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ABSTRACT 

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a standard 

concept used in social choice theory. Saijo et al. (2003) argue that this concept has serious 

drawbacks.  In particular, announcing one's true preference may not be a unique dominant 

strategy, and almost all strategy-proof mechanisms have a continuum of Nash equilibria. 

For only a subset of strategy-proof mechanisms do the set of Nash equilibria and the set of 

dominant strategy equilibria coincide. For example, this double coincidence occurs in the 

Groves mechanism when preferences are single-peaked.  We report experiments using 

two strategy-proof mechanisms where one of them has a large number of Nash equilibria, 

but the other has a unique Nash equilibrium.  We found clear differences in the rate of 

dominant strategy play between the two. Journal of Economic Literature Classification 

Number: C92, D71, D78, and H41.  
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1. Introduction 

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a standard 

concept that has been used in the design of a variety of mechanisms for social choice as 

well as for eliciting values for non-market goods. Its main appeal is that it relies on what 

would seem to be one of the most basic game-theoretic notions and apparently innocuous 

assumptions for behavior: that players adopt dominant strategies. Theorists often fail to 

recognize, however, that laboratory evidence calls into question the descriptive relevance 

of this assumption. For example, Attiyeh, Franciosi, and Isaac (2000) and Kawagoe and 

Mori (2001) report pivotal mechanism experiments in which subjects adopt dominant 

strategies less than half the time, and Kagel, Harstad, and Levin (1987), Kagel and Levin 

(1993) and Harstad (2000) report second price auction experiments in which most bids do 

not reveal true value.   

 Experimentalists sometimes argue that players who use weakly dominated 

strategies must suffer from confusion due to the complexity of the mechanism and the 

non-transparency of the dominant strategy.  But in fact, neither �epistemic� (deductive) 

nor �evolutive� (dynamic) models provide unambiguous support for the elimination of 

weakly dominated strategies. If each player is perfectly rational and can deduce what 

strategies the opponent will use, then the outcome of the game must be a Nash 

equilibrium (Aumann and Brandenburger (1995)), but there is nothing that forces a player 

to eliminate weakly dominated strategies. In a dynamic analysis, the behavior of 

boundedly rational players is changing over time. While the rest points of dynamic 

processes such as fictitious play and replicator dynamics must be Nash equilibria, there is 

no guarantee that weakly dominated strategies will be eliminated. Intuitively, the 

feedback the players receive may be very weak because the use of a weakly dominated 

strategy may not cause any loss in payoff. Binmore, Gale and Samuelson (1995) and Kagel 

and Levin (1993) argue that this weak feedback effect can explain some experimental 

results, and Cabrales and Ponti (2000) discuss the implications for mechanism design.  Of 

course, epistemic and evolutive models do provide clear-cut support for the elimination of 

strictly dominated strategies. The problem is that very few social choice rules are 

implementable in strictly dominant strategies.  
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Motivated by this problem, Saijo, Sjöström and Yamato (2003) developed a new 

concept called secure implementation. A social choice function is securely implementable if 

there exists a mechanism (game form) that implements it in dominant strategy equilibria, 

and the set of dominant strategy equilibrium outcomes and the set of Nash equilibrium 

outcomes coincide.  That is, all Nash equilibrium outcomes must be socially optimal in a 

secure mechanism.  The current paper takes a first step towards establishing the empirical 

significance of these ideas. We report a new experiment comparing the rate of dominant 

strategy adoption for the pivotal mechanism (where implementation is not secure) and for 

the Groves-Clarke mechanism when preferences are single-peaked (where 

implementation is secure). Our results indicate that subjects play dominant strategies 

significantly more often in the secure Groves-Clarke mechanism than in the non-secure 

pivotal mechanism, even though we have simplified both mechanisms with context-free 

payoff tables. 

 The practical relevance of mechanism design will increase as more mechanisms are 

implemented in the field. Auctions provide an important example. The English (ascending 

price) auction is a secure mechanism that has been used since at least 500 B.C. in Babylon 

(Cassady, 1967). Theorists have noted the strategic equivalence between English and 

second price auctions since Vickrey (1961), but for some information conditions the second 

price auction is strategy-proof but not securely implementable. Until recently the second 

price auction has not been adopted in the field, although this is likely to change as online 

auctions grow in importance. Bidders in online auctions at eBay and Amazon can submit a 

reservation price (called a proxy bid) early in the auction, and if this bid is highest then 

this bidder wins the auction and pays only the minimum bid increment above the second-

highest submitted price. This institution shares a number of incentive features of 

theoretical second price auctions, although as currently implemented submitting one�s 

reservation price is generally not a dominant strategy (Roth and Ockenfels, 2002).  

  But the adoption of true sealed-bid second price auctions may grow over time, 

particularly for intermediate goods and in procurement  (�business-to-business�) 
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transactions.1 But as we illustrate in Section 3, for some information conditions the second 

price auction has �bad� Nash equilibrium outcomes that are Pareto-inferior to the 

dominant strategy equilibrium outcome. This suggests that proponents of second price 

auctions may want to be more cautious when proposing them for online markets or to 

elicit valuations for non-market goods. 

The remainder of the paper is organized as follows. Section 2 presents a brief 

review of the laboratory evidence on strategy-proof mechanisms. Section 3 gives examples 

of two well-known strategy-proof mechanisms that have a continuum of Nash equilibria, 

including equilibria other than the dominant strategy equilibrium that theorists usually 

focus on. We characterize secure implementability in Section 4 for the case of two agents 

and quasi-linear preferences that is relevant for our experiment. (Saijo et al. (2003) presents 

results for more general conditions.)  Section 5 describes the experimental environment 

and Section 6 contains the experimental results.  Section 7 provides concluding remarks. 

 

2. Experimental Results on Strategy-Proof Mechanisms 

 Until recently, most of the experimental studies of strategy-proof mechanisms have 

considered the second price auction (Vickrey, 1961). For example, Coppinger, Smith and 

Titus (1980) studied the relationship between Dutch, English, first price sealed-bid and 

second price sealed-bid auctions. Bidders in both the English and the second price auction 

have a dominant strategy to fully reveal their resale value in their bid (or reveal their value 

in their �drop-out price� in the case of the English auction). Bidders in Coppinger et al.�s 

(oral) English auctions typically dropped out of the bidding when predicted, so prices 

corresponded to the equilibrium prediction�the second-highest bidders� resale value. 

Similarly, Kagel, Harstad and Levin (1987) show that bidders in English (clock) auctions 

lock on to the dominant strategy of bidding equal to value after a few periods of initially 

overbidding. 

Bidders in Coppinger et al.�s second price auctions did not bid above their resale 

value, but this is clearly because of the artificial prohibition of bids above resale value 

imposed in these initial experiments. Kagel and Levin (1993) find that 58 to 67 percent of 

                                                      
1 Some examples where sealed-bid second price auctions have been introduced for business-to-consumer and 
consumer-to-consumer transactions include qconlineauction.com and grab-a-deal.com. 
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second price auction bids are greater than resale value, which they attribute to (1) the 

equilibrium bidding strategy being less transparent than in the English auction and (2) 

learning feedback to discourage overbidding is weak under sealed-bid procedures because 

typically the overbidding is not �punished� with losses.  Harstad (2000) also documents 

rather severe overbidding in second price auctions that does not decline over time but that 

may be less pronounced when subjects first obtain experience in English auctions. Garratt, 

Walker and Wooders (2002) show that bidders who are highly experienced in online 

auctions are no more likely to overbid than to underbid, but as with inexperienced bidders 

only very few (roughly 20 percent) of bids are approximately equal to value. Most bids in 

the Garratt et al. study vary considerably from the bidders� true values, and consequently 

less than one half of the auctions result in efficient allocations. Overall the data clearly 

indicate that subjects do not play their dominant strategy, and in all cases the evidence 

suggests that bidding equal to value is significantly more common in English than in 

second price auctions. 

While the transparency, experience and feedback explanations for the lower 

frequency of dominant strategy play in the second price auction are all plausible, we 

propose a complementary explanation that may be relevant for auctions conducted in the 

field. For the incomplete information conditions implemented in most laboratory 

experiments the only Nash equilibrium coincides with the dominant strategy equilibrium 

in which bids fully reveal values. But in more realistic information conditions in which 

bidders have some information about their rivals� values�through repeated interaction 

for example�Nash equilibria that do not coincide with the dominant strategy equilibrium 

exist and involve overbidding and underbidding. For example, suppose bidder 1 has a 

value of $555 and bidder 2 has a value of $550, and that these values are common 

knowledge. It is a Nash equilibrium for bidder 1 to bid $540 and bidder 2 to bid $560, 

resulting in the inefficient allocation of the object to bidder 2. Kagel and Levin (1993) and 

others have noted that overbidding is not discouraged because bidders can bid above 

values and not lose money. It is precisely this feature of the second price auction 

institution that causes �bad� Nash equilibria to exist. Saijo et al. (2003) discuss many other 

examples of strategy-proof mechanisms that also have bad Nash equilibrium outcomes 

that are Pareto-inferior to the dominant strategy equilibrium outcome. 
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More recent experiments have studied the pivotal mechanism, which is a strategy-

proof social choice mechanism that is strategically equivalent to the second price 

auction.2,3 In this mechanism an agent pays the amount needed to implement his preferred 

outcome only if his report is pivotal and changes the chosen outcome. These studies have 

also documented that subjects frequently do not play dominant strategies. Attiyeh, 

Franciosi and Isaac (2000) find that less than 10 percent of the bids reveal the subjects� true 

value for the public good, in a setting where the experimenter explained the mapping of 

bids to outcomes (and required taxes for the pivotal players) for five- and ten-person 

groups. Part of the poor performance of this mechanism might be due to subject confusion 

and the complexity of the pivotal mechanism. Kawagoe and Mori (2001) provide support 

for this interpretation, using a controlled experiment that manipulates the complexity 

across treatments. They also find that only a small number of bids (less than 20 percent) 

reveal true values when the context and complexity of the pivotal mechanism is part of the 

experiment; but when the mechanism is simplified and represented by (detailed) payoff 

tables then nearly half of the subjects play the dominant strategy. In the present 

experiment we also study the pivotal mechanism with detailed payoff tables to help 

simplify the decision environment and promote equilibrium bids. Although confusion and 

complexity may be partly responsible for the poor performance of some mechanisms, we 

will try to go beyond this explanation.   We will argue that the existence of multiple Nash 

equilibria allows us to predict how behavior will deviate from the dominant strategy 

equilibrium.  That is, we will identify systematic rather than random deviations from the 

dominant strategy equilibrium in non-secure mechanisms.  

 

3.  Why do Strategy-Proof Mechanisms Not Work Well? 

                                                      
2 Another truth-telling mechanism that has been widely employed in experiments is the Becker-DeGroot-
Marshak (BDM) mechanism. In this mechanism the subject states a maximum buying price or minimum 
selling price, but the actual buying or selling price is determined by a randomizing device and the transaction 
is carried out if it is acceptable giving the subject�s reported maximum or minimum. This mechanism is not a 
game so it is not directly relevant for our study. 
3 We do not review here other social choice mechanism experiments like the serial cost sharing mechanism 
because the researchers have implemented those mechanisms in environments where the Nash equilibria are 
not in dominant strategies (e.g., Chen, 2003; Dorsey and Razzolini, 1999). 
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 Saijo et al. (2003) show that many of the strategy-proof mechanisms that have been 

studied in the literature have a continuum of Nash equilibrium outcomes that do not 

coincide with the dominant strategy equilibrium outcome. In particular, they present a 

number of examples including the pivotal mechanism for a non-excludable  public good, 

the serial cost sharing mechanism for an excludable public good, the second price auction 

for an indivisible good, the Condorcet winner voting scheme (a median voter scheme) 

with single-peaked preferences, and the uniform allocation rule (a fixed-price trading rule) 

with single-peaked preferences. Besides having a continuum of Nash equilibria, these 

mechanisms all have bad Nash equilibrium outcomes that are Pareto-inferior to the 

dominant strategy equilibrium outcome. Here we provide more details for the two 

examples of such strategy-proof mechanisms that were just summarized from the 

experimental literature. 

  

Example 1: The pivotal mechanism (Clarke, 1971). 

Consider the pivotal mechanism, which is one of the two mechanisms studied in 

the present experiment, for a two-agent economy with a binary non-excludable public 

good and quasi-linear preferences. Two agents 1 and 2 are facing a decision whether or 

not they should produce the public good. Agent i's true net value of the public good is vi  

if it is produced, and her true net value is 0 otherwise ( i = 1 2, ). In the pivotal mechanism, 

each agent i reports his net value ~vi  and the outcome is determined as follows:  

 

Rule 1: if ~ ~ ,v v1 2 0+ ≥  then the public good is produced, and if not, then it is not produced; 

and 

Rule 2: each agent i must pay the pivotal tax ti  

t
v v v v v v

vi
j j

j
=

+ > > + =R
S|
T|

             if (i) or (ii) and

     otherwise

0 0 0 01 2 1 2
~ (~ ~ ) ~ ~ ~

~  

where j i≠ .  

That is, an agent pays the amount needed to implement his preferred outcome if his report 

is pivotal and changes the chosen outcome. 
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 First, let ( , ) ( , )v v1 2 5 4= −  be the true net value vector. Figure 1-(a) shows that the set 

of Nash equilibria is approximately a half of the two dimensional area.  Notice that the 

public good should be produced because the sum of the net values of the public good is 

positive.  The upper-right part of the set of Nash equilibria is good since constructing the 

public good is recommended.  However, the lower-left part of the set of Nash equilibria is 

bad since producing the public good is not recommended.   

Second, let ( , ) ( , )v v1 2 5 5=  be the true net value vector.  In this case, both agents 

want to construct the public good.  However, Figure 1-(b) shows the area of bad Nash 

equilibria is still large. Saijo et al. (2003) generalize this negative result to the case with any 

arbitrary finite numbers of public projects and agents. 

 

---------------------------------- 
Figure 1 is around here. 

---------------------------------- 
 

Example 2: The second price auction (Vickrey (1961)). 

 Consider a two-agent model with an indivisible good.  Agent i's true value of the 

good is vi ≥ 0  if she receives it, and her true value is 0 otherwise ( i = 1 2, ).  Let (~ ,~ )v v1 2  be a 

reported value vector.  The second price auction consists of two rules:  

 

Rule 1: if ~ ~v vi j> , then agent i receives the good and pays ~v j  ( i j i j, , ;= ≠1 2 ); and 

Rule 2: if ~ ~v v1 2= , then agent 1 receives the good and pays ~v2 . 

  

 Let ( , ) ( , )v v1 2 7 5=  be the true value vector.  Figure 2 shows that the set of Nash 

equilibria is quite large.  Notice that agent 1 should receive the good because her value is 

greater than agent 2's.  The lower-right part of the set of Nash equilibria is good since 

agent 1 receives the good.  However, the upper-left part of the set of Nash equilibria 

involving overbidding is bad since agent 2 receives the good. 

 
---------------------------------- 
Figure 2 is around here. 

---------------------------------- 
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We do not dispute the possibility that, in practice, some confused bidders may fail 

to recognize their dominant strategy because it is not transparent (e.g., Harstad, 2000). 

However, our key observation is that the Nash equilibrium areas shown in Figure 2 

indicate the possibility of systematic rather than random deviations from the dominant 

strategy equilibrium.  

 

4.  Secure Implementation in Public Good Economies 

The previous section presented two examples drawn from many strategy-proof 

mechanisms that may have �bad� Nash equilibria.  They implement the social choice 

function (SCF) in dominant strategies, but not in Nash equilibria. Saijo et al. (2003) 

introduce a new concept of implementation, called secure implementation, which does not 

share this shortcoming. 

We introduce notation and definitions here to describe the concept of secure 

implementation in the context of public good economies with two agents and quasi-linear 

preferences. Denote the set of feasible allocations by 

 A y t t y Y t t= ∈ ∈ℜ{( , , ) , , }1 2 1 2 , 

where Y ⊆ℜ is a production possibility set, y Y∈  is an output level of a public good, and 

ti  is a transfer of a private good to agent i.  For simplicity, we assume that there is no cost 

involved in producing y.  Each agent i�s utility function, ui : A → ℜ, is selfish and quasi-

linear: 

 u y t t u y t v y ti i i i i( , , ) ( , ) ( )1 2 = = + ,   i = 1 2, .  

The class of valuation functions, vi  : Y → ℜ, admissible for agent i is denoted by Vi .  Let v 

= ( , )v v1 2  ∈ V ≡ V V1 2×  be a valuation profile.   

A social choice function (SCF) is a function f : V → A that associates with every list of 

valuation functions, v ∈ V, a unique feasible allocation f (v) in A.  The allocation f (v) is said 

to be f-optimal for v. 

 A mechanism (or game form) is a function g: S S1 2× → A that assigns to every 

( , )s s S S1 2 1 2∈ ×  a unique element of A, where Si  is the strategy space of agent i. For a 

strategy profile s s s S S= ∈ ×( , )1 2 1 2 , the outcome of g for the profile s is denoted by 
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g s y s t sg g( ) ( ( ), ( ))= , where y sg( )  is the level of the public good and t s t s t sg g g( ) ( ( ), ( ))= 1 2  is 

the transfer vector.   

The strategy profile s s s S S= ∈ ×( , )1 2 1 2 is a Nash equilibrium of g at v ∈ V if 

v y s s t s s v y s s t s sg g g g
1 1 2 1 1 2 1 1 2 1 1 2( ( , )) ( , ) ( ( , )) ( , )+ ≥ ′ + ′  for all ′ ∈s S1 1 , and  

v y s s t s s v y s s t s sg g g g
2 1 2 2 1 2 2 1 2 2 1 2( ( , )) ( , ) ( ( , )) ( , )+ ≥ ′ + ′  for all ′ ∈s S2 2 . 

Let N vA
g ( )  be the set of Nash equilibrium allocations of g at v, i.e., N vA

g ( )  ≡ {( ( , , )y t t1 2  ∈ A 

| there exists a Nash equilibrium at v , s ∈ S, such that g s y t t( ) ( , , )= 1 2 }.   

The strategy profile s s s S S= ∈ ×( , )1 2 1 2  is a dominant strategy equilibrium of g at v ∈ 

V if 

v y s s t s s v y s s t s sg g g g
1 1 2 1 1 2 1 1 2 1 1 2( ( , )) ( , ) ( ( , )) ( , )′ + ′ ≥ ′ ′ + ′ ′  for all ′ ∈s S1 1 and ′ ∈s S2 2 ; and  

2 1 2 2 1 2 2 1 2 2 1 2( ( , )) ( , ) ( ( , )) ( , )g g g gv y s s t s s v y s s t s s′ ′ ′ ′ ′ ′+ ≥ +  for all ′ ∈s S1 1 and ′ ∈s S2 2 . 

Let ( )g
AD v  be the set of dominant strategy equilibrium allocations of g at v, i.e., ( )g

AD v  ≡ 

{( ( , , )y t t1 2  ∈ A | there exists a dominant strategy equilibrium at v , s ∈ S, such 

that g s y t t( ) ( , , )= 1 2 }.  

 

Definition 1. The mechanism g implements the SCF f in dominant strategy equilibria if for all v 

∈ V, f (v) = g
AD (v).  f is implementable in dominant strategy equilibria if there exists a 

mechanism which implements f in dominant strategy equilibria.  

 

Definition 2. The mechanism g securely implements the SCF f if for all v V∈ , f v( ) = g
AD (u) = 

NA
g (u).4  The SCF f is securely implementable if there exists a mechanism which securely 

implements f.   

 

Dominant strategy implementation requires that for every possible preference 

profile, the dominant strategy equilibrium outcome coincides with the f-optimal outcome. 
                                                      
4 Secure implementation is identical to double implementation in dominant strategy equilibria and Nash 
equilibria.  It was Maskin (1979) who first introduced the concept of double implementation. See also Yamato 
(1993). 
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In addition to this requirement, secure implementation demands that there be no Nash 

equilibrium outcome other than the dominant strategy equilibrium outcome. 

 Saijo et al. (2003) characterize the class of securely implementable SCF's using two 

conditions. The first condition is strategy-proofness.  The allocation recommended by the 

SCF f for the profile v v v= ( , )1 2  is denoted by f v y v t vf f( ) ( ( ), ( ))= , where y vf ( )  is the level 

of the public good and t v t v t vf f f( ) ( ( ), ( ))= 1 2  is the transfer vector. 

 

Definition 3. The SCF f is strategy-proof if  

      v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( ( ,~ )) ( ,~ ) ( (~ ,~ )) (~ ,~ )+ ≥ +  for all ~v V1 1∈ and ~v V2 2∈ ; and  

      2 1 2 2 1 2 2 1 2 2 1 2( ( , )) ( , ) ( ( , )) ( , )f f f fv y v v t v v v y v v t v v+ ≥ +% % % % % %  for all ~v V1 1∈ and ~v V2 2∈ . 

 

By the Revelation Principle (Gibbard, 1973), strategy-proofness is necessary for 

dominant strategy implementation, and therefore also for secure implementation. 

However, an additional condition is necessary for secure implementation. To see why 

intuitively, suppose that the direct revelation mechanism g = f securely implements the 

SCF f.  See Figure 3 in which n = 2  and ( , )v v1 2  is the true preference profile.  Suppose 

u f v v u f v v1 1 2 1 1 2( ( ,~ )) ( (~ ,~ ))= , i.e., 

 (4.1) v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( ( ,~ )) ( ,~ ) ( (~ ,~ )) (~ ,~ )+ = + . 

In other words, agent 1 is indifferent between reporting the true preference v1  and 

reporting another preference ~v1  when agent 2�s report is ~v2 .  Since reporting v1  is a 

dominant strategy by strategy-proofness, it follows from (4.1) that  

v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( (~ ,~ )) (~ ,~ ) ( ( ,~ )) ( ,~ )+ = +   

                                            ≥ ′ + ′v y v v t v vf f
1 1 2 1 1 2( ( ,~ )) ( ,~ )  

for all ′ ∈v V1 1 , that is, reporting ~v1  is one of agent 1�s best responses when agent 2 reports 

~v2 .   

Next suppose that u f v v u f v v2 1 2 2 1 2( (~ , )) ( (~ ,~ ))= , i.e., 

(4.2) v y v v t v v v y v v t v vf f f f
2 1 2 1 1 2 2 1 2 2 1 2( (~ , )) (~ , ) ( (~ ,~ )) (~ ,~ )+ = + . 
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By using an argument similar to the above, it is easy to see that 

v y v v t v v v y v v t v vf f f f
2 1 2 2 1 2 2 1 2 2 1 2( (~ ,~ )) (~ ,~ ) ( (~ , )) (~ , )+ = +   

                                            ≥ ′ + ′v y v v t v vf f
2 1 2 1 1 2( (~ , )) (~ , )  

for all ′ ∈v V2 2 , that is, reporting ~v2  is one of agent 2�s best responses when agent 1 reports 

~v1 .  Therefore, f v v y v v t v vf f(~ ,~ ) ( (~ ,~ ), (~ ,~ ))1 2 1 2 1 2=  is the Nash equilibrium outcome.  

Moreover, f v v y v v t v vf f( , ) ( ( , ), ( , ))1 2 1 2 1 2=  is the dominant strategy outcome, and by 

secure implementability, the dominant strategy outcome coincides with the Nash 

equilibrium outcome.  Accordingly we conclude that f v v( , )1 2 = f v v(~ ,~ )1 2  if (4.1) and (4.2) 

holds. 

 
---------------------------------- 
Figure 3 is around here. 

---------------------------------- 
  

 A formal definition of this condition, called the rectangular property, is given as 

follows: 

 

Definition 4.  The SCF f satisfies the rectangular property if for all v v V,~∈ , if 

v y v v t v v v y v v t v vf f f f
1 1 2 1 1 2 1 1 2 1 1 2( ( ,~ )) ( ,~ ) ( (~ ,~ )) (~ ,~ )+ = +  and 

v y v v t v v v y v v t v vf f f f
2 1 2 1 1 2 2 1 2 2 1 2( (~ , )) (~ , ) ( (~ ,~ )) (~ ,~ )+ = + , 

then f v v( , )1 2 = f v v(~ ,~ )1 2  . 

 

 Saijo et al. (2003) show that the rectangular property is necessary and sufficient for 

sure implementation: 

 

Theorem 1.  An SCF is securely implementable if and only if it satisfies strategy-proofness and the 

rectangular property. 

 

By applying Theorem 1, Saijo et al. (2003) find that none of the strategy-proof and 

efficient SCF�s is securely implementable if public goods are discrete.  But strategy-proof 
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and efficient SCF�s are securely implementable by Groves-Clarke mechanisms with single-

peaked preferences. 

 Consider an SCF f satisfying the efficiency condition on the public good  

provision: 

 

(4.3) y v v v y v yf
y Y

( , ) arg max[ ( ) ( )]1 2 1 2∈ +
∈

 for all ( , )v v V1 2 ∈ . 

  

The following result is well known: 

 

Proposition 1 (Clarke (1971), Groves (1973), Green and Laffont (1979)). An SCF f satisfying 

(4.3) is implementable in dominant strategy equilibria if and only if f satisfies  

 

 (4.4)  t v v v y v v h vf f
1 1 2 2 1 2 1 2( , ) ( ( , )) ( )= + , t v v v y v v h vf f

2 1 2 1 1 2 2 1( , ) ( ( , )) ( )= +  ∀ ∈( , )v v V1 2 , 

 

where hi  is some arbitrary function which does not depend on vi . 

 

A direct revelation mechanism satisfying (4.3) and (4.4) is called a Groves-Clarke 

mechanism.  Proposition 1 says that we can focus on the class of Groves-Clarke mechanisms 

for implementation of an efficient SCF in dominant strategy equilibria. However, Saijo et 

al. (2003) show that for any mechanism implementing an efficient SCF in dominant 

strategy equilibria, the set of Nash equilibrium outcomes is strictly larger than that of 

dominant strategy equilibrium outcomes if the number of public project choices is finite. 

 Results are different for single-peaked preferences. In this case strategy-proof and 

efficient SCF�s are securely implementable by Groves-Clarke mechanisms.  Suppose that 

Y = ℜ and for i = 1 2, ,  

 V v v y y r ri i i i i= ℜ→ℜ = − − ∈ℜ{ : ( ) ( ) , }2 ,  

where ri  is agent i's most preferred level of the public good.  We can represent these  

single-peaked preferences by the ri  instead of the vi .  The optimal output level of the 

public good satisfying (4.3) is given by y r r( , )1 2 = (r1+r2)/2. 
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 For this case any SCF f meeting (4.3) and (4.4) satisfies the rectangular  

property and is therefore securely implementable (Saijo et al., 2003). 

 Consider an example that will be used in our experimental design later, in which 

hi = 0.  Then,  

 

u r r v y r r t r r1 1 2 1 1 2 1 1 2(~ ,~ ) ( (~ ,~ )) (~ ,~ )= +  = − + − − + −((~ ~ ) / ) ((~ ~ ) / ~ )r r r r r r1 2 1
2

1 2 2
22 2   

   = − − + −(~ ) (~ ) /r r r r1 1
2

2 1
2 2{ }  

where r1  is player 1�s true peak and (~ ,~ )r r1 2  is a vector of reported peaks. Clearly agent 1�s 

payoff is maximized at r1 .  Since the payoff function is quadratic, no other maximizers 

exist. Furthermore, the payoff is maximized at r1  regardless ~r2 . Figure 4 shows agent 1�s 

payoff when r1 12= .  If ~r2 4= , the maximizer is a, and if ~r2 12= , it is b. Both are 

maximized at r1 12= .  Therefore, the best response curve is a line parallel to the ~r2  axis. 

This indicates that truth-telling is the dominant strategy.  In fact, it is strictly dominant. 

However, this is true only as long as the public goods level is continuously variable. In our 

experiment, we will discretize the public goods level and the payoff functions, and truth-

telling will not be strictly dominant even though preferences are single-peaked.5 However, 

with single-peaked preferences all Nash equilibria will be �good,� so implementation will 

be secure. 

 
---------------------------------- 
Figure 4 is around here. 

---------------------------------- 
 

  

5. The Experiment 

 Our experiment studies the pivotal mechanism and a Groves-Clarke mechanism 

with single-peaked preferences.  It consisted of four sessions with 20 subjects each (80 total 

subjects). We conducted two sessions in Treatment P that corresponded to the pivotal 

                                                      
5 In general, with a discrete public good,  single-peaked preferences will not assure the existence of a strictly 
dominant strategy. However, secure implementation will be assured. 
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mechanism and two sessions in Treatment S that corresponded to a Groves mechanism 

with single-peaked preferences. 

 

5.1 Design 

 We conducted two sessions (one P and one S) at Tokyo Metropolitan University 

during June of 1998 and two sessions (one P and one S) at Purdue University during 

February of 2003.  Each session took approximately one hour to complete.   

 Treatment P implements the pivotal mechanism for a two-person group.  The net 

true value vector ( v1 , v2 ) is equal to ( , )−6 8  if a binary public good is produced and 

( v1 , v2 ) = ( , )0 0  otherwise.  The public good should be produced since v1 + v2 ≥ 0.  Let the 

strategy space of type 1 be the set of integers from -22 to 2, and the strategy space of type 2 

be the set of integers from -4 to 20.  According to the rules of the pivotal mechanism 

described in Section 3, we can construct the payoff matrix of types 1 and 2 as Tables C-1 

and C-2 shown in Appendix C.  

 The payoff tables that we actually distributed to subjects in Treatment P were 

Tables 1 and 2 whose basic structures were the same as Tables C-1 and C-2.  But we 

modified Tables C-1 and C-2 as follows.  First, we changed the names of strategies.  Type 

1's strategy "-22" was renamed "1", "-21" was renamed "2", and so on.  Similarly, type 2's 

strategy "-4" was renamed "1", "-3" was renamed "2", and so on.  Second, we employed a 

linear transformation of the valuation functions:  14 2941v +  for type 1 and 14 1822v +  for 

type 2. Of course, the equilibrium regions shown on these versions of the tables were not 

displayed to subjects. 

 

-------------------------------------------- 
Tables 1 and 2 are around here. 

-------------------------------------------- 
 

Treatment S is the same as Treatment P except for the payoff tables.  The payoff 

tables for Treatment S are based on the following model of a Groves mechanism with 

single-peaked preferences with two players.  Suppose that the true valuation functions of 

agent types 1 and 2 are respectively v y y1
212( ) ( )= − −  and v y y2

217( ) ( )= − − , where 
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y ∈ℜ+  is the level of a public good.  Each type reports his most preferred level of the 

public good called a peak.  Given a vector of reported peaks (~ ,~ )r r1 2 , the level of the public 

good, y r r(~ ,~ )1 2 , and the transfer to type i, t r ri(~ ,~ )1 2 , are determined by a Groves 

mechanism: y r r(~ ,~ )1 2  = (~ ~ )/r r1 2 2+  and t r ri(~ ,~ )1 2  = − + −((~ ~ )/ ~ )r r rj1 2
22 , i j j i, , ;= ≠1 2 . The 

payoff functions are therefore given by  

 v y r r t r r1 1 2 1 1 2( (~ ,~ )) (~ ,~ )+  = − + − − + −((~ ~ )/ ) ((~ ~ )/ ~ )r r r r r1 2
2

1 2 2
22 12 2  , 

 v y r r t r r2 1 2 2 1 2( (~ ,~ )) (~ ,~ )+  = − + − − + −((~ ~ )/ ) ((~ ~ )/ ~ )r r r r r1 2
2

1 2 1
22 17 2  . 

Let the strategy space of each type be the set of integers from 0 to 24.  The payoff table for 

types 1 and 2 are is given by Tables C-3 and C-4 in Appendix C. 

 The payoff tables used in Treatment S were Tables 3 and 4 whose basic structures 

were the same as Tables C-3 and C-4, modified as follows.  First, we changed the names of 

strategies:  strategy "0" was renamed "1", "1" was renamed "2", and so on.  Second, we 

employed a linear transformation of the payoff functions:  10 14 218 5vi / .+  for i = 1 2, . 

 

-------------------------------------------- 
Tables 3 and 4 are around here. 

-------------------------------------------- 
 

 Note that because we discretized the possible levels in the payoff tables and 

rounded payoffs to the nearest whole number, neither player type has a strictly dominant 

strategy. Therefore, Treatments S and P cannot be differentiated in terms of strictly 

dominant strategies. However, only Treatment S involves a secure mechanism.  

 

5.2 Procedures 

The sessions in Japan and in the United States involved a variety of procedural 

differences. They were not intended to replicate the same experimental conditions, but 

instead were useful to evaluate the robustness of our findings to different subject pools 

and procedures. Most notably, the sessions in Japan were run �by hand� with pen and 

paper, and the sessions in the U.S. were computerized using zTree (Fischbacher, 1999). If 

we had observed significant differences across experiment sites, then we would not be 
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able to identify the source of those differences without further experimentation. 

Fortunately, as we show in the Appendix B the data do not indicate any meaningful 

statistically significant differences across sites within either mechanism treatment.  

 In the Japan sessions the twenty subjects were seated at desks in a relatively large 

room and had identification numbers assigned randomly.  These ID numbers were not 

publicly displayed, however, so subjects could not determine who had which number.  In 

the U.S. sessions the twenty subjects were seated at computer stations in the Vernon Smith 

Experimental Economics Laboratory that were separated with visual partitions.  In every 

period, each of the type 1 subjects was paired with one of the type 2 subjects.  The pairings 

were determined in advance by experimenters so as not to pair the same two subjects 

more than once (�strangers�).  Each subject received written instructions, a record sheet, a 

payoff table, and (in the Japan sessions only) information transmission sheets.  

Instructions (see Appendix A) were also given by tape recorder in Japan and were read 

aloud by the experimenter in the U.S. Each subject chose her number from an integer 

between 1 and 25 by looking at her own payoff table only.6  No subject knew the payoff 

table of the other type.  Moreover, we provided no explanation regarding the rules of the 

mechanisms or how the payoff tables were constructed.      

After deciding which number she chose, each subject marked the number on an 

information transmission sheet (Japan) or typed in her number on her computer (U.S.).  

Experimenters collected these information transmission sheets and then redistributed 

them to the paired subjects in Japan. The computer network handled the message 

transmission in the U.S.  Each period, subjects in both countries were asked to fill out the 

reasons why they chose these numbers.  After learning the paired subject�s choice, subjects 

calculated their payoffs from the payoff tables (Japan) or verified the computer-calculated 

payoffs (U.S.). Record sheets were identical (except for the language translation, of course) 

at the two sites.  These steps were repeated for eight periods in Japan and for ten periods 

in the U.S. Recall that subjects were never paired together for more than one period. 

                                                      
6 We required subjects to examine their payoff table for ten minutes before we began the real periods. 
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In the Japan sessions the mean payoff per subject was 1677 yen in Treatment S and 

it was 1669 yen in Treatment P. In the U.S. sessions the mean payoff per subject was $21.04 

in Treatment S and it was $20.35 in Treatment P. 

 

6.  Results 

6.1 Treatment P       

 Tables 1 and 2 specify the dominant strategy equilibria and the other Nash 

equilibria for Treatment P.  Type 1's dominant strategies are 16 and 17, and type 2's 

dominant strategies are 12 and 13.  Notice that the dominant strategy equilibria (16, 12) 

and (16, 13) are Pareto-dominated by the dominant strategy equilibria (17, 12) and (17, 13).  

In Table 1, the lower-right region of Nash equilibria is good since the public good is 

produced.  The upper-left region of Nash equilibria is bad since the public good is not 

produced.  The number of good Nash equilibria is 162, while the number of bad Nash 

equilibria is 165.  Implementation is clearly not secure.       

  Since each period had 20 pairs of players and each session had 8 or 10 periods, we 

have 180 pairs of data.  Denote each pair by ( , )x x1 2  where xi  is a number chosen by a 

subject of type i, i = 1,2.  Figure 5 shows the frequency distribution of all data in Treatment 

P.  The maximum frequency pair was (16,12) with 34 pairs, the second was (16, 13) with 27 

pairs, the third was (17,13) with 19 pairs, and the fourth was (17, 12) with 10 pairs.  The 

total frequency of the four dominant strategy equilibria (16,12), (16,13), (17,12), and (17,13) 

was 90�exactly one-half of the outcomes.  The frequency of Pareto-dominated dominant 

strategy equilibria (16,12) and (16,13) was 61, while the frequency of the dominant strategy 

equilibria (17,12) and (17,13) was 29.7  Fifty-nine other outcomes were good Nash 

equilibria other than dominant strategy equilibria.  Only one pair in one period played a 

bad Nash equilibrium. Although nearly half (298/621) of the strategy pairs shown in 

Tables 1 and 2 that are not dominant strategy equilibrium outcomes are not Nash 

equilibria, only one-third (30/90) of the observed non-dominant-strategy outcomes were 

                                                      
7 We are puzzled by the greater frequency of Pareto dominated dominant strategy equilibria. Seventy-two 
percent of the dominant strategies played by Type 1 players were 16 rather than 17. The greater frequency of 
16 declines in later periods, however, and only in periods 1 and 3 is 16 significantly more frequent than 17 at 
the 5-percent level (two-tailed) according to a binomial test. 
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not Nash equilibria. This suggests that deviations from the dominant strategy equilibria 

are not random, but are instead more likely to correspond to Nash equilibria.  

 

-------------------------------- 
Figure 5 is around here 
-------------------------------- 

 

 We conducted period by period tests of the hypothesis that the mean choice is 

equal to a dominant strategy (16 or 17 for type 1 and 12 or 13 for type 2).  A nonparametric 

Wilcoxon signed rank test rejects the hypothesis that type 1 subjects play the dominant 

strategy of 17 in five out of ten periods (periods 1, 2, 3, 7 and 8), but this test never rejects 

the null hypothesis that subjects on average play the dominant strategy of 16 (two-tailed 

test, five-percent significance level).  Similarly, this nonparametric test rejects the 

hypothesis that type 2 subjects play the dominant strategy of 12 in eight out of ten periods 

(periods 1, 2, 3, 5, 6, 7, 8 and 9), but this test never rejects the null hypothesis that subjects 

on average play the dominant strategy of 13.  

 These Treatment P results lead to the following observations: 

 

Observation 1: 

(a) The frequency of dominant strategy equilibria was 50% across all periods in Treatment P. 

(b) Subjects played Pareto-dominated dominant strategy equilibria about twice as frequently as 

Pareto-superior dominant strategy equilibria in Treatment P.    

(c) The data do not reject the hypothesis that subjects play a dominant strategy on average for either 

type in any period in Treatment P. 

(d) Almost all (98%) of the observed Nash equilibria other than the dominant strategy equilibria 

were good Nash equilibria that recommended funding of the public good. 

 

6.2 Treatment S       

 A unique dominant strategy equilibrium exists in Tables 3 and 4: 13 for type 1 and 

18 for type 2.  Notice that there are no other Nash equilibria.  Thus, even though the 

dominant strategy is not strictly dominant, the implementation is secure.   
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 Figure 6 shows the frequency distribution of all data in Treatment S.   The 

maximum frequency pair was the dominant strategy equilibrium (13,18) with 146 of the 

180 outcomes. Pairs played no other single outcome more than 4 times.      

 

-------------------------------- 
Figure 6 is around here 
-------------------------------- 

 
  

We conducted period by period tests of the hypothesis that the mean number 

equals the dominant strategy (13 for type 1 and 18 for type 2).  A Wilcoxon signed rank 

test never rejects the dominant strategy equilibrium hypothesis for any type in any period. 

 Summarizing the above results, we have the following: 

 

Observation 2: 

(a) The frequency of dominant strategy equilibrium was 81% across all periods in Treatment S.   

(b) The data do not reject the hypothesis that subjects choose the dominant strategy on average for 

either type in any period in Treatment S. 

  

6.3  Comparing the Two Mechanisms 

 Here we compare the frequency that subjects play dominant strategies and that 

pairs implement dominant strategy equilibria in the two mechanisms. Recall that an 

advantage of our experimental design is that we can compare these two mechanisms 

while holding constant their complexity. We did not present to subjects any explanation 

on the rules of a mechanism, and instead we simply used payoff tables to explain the 

relationship between choices and outcomes.  

 Figure 7 displays the rates that subjects play dominant strategies separately for all 

periods. Individuals are more likely to play dominant strategies in Treatment S than in 

Treatment P according to Fisher�s exact test in 7 out of 10 periods (periods 2, 6, 7, 8 and 9 

at the 5% significance level, and periods 4 and 5 at the 10% significance level). A more 

powerful parametric test is possible by pooling the data across periods. Since individual 

subjects contribute an observation for each period it is appropriate to model the panel 
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nature of the data. We do this with a subject random effect specification for the error term. 

Column 1 of Table 5 reports a probit model of the likelihood that the subject selects a 

dominant strategy. The positive and significant dummy variable for the mechanism 

treatment indicates that subjects are more likely to play a dominant strategy in the secure 

mechanism.8 

--------------------------------------------------- 
Figure 7 and Table 5 are around here 

--------------------------------------------------- 
 

 Figure 8 shows that the differences in the individual dominant strategy rates are 

magnified for the pair rates. Pairs are more likely to play a dominant strategy equilibrium 

in Treatment S according to Fisher�s exact test in 8 out of 10 periods (periods 2, 4, 6, 7, 8 

and 9 at the 5% significance level, and periods 3 and 5 at the 10% significance level). 

Column 2 of Table 5 reports a probit model of the likelihood that pairs play a dominant 

strategy equilibrium, pooling across periods. A random subject effect specification is not 

possible since the composition of the individuals in each pair changes each period. But we 

include a dummy variable for the Purdue sessions to capture any (fixed effect) differences 

across sessions, and this variable is not significantly different from zero. The mechanism 

treatment dummy variable is highly significant, however, indicating the substantially 

greater frequency of dominant strategy equilibrium play in Treatment S. Recall that 

neither Treatment S nor Treatment P have strictly dominant strategies, but only Treatment 

S involve a secure mechanism. 

-------------------------------- 
Figure 8 is around here 
-------------------------------- 

  

Summarizing the above results, we have the following: 

 

 

                                                      
8 Recall that subjects also indicated the reasons for their choices on their record sheets and in a post-
experiment questionnaire. We reviewed their responses and found that more individual subjects provided 
explanations that were clearly identifiable as dominant strategy arguments (e.g., �This is the highest payoff 
column no matter what the other person chooses.�) in Treatment S (23 individuals) than in Treatment P (13 
individuals). This difference is statistically significant according to Fisher�s exact test (p-value=0.021). 
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Observation 3: 

(a) Individuals play dominant strategies significantly more frequently in Treatment S than in 

Treatment P. 

(b) Pairs implement  dominant strategy equilibria significantly more frequently in Treatment S 

than in Treatment P.   

 

7. Conclusion 

 Motivated by the recent theoretical notion of secure implementation introduced in 

Saijo, Sjöström and Yamato (2003), this paper presents an experimental study of the 

pivotal mechanism and a Groves-Clarke mechanism with single-peaked preferences.  Both 

mechanisms are strategy-proof since they implement truth-telling as dominant strategy 

equilibria. Only the pivotal mechanism has other Nash equilibria that differ from the 

dominant strategy equilibria, however. Although the design simplifies both mechanisms 

equally with payoff tables, players adopted dominant strategies significantly less often in 

the pivotal mechanism. 

 This experiment illustrates how a mechanism that is not secure may not yield the 

desired outcome. Indeed, in the non-secure mechanism the players failed to use their 

dominant strategies about half of the time. This did not have negative welfare implications, 

because the public good was anyway funded 98% of the time. We believe that this 

outcome was fortuitous, and that there is no reason in general why players who do not 

play their dominant strategies will end up funding the public good in the right amount in 

a non-secure mechanism. In contrast, we are optimistic about the performance of secure 

mechanisms.  

We believe that this point is relevant for practical mechanism design. An obvious 

application is the second price (Vickrey) auction. For certain information conditions�most 

clearly in a complete information setting�other �bad� Nash equilibria exist in this auction 

that do not correspond to the (efficient) dominant strategy, truth-telling equilibrium. Most 

proponents of this auction institution have not acknowledged this shortcoming. Before 

making predictions regarding how this institution might perform in the field, it would be 

valuable to conduct laboratory experiments with the information conditions that admit 

these other inefficient Nash equilibria. We suspect that the second price auction and many 
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other strategy-proof mechanisms may not function as elegantly as designed on the 

theorist�s blackboard, due in part to the frequent existence of non-dominant strategy Nash 

equilibria. 
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Appendix A: Experiment Instructions 

 

Instructions 
 This is an experiment in the economics of strategic decision making. Various 
agencies have provided funds for this research.  If you follow the instructions and make 
appropriate decisions, you can earn an appreciable amount of money.  At the end of 
today�s session, you will be paid in private and in cash. 
 

Overview 
 In this experiment you will choose a number in each period.  You will be paired 
with one other person each period.  The other person will also choose a number 
simultaneously. Your payoff is determined by the number you choose as well as the 
number the other person chooses. You can see how much your payoff is by looking at 
your payoff table.  However, your payoff table is different from the payoff table the other 
person has. An experimenter will choose the person you are paired with from the other 
participants at random, and the person you are paired with will change each period.  You 
will never be paired with the same person more than once. 

This experiment consists of 10 periods.  Your earnings are the sum of your 
payoffs over all 10 periods. 
 In this experiment, please remember that you cannot talk to anyone but the 
experimenter.  If there is any other talking, the experiment will be stopped at that point. If 
you have any questions, please ask an experimenter. 
 
 First, please confirm the following items on your desk.  
 
⋅ Instructions (this set of papers)      ⋅ Pencil or pen           
⋅ Payoff Table for Practice                 ⋅ Record Sheet for Practice  
 

Practice 
 Please look at the �Payoff Table for Practice.� Your payoff table is different from 
the payoff table of the other people you will be paired with in the actual experiment.  
However, everyone has the same payoff table in these practice examples. 
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 You will choose one integer number from 1 to 25.  Suppose that the number you 
choose is �18�.  At the time you choose your number, you do not know which number the 
other person chooses.  
 Please write the number �18� into the column of �The Number You Chose� in the 
�Record Sheet for Practice.� 
 In the actual experiment you will also type the number you chose on your 
computer. The computer will transmit your choice to the person you are paired with for 
the period.  In the practice examples, we�ll skip this part.  Moreover, in the actual 
experiment, please fill out why you chose that number into the column of the �Reason for 
Your Decision� in the record sheet. In practice, we skip this part, too. 
 Suppose that the person you are paired with also chose �18� in this practice 
example.  Please look at the payoff table.  Your payoff is �150� when the number you 
chose is �18� and the number the other person chose is �18�.  Your earnings in this period 
are equal to the value of your payoff, that is, 150 cents. Please write �18� into the column 
of �The Number the Other Person Chose� and �150� into the column of �Your Payoff� in 
the �Record Sheet for Practice� in the Period 1 row. 
 

Payoff Table for Practice
The number you choose

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 65 65 66 68 70 72 75 78 81 83 85 87 87 88 87 86 84 82 79 76 73 70 67 66 65
2 65 66 68 70 73 76 80 83 86 88 90 91 92 92 91 89 87 84 81 77 74 70 68 66 65
3 66 68 71 74 78 81 85 88 91 94 96 97 97 97 95 93 90 87 83 79 75 71 68 66 65
4 69 71 75 79 83 87 91 95 98 100 102 103 103 102 100 97 94 90 85 80 76 72 68 66 65
5 72 76 80 85 90 94 99 102 105 108 109 110 109 107 105 101 97 93 87 82 77 72 68 66 65
6 77 82 87 92 98 103 107 111 114 116 117 117 116 114 110 106 101 96 90 84 78 73 69 66 65
7 83 89 95 101 107 112 117 120 123 125 125 125 123 120 116 111 105 99 92 86 79 74 69 66 65
8 91 98 105 111 117 123 127 131 133 135 135 133 131 127 122 116 110 103 95 88 81 74 69 66 65

The number 9 101 108 116 123 129 135 139 142 144 145 145 143 139 135 129 122 114 106 98 90 82 75 70 66 65
the other 10 112 121 128 136 142 148 152 155 157 157 155 153 148 143 136 128 119 110 101 92 84 76 70 66 65

person chooses 11 126 135 143 150 157 162 166 169 170 169 167 163 158 151 143 134 125 115 104 94 85 77 71 66 65
12 141 150 159 167 173 178 182 184 184 182 179 174 168 160 151 141 130 119 108 97 87 78 71 67 65
13 158 168 177 184 191 195 198 200 199 197 192 186 179 170 159 148 136 124 111 99 88 79 71 67 65
14 177 187 196 204 210 214 216 217 215 212 206 199 190 180 168 156 142 128 115 102 90 80 72 67 65
15 199 209 218 225 231 234 236 235 233 228 221 213 202 191 177 163 149 134 119 105 92 81 72 67 65
16 222 233 241 248 253 256 257 255 251 245 237 227 215 202 187 171 155 139 123 108 94 82 73 67 65
17 248 258 267 273 277 279 279 276 271 263 254 242 228 213 197 180 162 144 127 111 96 83 73 67 65
18 276 286 294 299 303 304 302 298 291 282 271 258 242 226 208 189 169 150 131 114 98 84 74 67 65
19 306 316 323 328 330 330 327 321 313 302 289 274 257 239 219 198 177 156 136 117 100 86 75 67 65
20 339 348 354 358 359 358 353 346 336 324 309 292 273 252 230 208 185 162 141 120 102 87 75 68 65
21 374 382 388 390 390 387 381 372 360 346 329 310 289 266 242 218 193 169 146 124 104 88 76 68 65
22 411 418 423 425 423 418 410 399 386 369 350 329 305 281 255 228 202 176 151 127 107 90 76 68 65
23 451 457 461 461 457 451 441 428 412 393 372 348 323 296 268 239 210 182 156 131 109 91 77 68 65
24 493 499 500 499 494 485 473 458 440 419 395 369 341 311 281 250 220 190 161 135 112 92 78 68 65
25 538 542 542 539 532 521 507 490 469 445 419 390 360 328 295 262 229 197 167 139 114 94 78 68 65

 

Let us take another example for the second practice period.  Suppose you again 
chose 18.  Write this in �The Number You Chose� column for Period 2.  But for this 
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example suppose that the person you are paired with chose �5� rather than �18�. Then 
your payoff is 93 cents in this period.  Please write �5� into the column of �The Number 
the Other Person Chose� and �93� into the column of �Your Payoff.� 

Finally, let us go on to a third practice period example.  Suppose that you chose 
�6�.   Write this in Period 3 on your record sheet.  Suppose that the person you are paired 
with chose �19�.  Then your payoff is 330 cents in this period.  Please write �19� into the 
column of �The Number the Other Person Chose� and �330� into the column of �Your 
Payoff.� 

The sum of your payoffs for these three practice periods is 150+93+330=573.  
Please write �573� into the column of �the Sum of Your Payoffs.�  This is only practice so 
you will not be paid this amount. 
 If you have any questions, please raise your hand. 
 

The Actual Experiment 
 
 First, please pass the �Payoff Table for Practice� and the �Record Sheet of Practice� 
back to the experimenter now.  Next, we will distribute your payoff table and record sheet 
for the actual experiment.   

Your payoff table is different from the payoff table of the people you will be 
paired with.  You will have 10 minutes to look at the payoff table to understand it before 
we begin the experiment. 

Are there any questions? 
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Appendix B: Comparison of the Japanese and American Sessions Results 
 

B.1 Treatment P 
 Average choices, Type 1: The data do not reject the null hypothesis that the average 
offers are equal in the two countries in any of the 8 individual periods (t-test) at 10% 
significance level. The data reject this same null hypothesis in two periods at the 10% level 
(only), periods 4 and 5, using a nonparametric Wilcoxon test. When pooling the data 
across periods and comparing the choices across countries using a panel data regression 
(with individual subjects as the random effect for the error term), the data do not reject the 
null hypothesis that offers are equal in the two countries (t=1.312).  
 Average choices, Type 2: The data do not reject the null hypothesis that the average 
offers are equal in the two countries in any of the 8 individual periods (t-test) at 10% 
significance level. The data reject this same null hypothesis in one of the 8 periods (period 
1) at the 10% level (only) using a nonparametric Wilcoxon test. When pooling the data 
across periods and comparing the choices across countries using a panel data regression 
(with individual subjects as the random effect for the error term), the data do not reject the 
null hypothesis that offers are equal in the two countries (t=0.609).  
 Rate playing dominant strategy, pooling over types: According to Fisher�s exact test, the 
data reject the null hypothesis that the rate subjects play a dominant strategy is equal in 
the two countries in one of the 8 individual periods (period 1), at the 5% significance level. 
Pooling the data across periods using a panel data regression (with individual subjects as 
the random effect for the error term) in a probit model of the likelihood that subjects play a 
dominant strategy, we do reject the null hypothesis that there is no difference across 
countries (t=2.001). But this is due to the significant difference in the first period only; 
estimating this same model after dropping the first period, we do not reject the null 
hypothesis of no differences across countries (t=1.559).  
B.2 Treatment S 
 Average choices, Type 1: The data reject the null hypothesis that the average offers 
are equal in the two countries in only one (period 1) of the 8 individual periods (t-test) at 
the 10% significance level. The data reject this same null hypothesis in only the same one 
period (period 1) at the 10% level using a nonparametric Wilcoxon test. When pooling the 
data across periods and comparing the choices across countries using a panel data 
regression (with individual subjects as the random effect for the error term), the data do 
not reject the null hypothesis that offers are equal in the two countries (t=1.774). 
 Average choices, Type 2: The data do not reject the null hypothesis that the average 
offers are equal in the two countries in any of the 8 individual periods at 10% significance 
level, using either a t-test of a nonparametric Wilcoxon test. When pooling the data across 
periods and comparing the choices across countries using a panel data regression (with 
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individual subjects as the random effect for the error term), the data do not reject the null 
hypothesis that offers are equal in the two countries (t=1.295). 

Rate playing dominant strategy, pooling over types: According to Fisher�s exact test, the 
data do not reject the null hypothesis that the rate subjects play a dominant strategy is 
equal in the two countries in any of the 8 individual periods at the 10% significance level. 
Pooling the data across periods using a panel data regression (with individual subjects as 
the random effect for the error term) in a probit model of the likelihood that subjects play a 
dominant strategy, we do not reject the null hypothesis of no differences across countries 
(t=0.029).  
B.3 Summary 
 Of the 32 (=2 types * 2 treatments * 8 periods) period-by-period tests comparing 
individual choices across sites, we reject the null of no country difference in 1 out of 32 (t-
test) and 3 out of 32 (Wilcoxon test) at the 10% significance level. We expect about 10% 
rejections (about 3 out of 32) at the 10% significance level if the null is true, exactly as we 
observe. This leads us to the conclusion that there are no country differences. The panel 
data regressions pooling across periods confirm this conclusion.  
 Of the 16 (=2 treatments * 8 periods) tests that pool across types, we reject the null 
that subjects play the dominant strategy at different rates across countries in 1 out of the 
16 cases. The panel data regressions confirm that the only difference across sites is in 
period 1 of treatment P. 
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Figure 1: Equilibria of the Pivotal Mechanism
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Figure 5: Treatment P -- All Pairs Choices
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Figure 6: Treatment S -- All Pairs Choices
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Figure 7: Rates that Individuals Play Dominant Strategies
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Figure 8: Rates that Pairs Play Dominant Strategy Equilibria
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Appendix C:  Payoff Tables for the Pivotal and Groves Mechanisms
type 1's reported value

-22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -8
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 -7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 -6 -6
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -6 -6 -6 -6
2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -6 -6 -6 -6 -6

type 2's 3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -6 -6 -6 -6 -6 -6
reported 4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -6 -6 -6 -6 -6 -6 -6

value 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6 -6 -6 -6 -6 -6
6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6

10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
14 -14 -14 -14 -14 -14 -14 -14 -14 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
15 -15 -15 -15 -15 -15 -15 -15 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
16 -16 -16 -16 -16 -16 -16 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
17 -17 -17 -17 -17 -17 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
18 -18 -18 -18 -18 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
19 -19 -19 -19 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6
20 -20 -20 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6

Table C-1.  Payoff Table of Type 1 for the Pivotal Mechanism.

~v1

~v2



type 2's reported value

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12
-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -11 -11
-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 -10 -10
-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -9 -9 -9 -9
-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -8 -8 -8 -8 -8

type 1's -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7 -7 -7 -7 -7 -7
reported -14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -6 -6 -6 -6 -6 -6 -6

value -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -5 -5 -5 -5 -5 -5 -5 -5
-12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -4 -4 -4
-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

-9 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-7 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-6 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-5 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
-4 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
-3 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
-2 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
-1 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 -1 -1 -1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 -2 -2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Table C-2.  Payoff Table of Type 2 for the Pivotal Mechanism.

~v1

~v2



type 1's reported peak

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 -144.0 -132.5 -122.0 -112.5 -104.0 -96.5 -90.0 -84.5 -80.0 -76.5 -74.0 -72.5 -72.0 -72.5 -74.0 -76.5 -80.0 -84.5 -90.0 -96.5 -104.0 -112.5 -122.0 -132.5 -144.0

1 -132.5 -121.0 -110.5 -101.0 -92.5 -85.0 -78.5 -73.0 -68.5 -65.0 -62.5 -61.0 -60.5 -61.0 -62.5 -65.0 -68.5 -73.0 -78.5 -85.0 -92.5 -101.0 -110.5 -121.0 -132.5

2 -122.0 -110.5 -100.0 -90.5 -82.0 -74.5 -68.0 -62.5 -58.0 -54.5 -52.0 -50.5 -50.0 -50.5 -52.0 -54.5 -58.0 -62.5 -68.0 -74.5 -82.0 -90.5 -100.0 -110.5 -122.0

3 -112.5 -101.0 -90.5 -81.0 -72.5 -65.0 -58.5 -53.0 -48.5 -45.0 -42.5 -41.0 -40.5 -41.0 -42.5 -45.0 -48.5 -53.0 -58.5 -65.0 -72.5 -81.0 -90.5 -101.0 -112.5

4 -104.0 -92.5 -82.0 -72.5 -64.0 -56.5 -50.0 -44.5 -40.0 -36.5 -34.0 -32.5 -32.0 -32.5 -34.0 -36.5 -40.0 -44.5 -50.0 -56.5 -64.0 -72.5 -82.0 -92.5 -104.0

5 -96.5 -85.0 -74.5 -65.0 -56.5 -49.0 -42.5 -37.0 -32.5 -29.0 -26.5 -25.0 -24.5 -25.0 -26.5 -29.0 -32.5 -37.0 -42.5 -49.0 -56.5 -65.0 -74.5 -85.0 -96.5

6 -90.0 -78.5 -68.0 -58.5 -50.0 -42.5 -36.0 -30.5 -26.0 -22.5 -20.0 -18.5 -18.0 -18.5 -20.0 -22.5 -26.0 -30.5 -36.0 -42.5 -50.0 -58.5 -68.0 -78.5 -90.0
type 2's 7 -84.5 -73.0 -62.5 -53.0 -44.5 -37.0 -30.5 -25.0 -20.5 -17.0 -14.5 -13.0 -12.5 -13.0 -14.5 -17.0 -20.5 -25.0 -30.5 -37.0 -44.5 -53.0 -62.5 -73.0 -84.5
reported 8 -80.0 -68.5 -58.0 -48.5 -40.0 -32.5 -26.0 -20.5 -16.0 -12.5 -10.0 -8.5 -8.0 -8.5 -10.0 -12.5 -16.0 -20.5 -26.0 -32.5 -40.0 -48.5 -58.0 -68.5 -80.0

peak 9 -76.5 -65.0 -54.5 -45.0 -36.5 -29.0 -22.5 -17.0 -12.5 -9.0 -6.5 -5.0 -4.5 -5.0 -6.5 -9.0 -12.5 -17.0 -22.5 -29.0 -36.5 -45.0 -54.5 -65.0 -76.5

10 -74.0 -62.5 -52.0 -42.5 -34.0 -26.5 -20.0 -14.5 -10.0 -6.5 -4.0 -2.5 -2.0 -2.5 -4.0 -6.5 -10.0 -14.5 -20.0 -26.5 -34.0 -42.5 -52.0 -62.5 -74.0

11 -72.5 -61.0 -50.5 -41.0 -32.5 -25.0 -18.5 -13.0 -8.5 -5.0 -2.5 -1.0 -0.5 -1.0 -2.5 -5.0 -8.5 -13.0 -18.5 -25.0 -32.5 -41.0 -50.5 -61.0 -72.5

12 -72.0 -60.5 -50.0 -40.5 -32.0 -24.5 -18.0 -12.5 -8.0 -4.5 -2.0 -0.5 0.0 -0.5 -2.0 -4.5 -8.0 -12.5 -18.0 -24.5 -32.0 -40.5 -50.0 -60.5 -72.0

13 -72.5 -61.0 -50.5 -41.0 -32.5 -25.0 -18.5 -13.0 -8.5 -5.0 -2.5 -1.0 -0.5 -1.0 -2.5 -5.0 -8.5 -13.0 -18.5 -25.0 -32.5 -41.0 -50.5 -61.0 -72.5

14 -74.0 -62.5 -52.0 -42.5 -34.0 -26.5 -20.0 -14.5 -10.0 -6.5 -4.0 -2.5 -2.0 -2.5 -4.0 -6.5 -10.0 -14.5 -20.0 -26.5 -34.0 -42.5 -52.0 -62.5 -74.0

15 -76.5 -65.0 -54.5 -45.0 -36.5 -29.0 -22.5 -17.0 -12.5 -9.0 -6.5 -5.0 -4.5 -5.0 -6.5 -9.0 -12.5 -17.0 -22.5 -29.0 -36.5 -45.0 -54.5 -65.0 -76.5

16 -80.0 -68.5 -58.0 -48.5 -40.0 -32.5 -26.0 -20.5 -16.0 -12.5 -10.0 -8.5 -8.0 -8.5 -10.0 -12.5 -16.0 -20.5 -26.0 -32.5 -40.0 -48.5 -58.0 -68.5 -80.0

17 -84.5 -73.0 -62.5 -53.0 -44.5 -37.0 -30.5 -25.0 -20.5 -17.0 -14.5 -13.0 -12.5 -13.0 -14.5 -17.0 -20.5 -25.0 -30.5 -37.0 -44.5 -53.0 -62.5 -73.0 -84.5

18 -90.0 -78.5 -68.0 -58.5 -50.0 -42.5 -36.0 -30.5 -26.0 -22.5 -20.0 -18.5 -18.0 -18.5 -20.0 -22.5 -26.0 -30.5 -36.0 -42.5 -50.0 -58.5 -68.0 -78.5 -90.0

19 -96.5 -85.0 -74.5 -65.0 -56.5 -49.0 -42.5 -37.0 -32.5 -29.0 -26.5 -25.0 -24.5 -25.0 -26.5 -29.0 -32.5 -37.0 -42.5 -49.0 -56.5 -65.0 -74.5 -85.0 -96.5

20 -104.0 -92.5 -82.0 -72.5 -64.0 -56.5 -50.0 -44.5 -40.0 -36.5 -34.0 -32.5 -32.0 -32.5 -34.0 -36.5 -40.0 -44.5 -50.0 -56.5 -64.0 -72.5 -82.0 -92.5 -104.0

21 -112.5 -101.0 -90.5 -81.0 -72.5 -65.0 -58.5 -53.0 -48.5 -45.0 -42.5 -41.0 -40.5 -41.0 -42.5 -45.0 -48.5 -53.0 -58.5 -65.0 -72.5 -81.0 -90.5 -101.0 -112.5

22 -122.0 -110.5 -100.0 -90.5 -82.0 -74.5 -68.0 -62.5 -58.0 -54.5 -52.0 -50.5 -50.0 -50.5 -52.0 -54.5 -58.0 -62.5 -68.0 -74.5 -82.0 -90.5 -100.0 -110.5 -122.0

23 -132.5 -121.0 -110.5 -101.0 -92.5 -85.0 -78.5 -73.0 -68.5 -65.0 -62.5 -61.0 -60.5 -61.0 -62.5 -65.0 -68.5 -73.0 -78.5 -85.0 -92.5 -101.0 -110.5 -121.0 -132.5

24 -144.0 -132.5 -122.0 -112.5 -104.0 -96.5 -90.0 -84.5 -80.0 -76.5 -74.0 -72.5 -72.0 -72.5 -74.0 -76.5 -80.0 -84.5 -90.0 -96.5 -104.0 -112.5 -122.0 -132.5 -144.0

Table C-3.  Payoff Table of Type 1 for a Groves Mechanism with Single-Peaked Preferences.

~r1

~r2



type 2's reported peak

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 -289.0 -272.5 -257.0 -242.5 -229.0 -216.5 -205.0 -194.5 -185.0 -176.5 -169.0 -162.5 -157.0 -152.5 -149.0 -146.5 -145.0 -144.5 -145.0 -146.5 -149.0 -152.5 -157.0 -162.5 -169.0

1 -272.5 -256.0 -240.5 -226.0 -212.5 -200.0 -188.5 -178.0 -168.5 -160.0 -152.5 -146.0 -140.5 -136.0 -132.5 -130.0 -128.5 -128.0 -128.5 -130.0 -132.5 -136.0 -140.5 -146.0 -152.5

2 -257.0 -240.5 -225.0 -210.5 -197.0 -184.5 -173.0 -162.5 -153.0 -144.5 -137.0 -130.5 -125.0 -120.5 -117.0 -114.5 -113.0 -112.5 -113.0 -114.5 -117.0 -120.5 -125.0 -130.5 -137.0

3 -242.5 -226.0 -210.5 -196.0 -182.5 -170.0 -158.5 -148.0 -138.5 -130.0 -122.5 -116.0 -110.5 -106.0 -102.5 -100.0 -98.5 -98.0 -98.5 -100.0 -102.5 -106.0 -110.5 -116.0 -122.5

4 -229.0 -212.5 -197.0 -182.5 -169.0 -156.5 -145.0 -134.5 -125.0 -116.5 -109.0 -102.5 -97.0 -92.5 -89.0 -86.5 -85.0 -84.5 -85.0 -86.5 -89.0 -92.5 -97.0 -102.5 -109.0

5 -216.5 -200.0 -184.5 -170.0 -156.5 -144.0 -132.5 -122.0 -112.5 -104.0 -96.5 -90.0 -84.5 -80.0 -76.5 -74.0 -72.5 -72.0 -72.5 -74.0 -76.5 -80.0 -84.5 -90.0 -96.5

6 -205.0 -188.5 -173.0 -158.5 -145.0 -132.5 -121.0 -110.5 -101.0 -92.5 -85.0 -78.5 -73.0 -68.5 -65.0 -62.5 -61.0 -60.5 -61.0 -62.5 -65.0 -68.5 -73.0 -78.5 -85.0
type 1's 7 -194.5 -178.0 -162.5 -148.0 -134.5 -122.0 -110.5 -100.0 -90.5 -82.0 -74.5 -68.0 -62.5 -58.0 -54.5 -52.0 -50.5 -50.0 -50.5 -52.0 -54.5 -58.0 -62.5 -68.0 -74.5
reported 8 -185.0 -168.5 -153.0 -138.5 -125.0 -112.5 -101.0 -90.5 -81.0 -72.5 -65.0 -58.5 -53.0 -48.5 -45.0 -42.5 -41.0 -40.5 -41.0 -42.5 -45.0 -48.5 -53.0 -58.5 -65.0

peak 9 -176.5 -160.0 -144.5 -130.0 -116.5 -104.0 -92.5 -82.0 -72.5 -64.0 -56.5 -50.0 -44.5 -40.0 -36.5 -34.0 -32.5 -32.0 -32.5 -34.0 -36.5 -40.0 -44.5 -50.0 -56.5

10 -169.0 -152.5 -137.0 -122.5 -109.0 -96.5 -85.0 -74.5 -65.0 -56.5 -49.0 -42.5 -37.0 -32.5 -29.0 -26.5 -25.0 -24.5 -25.0 -26.5 -29.0 -32.5 -37.0 -42.5 -49.0

11 -162.5 -146.0 -130.5 -116.0 -102.5 -90.0 -78.5 -68.0 -58.5 -50.0 -42.5 -36.0 -30.5 -26.0 -22.5 -20.0 -18.5 -18.0 -18.5 -20.0 -22.5 -26.0 -30.5 -36.0 -42.5

12 -157.0 -140.5 -125.0 -110.5 -97.0 -84.5 -73.0 -62.5 -53.0 -44.5 -37.0 -30.5 -25.0 -20.5 -17.0 -14.5 -13.0 -12.5 -13.0 -14.5 -17.0 -20.5 -25.0 -30.5 -37.0

13 -152.5 -136.0 -120.5 -106.0 -92.5 -80.0 -68.5 -58.0 -48.5 -40.0 -32.5 -26.0 -20.5 -16.0 -12.5 -10.0 -8.5 -8.0 -8.5 -10.0 -12.5 -16.0 -20.5 -26.0 -32.5

14 -149.0 -132.5 -117.0 -102.5 -89.0 -76.5 -65.0 -54.5 -45.0 -36.5 -29.0 -22.5 -17.0 -12.5 -9.0 -6.5 -5.0 -4.5 -5.0 -6.5 -9.0 -12.5 -17.0 -22.5 -29.0

15 -146.5 -130.0 -114.5 -100.0 -86.5 -74.0 -62.5 -52.0 -42.5 -34.0 -26.5 -20.0 -14.5 -10.0 -6.5 -4.0 -2.5 -2.0 -2.5 -4.0 -6.5 -10.0 -14.5 -20.0 -26.5

16 -145.0 -128.5 -113.0 -98.5 -85.0 -72.5 -61.0 -50.5 -41.0 -32.5 -25.0 -18.5 -13.0 -8.5 -5.0 -2.5 -1.0 -0.5 -1.0 -2.5 -5.0 -8.5 -13.0 -18.5 -25.0

17 -144.5 -128.0 -112.5 -98.0 -84.5 -72.0 -60.5 -50.0 -40.5 -32.0 -24.5 -18.0 -12.5 -8.0 -4.5 -2.0 -0.5 0.0 -0.5 -2.0 -4.5 -8.0 -12.5 -18.0 -24.5

18 -145.0 -128.5 -113.0 -98.5 -85.0 -72.5 -61.0 -50.5 -41.0 -32.5 -25.0 -18.5 -13.0 -8.5 -5.0 -2.5 -1.0 -0.5 -1.0 -2.5 -5.0 -8.5 -13.0 -18.5 -25.0

19 -146.5 -130.0 -114.5 -100.0 -86.5 -74.0 -62.5 -52.0 -42.5 -34.0 -26.5 -20.0 -14.5 -10.0 -6.5 -4.0 -2.5 -2.0 -2.5 -4.0 -6.5 -10.0 -14.5 -20.0 -26.5

20 -149.0 -132.5 -117.0 -102.5 -89.0 -76.5 -65.0 -54.5 -45.0 -36.5 -29.0 -22.5 -17.0 -12.5 -9.0 -6.5 -5.0 -4.5 -5.0 -6.5 -9.0 -12.5 -17.0 -22.5 -29.0

21 -152.5 -136.0 -120.5 -106.0 -92.5 -80.0 -68.5 -58.0 -48.5 -40.0 -32.5 -26.0 -20.5 -16.0 -12.5 -10.0 -8.5 -8.0 -8.5 -10.0 -12.5 -16.0 -20.5 -26.0 -32.5

22 -157.0 -140.5 -125.0 -110.5 -97.0 -84.5 -73.0 -62.5 -53.0 -44.5 -37.0 -30.5 -25.0 -20.5 -17.0 -14.5 -13.0 -12.5 -13.0 -14.5 -17.0 -20.5 -25.0 -30.5 -37.0

23 -162.5 -146.0 -130.5 -116.0 -102.5 -90.0 -78.5 -68.0 -58.5 -50.0 -42.5 -36.0 -30.5 -26.0 -22.5 -20.0 -18.5 -18.0 -18.5 -20.0 -22.5 -26.0 -30.5 -36.0 -42.5

24 -169.0 -152.5 -137.0 -122.5 -109.0 -96.5 -85.0 -74.5 -65.0 -56.5 -49.0 -42.5 -37.0 -32.5 -29.0 -26.5 -25.0 -24.5 -25.0 -26.5 -29.0 -32.5 -37.0 -42.5 -49.0

Table C-4.  Payoff Table of Type 2 for a Groves Mechanism with Single-Peaked Preferences.

~r1

~r2



  Dominant Strategy Equilibrium   Good Nash Equilibrium
 Pareto Dominated Dominant Strategy Equilibrium  Bad Nash Equilibrium P1

The number which you choose (Type 1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
2 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
3 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 182
4 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 196 196
5 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 210 210 210
6 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 210 210 210 210

The number 7 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 210 210 210 210 210
which the 8 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 210 210 210 210 210 210

other person 9 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 210 210 210 210 210 210 210
chooses 10 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 210 210 210 210 210 210 210 210
(Type 2) 11 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210

12 196 196 196 196 196 196 196 196 196 196 196 196 196 196 196 210 210 210 210 210 210 210 210 210 210
13 182 182 182 182 182 182 182 182 182 182 182 182 182 182 210 210 210 210 210 210 210 210 210 210 210
14 168 168 168 168 168 168 168 168 168 168 168 168 168 210 210 210 210 210 210 210 210 210 210 210 210
15 154 154 154 154 154 154 154 154 154 154 154 154 210 210 210 210 210 210 210 210 210 210 210 210 210
16 140 140 140 140 140 140 140 140 140 140 140 210 210 210 210 210 210 210 210 210 210 210 210 210 210
17 126 126 126 126 126 126 126 126 126 126 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
18 112 112 112 112 112 112 112 112 112 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
19 98 98 98 98 98 98 98 98 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
20 84 84 84 84 84 84 84 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
21 70 70 70 70 70 70 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
22 56 56 56 56 56 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
23 42 42 42 42 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
24 28 28 28 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
25 14 14 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210

Table 1. Dominant Strategy Equilibria and Nash Equilibria for Payoff Table of Type 1 in Treatment P.



  Dominant Strategy Equilibrium   Good Nash Equilibrium
 Pareto Dominated Dominant Strategy Equilibrium  Bad Nash Equilibrium P2

The number which you choose (Type 2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182
2 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182
3 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 14
4 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 28 28
5 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 42 42 42
6 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 56 56 56 56

The number 7 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 70 70 70 70 70
which the 8 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 84 84 84 84 84 84

other person 9 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 98 98 98 98 98 98 98
chooses 10 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 112 112 112 112 112 112 112 112
(Type 1) 11 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 126 126 126 126 126 126 126 126 126

12 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 140 140 140 140 140 140 140 140 140 140
13 182 182 182 182 182 182 182 182 182 182 182 182 182 182 154 154 154 154 154 154 154 154 154 154 154
14 182 182 182 182 182 182 182 182 182 182 182 182 182 168 168 168 168 168 168 168 168 168 168 168 168
15 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182 182
16 182 182 182 182 182 182 182 182 182 182 182 196 196 196 196 196 196 196 196 196 196 196 196 196 196
17 182 182 182 182 182 182 182 182 182 182 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210
18 182 182 182 182 182 182 182 182 182 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224 224
19 182 182 182 182 182 182 182 182 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238 238
20 182 182 182 182 182 182 182 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252
21 182 182 182 182 182 182 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266 266
22 182 182 182 182 182 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280 280
23 182 182 182 182 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
24 168 168 168 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294
25 154 154 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294 294

Table 2.  Dominant Strategy Equilibria and Nash Equilibria for Payoff Table of Type 2 in Treatment P.



Payoff Table (for the Actual Experiment) S1

The number which you choose
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 116 124 131 138 144 150 154 158 161 164 166 167 167 167 166 164 161 158 154 150 144 138 131 124 116
2 124 132 140 146 152 158 162 166 170 172 174 175 175 175 174 172 170 166 162 158 152 146 140 132 124
3 131 140 147 154 160 165 170 174 177 180 181 182 183 182 181 180 177 174 170 165 160 154 147 140 131
4 138 146 154 161 167 172 177 181 184 186 188 189 190 189 188 186 184 181 177 172 167 161 154 146 138
5 144 152 160 167 173 178 183 187 190 192 194 195 196 195 194 192 190 187 183 178 173 167 160 152 144
6 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184 178 172 165 158 150

The number 7 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188 183 177 170 162 154
which the 8 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192 187 181 174 166 158

other person 9 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195 190 184 177 170 161
chooses 10 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198 192 186 180 172 164

11 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200 194 188 181 174 166
12 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201 195 189 182 175 167
13 167 175 183 190 196 201 206 210 213 215 217 218 219 218 217 215 213 210 206 201 196 190 183 175 167
14 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201 195 189 182 175 167
15 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200 194 188 181 174 166
16 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198 192 186 180 172 164
17 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195 190 184 177 170 161
18 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192 187 181 174 166 158
19 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188 183 177 170 162 154
20 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184 178 172 165 158 150
21 144 152 160 167 173 178 183 187 190 192 194 195 196 195 194 192 190 187 183 178 173 167 160 152 144
22 138 146 154 161 167 172 177 181 184 186 188 189 190 189 188 186 184 181 177 172 167 161 154 146 138
23 131 140 147 154 160 165 170 174 177 180 181 182 183 182 181 180 177 174 170 165 160 154 147 140 131
24 124 132 140 146 152 158 162 166 170 172 174 175 175 175 174 172 170 166 162 158 152 146 140 132 124
25 116 124 131 138 144 150 154 158 161 164 166 167 167 167 166 164 161 158 154 150 144 138 131 124 116

Table 3.  Payoff Table of Type 1 distributed in Treatment S.



Payoff Table (for the Actual Experiment) S2

The number which you choose
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 12 24 35 45 55 64 72 80 86 92 98 102 106 110 112 114 115 115 115 114 112 110 106 102 98
2 24 36 47 57 67 76 84 91 98 104 110 114 118 121 124 126 127 127 127 126 124 121 118 114 110
3 35 47 58 68 78 87 95 102 109 115 121 125 129 132 135 137 138 138 138 137 135 132 129 125 121
4 45 57 68 79 88 97 105 113 120 126 131 136 140 143 145 147 148 149 148 147 145 143 140 136 131
5 55 67 78 88 98 107 115 122 129 135 141 145 149 152 155 157 158 158 158 157 155 152 149 145 141
6 64 76 87 97 107 116 124 131 138 144 150 154 158 161 164 166 167 167 167 166 164 161 158 154 150

The number 7 72 84 95 105 115 124 132 140 146 152 158 162 166 170 172 174 175 175 175 174 172 170 166 162 158
which the 8 80 91 102 113 122 131 140 147 154 160 165 170 174 177 180 181 182 183 182 181 180 177 174 170 165

other person 9 86 98 109 120 129 138 146 154 161 167 172 177 181 184 186 188 189 190 189 188 186 184 181 177 172
chooses 10 92 104 115 126 135 144 152 160 167 173 178 183 187 190 192 194 195 196 195 194 192 190 187 183 178

11 98 110 121 131 141 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184
12 102 114 125 136 145 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188
13 106 118 129 140 149 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192
14 110 121 132 143 152 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195
15 112 124 135 145 155 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198
16 114 126 137 147 157 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200
17 115 127 138 148 158 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201
18 115 127 138 149 158 167 175 183 190 196 201 206 210 213 215 217 218 219 218 217 215 213 210 206 201
19 115 127 138 148 158 167 175 182 189 195 201 205 209 212 215 217 218 218 218 217 215 212 209 205 201
20 114 126 137 147 157 166 174 181 188 194 200 204 208 211 214 216 217 217 217 216 214 211 208 204 200
21 112 124 135 145 155 164 172 180 186 192 198 202 206 210 212 214 215 215 215 214 212 210 206 202 198
22 110 121 132 143 152 161 170 177 184 190 195 200 204 207 210 211 212 213 212 211 210 207 204 200 195
23 106 118 129 140 149 158 166 174 181 187 192 197 201 204 206 208 209 210 209 208 206 204 201 197 192
24 102 114 125 136 145 154 162 170 177 183 188 193 197 200 202 204 205 206 205 204 202 200 197 193 188
25 98 110 121 131 141 150 158 165 172 178 184 188 192 195 198 200 201 201 201 200 198 195 192 188 184

Table 4.  Payoff Table of Type 2 distributed in Treatment S.



 

 

 
 (1) (2) 
 Individuals play dominant 

strategies 
Pairs play dominant 
strategy equilibrium 

Dummy variable=1 for 
Treatment S 

0.720** 
(0.346) 

0.887** 
(0.143) 

Dummy variable=1 for 
sessions at Purdue 

 0.170 
(0.142) 

Intercept 1.236** 
(0.266) 

-0.095 
(.0122) 

ρ σ σ σ= +2 2 2/( )u v u  
(random effects significance) 

0.627** 
(0.069) 

 

Observations 720 360 
Log-likelihood -247.2 -211.3 
Restricted log-likelihood -344.5 -231.8 
Notes: Standard errors shown in parentheses. ** denotes significantly different from zero 
at five-percent. Model in column (1) is estimated with a random subjects effect error term 
ui + vit. 

 
Table 5. Probit Models of Individual and Pair Dominant Strategy Play 
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