade payment. Figure 1 shows that the average total costs of 

both roles are lower than those in the subgame perfect Nash equilibrium in most periods. Each 

player was matched with the same partner till the end of this session. Hence, statistically 

independent samples are session-level data. Each period consists of 10 samples of the total cost 

of player 1s, and 10 samples of the total cost of player 2s. We analyzed each period separately to 

examine whether the average total costs of both roles are significantly lower than those in the 

subgame-perfect equilibrium using a t test. As we noticed in figure 1, the counter hypothesis that 

the mean of total costs of player 1s is lower than 42 (the total cost of player 1 at the subgame- 

perfect equilibrium) was supported for 11 periods (period 6, period 10 and from period 12 to 

period 20) (a one tailed p-value<0.10). The counter hypothesis that the mean of total costs of 

player 2s is lower than 63 (the total cost of player 2 at the subgame-perfect equilibrium) was 

supported for 15 periods (all periods except for period 3, period 4, period 5, period 6 and period 

20) (a one tailed p-value<0.10).  

 In addition, both of the average total costs decreased as the experiment proceeded, 

which is also statistically highly significant (a two tailed p-value<0.01). No pair chose the 

subgame-perfect Nash equilibrium throughout the session. Instead of the equilibrium, many 

pairs of subjects chose the outcome }10 ,15 ,0{} , ,{ 21 =zpp (60 outcomes of the 200 samples), 

where the total costs for both players were lowest, but not socially efficient. At this outcome 

player 1 has to pay the cost of 10, but player 2 does not have to pay anything. Since the pairs 

were the same throughout the experiment, they cooperated with each other to minimize their 
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total costs. Three pairs chose this outcome in the last period. One pair consistently chose a Nash 

equilibrium }3 ,8 ,8{} , ,{ 21 =zpp throughout the experiment. One pair maintained a Nash 

equilibrium }2 ,7 ,7{} , ,{ 21 =zpp  from period 11 to period 19. However, player 2 of this pair 

changed her choice in the last period. 

 

4.2 The High Penalty Treatment 

 Table 2 presents the complete results of this session. Figure 2 shows that the average 

total costs among player 1s is higher than the costs in the subgame-perfect Nash equilibrium. 

Since statistically independent samples are session-level data for the same reason as in the low 

penalty treatment, we analyzed each period separately. The counter hypothesis that the mean of 

total costs of player 1s is higher than 42 was supported for 18 periods except for period 17 and 

period 20 (a one tailed p-value<0.10). The average costs among player 2s do not look much 

different from the costs in the subgame perfect equilibrium in figure 2. The null hypothesis that 

the mean of total costs of player 2s is equal to 63 was supported for 16 periods except for period 

1, period 15, period 19 and period 20 (a two tailed p-value>0.29).  

 In addition, we found that player 1s’ average total cost decreased significantly period 

by period (a two tailed p-value<0.01), while player 2s’ average total cost did not decrease 

significantly period by period (a two tailed p-value of 0.777). The subgame-perfect Nash 

equilibrium was chosen five times and one pair chose the equilibrium in the last period. The 

frequency of the outcome }10 ,15 ,0{} , ,{ 21 =zpp is less than that in the low penalty treatment 

(31 outcomes of the 200 samples). However, this outcome was still the most frequent throughout 

the session. Although two pairs seemed to converge toward }10 ,15 ,0{} , ,{ 21 =zpp , where the 

total cost for player 1 is 50 and the total cost for player 2 is 0, no pair chose this outcome in the 

last period. The player 1 of one of those pairs chose 151 =p  for several periods to make her 

penalty zero. One pair consistently chose a Nash equilibrium }3 ,8 ,8{} , ,{ 21 =zpp  from period 

8 till the last period.  
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4.3 Comparison between Two Penalty Treatments  

 There are three types of behaviors. The first type is reciprocal behavior: player 1 

chooses the lowest price for player 2 to make player 2’s cost zero and player 2 chooses the 

highest price for player 1 so that player 1 can minimize the cost by choosing the optimal z  (but 

player 1 has to pay the penalty). The second type is Nash behavior: player 1 chooses the same 

price as 2p  to minimize the penalty and choose an optimal z  given a 2p . The third type is 

behaviors which are categorized neither in the first type nor in the second type, such as some 

player 1s did not choose the optimal z  under a given 2p . In both treatments, we observed 

many of the first type of behavior. 30% of observations in the low penalty treatment were 

categorized in this type. Although the rate of the first type behavior decreased in the high 

penalty treatment, still 16% of observations in the treatment were categorized in the first type.  

 The subgame-perfect equilibrium outcome was observed only in the high penalty 

treatment, but with few times. Instead of the subgame-perfect Nash equilibrium, other Nash 

outcomes were chosen more frequently. In the low penalty treatment, 19 % of observations 

(thirty-eight observations) in total were Nash outcomes. }5- ,0 ,0{} , ,{ 21 =zpp was chosen once, 

}0 ,5 ,5{} , ,{ 21 =zpp was chosen once, }1 ,6 ,6{} , ,{ 21 =zpp was chosen once, 

}2 ,7 ,7{} , ,{ 21 =zpp was chosen ten times (nine times were chosen by the same pair), 

}3 ,8 ,8{} , ,{ 21 =zpp  was chosen twenty times (by the same pair) and 

}10 ,15 ,15{} , ,{ 21 =zpp  was chosen five times. In the high penalty treatment, the 

subgame-perfect Nash equilibrium was chosen five times. Other Nash equilibria were chosen 

twenty-five times in total. }5- ,0 ,0{} , ,{ 21 =zpp was chosen once, }2 ,7 ,7{} , ,{ 21 =zpp was 

chosen twice, }3 ,8 ,8{} , ,{ 21 =zpp  was chosen fourteen times (thirteen times were chosen by 

the same pair), }7 ,12 ,12{} , ,{ 11 =zpp was chosen once and }10 ,15 ,15{} , ,{ 21 =zpp  was 

chosen seven times. Although in the high penalty treatment the rate of pairs who chose the 
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subgame-perfect Nash equilibrium increased, the total number of Nash outcomes (even 

including the subgame-perfect Nash equilibrium) was less than in the low penalty treatment 

(15% of all the observations in this treatment).  

 Most observations were not categorized either in the first type or in the second type 

(51% in the low penalty treatment and 69% in the high penalty treatment). As was mentioned 

above, there were player 1s who did not choose an optimal z  given a 2p  in the second stage 

both in the low penalty and high penalty treatments. The rate of best response by player 1 in the 

low penalty was 79% and 82% in the high penalty treatment throughout each session. In our 

experiment parameters, player 1’s optimal choice of z  is decided by the following equation:  

  .5* 2pz +−=  

 We ran a simple linear regression of player 1’s quantity choice ( z ) on a single predictor 

variable player 2’s price ( 2p ). The regression results show that the coefficient on 2p  of the low 

penalty treatment was 0.75 (a two tailed p-value<0.01) and that of the high penalty treatment 

was 0.91 (a two tailed p-value<0.01). That is, the higher penalty induced more rational behavior 

by player 1s. 

 

4.4 Efficiency comparison 

 In the compensation mechanism, the budget is not balanced off the equilibrium path. 

When 1p  does not equal 2p , the regulator of this market has to compensate for the difference 

between the paid amount of money and the received amount of money, or she can benefit from 

the price difference. Therefore her payoff function can be expressed by 

 ,pp if             2121 ≠+−= penaltyzpzpRπ  

 .pp if                                          0  21 ==Rπ  

 The social surplus of one transaction consist of player 1’s payoff ( 1π ), player 2’s payoff 

( 2π ) and the regulator’s payoff ( Rπ ). The sum of these payoffs is negative because they are 

mostly costs for reducing the target amount of emissions. Therefore we express the social total 
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cost as STC= −( 1π + 2π + Rπ ) and define efficiency of one transaction by the following formula: 

 .
105

)105{105 −−
=

STCEfficiency  

 105 is the minimum and most efficient social total cost at the subgame-perfect Nash 

equilibrium ( 1π =-42, 2π = -63 and Rπ =0). When the total cost is 105, efficiency equals 1. 

However, there are cases other than the subgame-perfect Nash equilibrium whose total cost is 

105. Figure 3 compares the average efficiency period by period in the low penalty treatment and 

the high penalty treatment. It shows that the efficiency in the low penalty is higher than in the 

high penalty treatment across all the periods. To confirm this observation, we tested whether 

efficiency in the low penalty treatment is significantly higher than that in the high penalty 

treatment using a paired t test and found that this observation was true (a one tailed 

p-value<0.01). That is, a higher penalty does not necessarily lead to a more efficient result. 

 

5. Discussion 

 From the experiment results, we found that there are several aspects in the 

compensation mechanism that make subjects deviate from the theoretical prediction. One aspect 

is that there are many Nash equilibria other than the subgame perfect Nash equilibrium. Among 

all the Nash equilibria, the most preferable outcome for player 1 is }10 ,15 ,15{} , ,{ 21 =zpp , 

while the most preferable outcome for player 2 is }3 ,8 ,8{} , ,{ 21 =zpp . Therefore the 

subgame-perfect Nash equilibrium was not a focal point. As was mentioned in section 4.3, 

}3 ,8 ,8{} , ,{ 21 =zpp  was the most observed Nash equilibrium among all the Nash equilbria. 

This might be because a price choice of 8 is the most preferable for player 2. Therefore, player 1 

had to choose the same price to minimize her penalty. In addition to that, since the payoff 

functions of both players are relatively flat near the subgame-perfect Nash equilibrium, a small 

deviation from the equilibrium was not so costly to player 1.2 The other aspect is the influence of 

                                                  
2 This sort of subject misbehavior is observed in other experiments. Harrison (1989) points out 
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penalties. Theoretically, the form of the penalty can be anything and the magnitude of the 

penalty does not matter. However, we observed a significant difference between the low penalty 

treatment and the high penalty treatment.  

 

6. Conclusion 

 In our experiments, we could not create an environment in which the compensation 

mechanism can work. In spite of the absence of communication, subjects cooperated implicitly 

and chose the more profitable outcome for them than in the subgame-perfect Nash equilibrium. 

One of the aspects in this mechanism is that there are many Nash equilibria. That might prevent 

subjects from focusing on the subgame-perfect Nash equilibrium. We examined two kinds of 

penalty treatments and found that raising the magnitude of the penalty is not sufficient to induce 

subjects to choose the subgame-perfect Nash equilibrium. Theoretically the form and the 

magnitude of the penalty do not matter in determining the socially optimal outcome. However, 

we found that penalties control subjects’ behaviors significantly. To make this mechanism work 

as in the theory, it is necessary to consider and test experimentally what form and magnitude of 

penalty can actually lead to the socially preferable outcome. Our study is concerned with the 

case where only player 1 pays a penalty. To examine the case where player 2 also has a penalty, 

and the same theoretical prediction of Varian’s original model still holds, is left to future 

research.3 

                                                                                                                                                           
that such deviation from equilibrium is not sufficient enough to reject the original theory since 
the reward structure does not satisfy the requirement that rewards should dominate the 
subjective cost of the activity, which was originally proposed by Smith (1982). 
3 To investigate how subjects learn this sort of game is also left to future work. It is theoretically 
known that “supermodular games,” which were analyzed by Milgrom and Roberts (1990) and 
others, converge to the set of Nash equilibria that are within the serially undominated strategies 
under various kinds of learning dynamics including Cournot best response and Baysian learning. 
Chen and Gazzale (2003) investigate the role of supermodularity by using a generalized version 
of Varian’s compensation mechanism, which can make the mechanism supermodular by 
modifying the penalty term of the original Varian’s mechanism. They find that supermodular 
games have good convergence properties in their experiment. 
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Table 1. Summary of Results in the Low Penalty Treatment: Prices and Quantities Announced by 
Players 
 
  Period 1 Period 2 Period 3 Period 4 Period 5 
  p1 p2 z p1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 3 6 2 7 5 2 7 7 2 8 15 10 0 6 0 
Pair 2 3 7 2 4 5 0 2 8 0 1 6 -4 1 7 -5 
Pair 3 8 8 3 8 8 3 8 8 3 8 8 3 8 8 3 
Pair 4 2 0 2 0 15 0 10 15 10 2 15 10 15 15 10 
Pair 5 7 8 3 7 7 4 7 6 4 7 2 2 7 14 4 
Pair 6 1 15 10 4 14 9 13 15 10 0 15 10 1 15 9 
Pair 7 0 5 10 0 10 10 0 10 10 0 10 5 0 10 5 
Pair 8 0 10 5 0 10 10 0 10 10 0 15 10 0 15 10 
Pair 9 5 8 3 3 11 6 2 6 1 4 5 0 3 13 8 
Pair 10 8 7 2 13 7 2 7 5 0 14 10 6 7 6 2 
 Period 6 Period 7 Period 8 Period 9 Period 10 
  p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 0 5 0 0 7 2 0 15 10 0 15 10 0 15 10 
Pair 2 2 10 6 0 11 6 0 12 7 0 13 8 0 15 10 
Pair 3 8 8 3 8 8 3 8 8 3 8 8 3 8 8 3 
Pair 4 15 15 10 15 15 10 15 0 -5 15 0 -5 0 0 -5 
Pair 5 7 9 4 7 0 4 7 0 4 7 0 4 7 0 2 
Pair 6 0 15 10 0 15 10 0 15 8 1 15 10 0 15 10 
Pair 7 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 8 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 9 1 14 9 0 15 10 0 15 10 1 15 10 0 15 10 
Pair 10 2 6 2 7 6 2 0 6 2 6 6 1 6 7 2 
 Period 11 Period 12 Period 13 Period 14 Period 15 
  p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 2 1 15 10 1 14 9 0 15 10 1 15 10 1 15 10 
Pair 3 8 8 3 8 8 3 8 8 3 8 8 3 8 8 3 
Pair 4 0 15 -5 15 15 10 0 5 0 3 5 0 5 5 0 
Pair 5 7 0 2 7 10 4 7 2 2 7 0 2 7 1 2 
Pair 6 0 15 8 1 15 10 0 15 6 0 15 9 0 15 10 
Pair 7 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 8 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 9 1 15 10 0 14 9 1 13 8 1 15 10 0 15 10 
Pair 10 7 7 2 7 7 2 7 7 2 7 7 2 7 7 2 
 Period 16 Period 17 Period 18 Period 19 Period 20 
  p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 2 1 14 9 0 15 10 1 15 10 1 15 10 1 15 10 
Pair 3 8 8 3 8 8 3 8 8 3 8 8 3 8 8 3 
Pair 4 5 6 1 5 7 2 5 9 4 5 9 4 9 10 5 
Pair 5 7 13 7 7 0 2 7 11 6 0 10 8 0 10 8 
Pair 6 1 15 9 0 15 10 0 15 8 0 15 10 0 5 0 
Pair 7 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 8 0 15 10 0 15 10 0 15 10 0 15 10 15 15 10 
Pair 9 1 15 10 0 15 10 1 15 10 1 15 10 0 15 10 
Pair 10 7 7 2 7 7 2 7 7 2 7 7 2 7 15 10 
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Table 2. Summary of Results in the High Penalty Treatment: Prices and Quantities Announced by 
Players 
 
  Period 1 Period 2 Period 3 Period 4 Period 5 
  p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 5 9 4 3 7 2 6 10 6 8 7 2 12 8 3 
Pair 2 9 9 4 9 9 4 9 5 0 5 12 7 8 3 -2 
Pair 3 0 12 7 0 12 10 0 12 7 0 13 9 0 15 10 
Pair 4 8 9 4 9 10 4 8 9 4 9 8 4 9 8 4 
Pair 5 0 11 6 5 8 3 2 7 2 15 11 6 0 6 1 
Pair 6 6 5 6 9 4 3 6 10 6 7 0 -5 8 15 10 
Pair 7 11 8 4 13 9 4 8 7 2 8 15 10 12 3 -2 
Pair 8 10 15 10 6 15 0 5 15 10 0 15 10 0 15 10 
Pair 9 2 15 10 7 15 10 15 15 10 15 14 9 14 13 8 
Pair 10 10 6 1 13 7 2 2 10 5 2 12 7 6 13 8 
 Period 6 Period 7 Period 8 Period 9 Period 10 
  p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 10 8 3 7 8 3 8 8 3 8 8 3 8 8 3 
Pair 2 15 0 -2 15 15 6 7 15 6 7 15 10 6 15 10 
Pair 3 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 4 9 8 3 8 7 3 8 7 3 8 7 3 7 7 2 
Pair 5 0 9 4 3 15 10 11 15 10 13 15 10 15 14 9 
Pair 6 3 10 6 13 10 4 10 5 0 5 5 2 5 14 9 
Pair 7 7 5 0 6 1 -4 14 6 1 5 14 9 7 10 5 
Pair 8 15 15 10 15 5 0 5 15 10 0 15 10 0 15 10 
Pair 9 12 12 7 11 8 3 4 5 0 8 0 -5 0 0 -5 
Pair 10 6 11 6 6 12 7 14 11 6 12 9 4 11 7 2 
 Period 11 Period 12 Period 13 Period 14 Period 15 
  p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 8 8 3 8 8 3 8 8 3 8 8 3 8 8 3 
Pair 2 13 15 8 7 15 10 15 15 9 15 13 8 11 5 0 
Pair 3 0 15 10 0 15 10 0 15 10 0 15 10 0 15 10 
Pair 4 7 8 3 8 8 3 8 7 2 8 7 2 8 7 2 
Pair 5 15 8 3 9 10 5 7 7 2 12 9 4 11 7 2 
Pair 6 7 2 -2 5 7 4 4 3 -2 11 4 -4 7 14 9 
Pair 7 8 11 6 8 13 8 14 12 7 9 9 4 9 9 4 
Pair 8 15 15 10 0 6 2 0 15 10 0 15 10 0 15 10 
Pair 9 0 15 10 15 15 10 15 0 -5 0 15 10 0 15 10 
Pair 10 12 7 2 7 13 8 13 11 6 13 7 2 4 6 1 
 Period 16 Period 17 Period 18 Period 19 Period 20 
  p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z p 1 p 2 z 
Pair 1 8 8 3 8 8 3 8 8 3 8 8 3 8 8 3 
Pair 2 0 0 -4 15 15 7 12 15 10 15 5 0 0 9 4 
Pair 3 0 15 10 0 15 10 0 15 10 0 15 10 5 15 10 
Pair 4 8 7 2 9 7 -5 8 7 3 7 7 5 7 7 5 
Pair 5 7 6 1 15 10 5 15 9 4 14 11 6 9 9 4 
Pair 6 2 10 4 10 15 6 10 3 -2 10 14 8 10 15 7 
Pair 7 9 6 1 4 8 3 6 5 0 6 7 2 9 10 5 
Pair 8 0 15 10 0 15 10 0 15 10 0 15 10 15 15 10 
Pair 9 0 15 10 15 15 10 0 15 0 0 15 10 15 15 10 
Pair 10 3 13 8 4 14 9 5 13 8 4 13 8 14 15 10 

  
 

 



Figure 1. The average total costs across player 1s and across player 2s
in the low penalty treatment
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Figure 2. The average total costs across player 1s and across player 2s
in the high penalty treatment
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Figure 3. Efficiency comparison between the low penalty treatment
and the high penalty treatment
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