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We study the relaxation response of a social system after endoge-
nous and exogenous bursts of activity using the time series of daily
views for nearly 5 million videos on YouTube. We find that most
activity can be described accurately as a Poisson process. However,
we also find hundreds of thousands of examples in which a burst of
activity is followed by an ubiquitous power-law relaxation govern-
ing the timing of views. We find that these relaxation exponents
cluster into three distinct classes and allow for the classification
of collective human dynamics. This is consistent with an epidemic
model on a social network containing two ingredients: a power-
law distribution of waiting times between cause and action and an
epidemic cascade of actions becoming the cause of future actions.
This model is a conceptual extension of the fluctuation-dissipation
theorem to social systems [Ruelle, D (2004) Phys Today 57:48–53]
and [Roehner BM, et al., (2004) Int J Mod Phys C 15:809–834], and
provides a unique framework for the investigation of timing in
complex systems.

complex systems | human dynamics

U ncovering rules governing collective human behavior is a
difficult task because of the myriad of factors that influ-

ence an individual’s decision to take action. Investigations into
the timing of individual activity, as a basis for understanding
more complex collective behavior, have reported statistical evi-
dence that human actions range from random (1) to highly cor-
related (2). Although most of the time, the aggregated dynamics
of our individual activities create seasonal trends or simple pat-
terns, sometimes our collective action results in blockbusters,
best sellers, and other large-scale trends in financial and cultural
markets.

Here, we attempt to understand this nontrivial herding by inves-
tigating how the distribution of waiting times describing individ-
uals’ activity (3) is modified by the combination of interactions
(4) and external influences in a social network. This is achieved
by measuring the response function of a social system (5) and
distinguishing whether a burst of activity was the result of a cumu-
lative effect of small endogenous factors or, instead, the response
to a large exogenous perturbation. Looking for endogenous and
exogenous signatures in complex systems provides a useful frame-
work for understanding many complex systems and has been
successfully applied in several other contexts (6).

As an illustration of this distinction in a social system, con-
sider the example of trends in queries on internet search engines
(http://trends.google.com) in Fig. 1, which shows the remarkable
differences in the dynamic response of a social network to major
social events. For the “exogenous” catastrophic Asian tsunami of
December 26th, 2004, we see that the social network responded
suddenly. In contrast, the search activity surrounding the release
of a Harry Potter movie has the more “endogenous” signature
generated by word of mouth, with significant precursory growth
and an almost symmetric decay of interest after the release. In
both “endo” and “exo” cases, there is a significant burst of activ-
ity. However, we expect to be able to distinguish the post peak
relaxation dynamics on account of the very different processes
that resulted in the bursts. Furthermore, we expect the relaxation
process to depend on the interest of the population because this

will influence the ease with which the activity can be spread from
generation to generation.

To translate this qualitative distinction into quantitative results,
we describe a model of epidemic spreading on a social network (7)
and validate it with a dataset that is naturally structured to facili-
tate the separation of this endo/exo dichotomy. Our data consist
of nearly 5 million time series of human activity collected subdaily
over 8 months from the fourth most visited web site [YouTube
(http://youtube.com., according to Alexa.com)]. At the simplest
level, viewing activity can occur one of three ways: randomly,
exogenously (when a video is featured), or endogenously (when
a video is shared). This provides us with a natural laboratory for
distinguishing the effects that various impacts have and allows us
to measure the social “response function.”

The Model
Various factors may lead to viewing a video, which include chance,
triggering from email, linking from external websites, discussion
on blogs, newspapers, and television, and from social influences.
The epidemic model we apply to the dynamics of viewing behavior
on YouTube uses two ingredients whose interplay captures these
effects.

The first ingredient is a power law distribution of waiting times
describing human activity (2, 3, 8) that expresses the latent impact
of these various factors by using a response function, which, on
the basis of previous work (9–11), we take to be a long-memory
process of the form

φ(t) ∼ 1/t1+θ , with 0 < θ < 1. [1]

By definition, the memory kernel φ(t) describes the distribution
of waiting times between “cause” and “action” for an individual.
The cause can be any of the above mentioned factors. The action is
for the individual to view the video in question after a time t since
she was first subjected to the cause without any other influences
between 0 and t, corresponding to a direct (or first-generation)
effect. In other words, φ(t) is the “bare” memory kernel or prop-
agator, describing the direct influence of a factor that triggers the
individual to view the video in question. Here, the exponent θ is the
key parameter of the theory that will be determined empirically
from the data.

The second ingredient is an epidemic branching process that
describes the cascade of influences on the social network. This
process captures how previous attention from one individual can
spread to others and become the cause that triggers their future
attention (12). In a highly connected network of individuals whose
interests make them susceptible to the given video content, a given
factor may trigger action through a cascade of intermediate steps.
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Fig. 1. Search queries as a proxy for collective human attention. (A) The volume of searches for the word “tsunami” in the aftermath of the catastrophic
Asian tsunami. The sudden peak and relatively rapid relaxation illustrates the typical signature of an “exogenous” burst of activity. (B) The volume of search
queries for “Harry Potter movie.” The significant growth preceding the release of the film and symmetric relaxation is characteristic of an “endogenous” burst
of activity.

Such an epidemic process can be conveniently modeled by the so-
called self-excited Hawkes conditional Poisson process (13). This
gives the instantaneous rate of views λ(t) as

λ(t) = V (t) +
∑

i,ti≤t

μiφ(t − ti) [2]

where μi is the number of potential viewers who will be influenced
directly over all future times after ti by person i who viewed a video
at time ti. Thus, the existence of well connected individuals can be
accounted for with large values of μi. Lastly, V (t) is the exoge-
nous source, which captures all spontaneous views that are not
triggered by epidemic effects on the network.

Predictions of the Model: Dynamic Classes
According to our model, the aggregated dynamics can be clas-
sified by a combination of the type of disturbance (endo/exo)
and the ability of individuals to influence others to action (crit-
ical/subcritical), all of which is linked by a common value of θ .
The following classification of behaviors emerges from the inter-
play of the bare long-memory kernel φ(t) given by Eq. 1 and the
epidemic influences across the network modeled by the Hawkes
process Eq. 2.

• Exogenous Subcritical. When the network is not “ripe” (that
is, when connectivity and spreading propensity are relatively
small), corresponding to the case when the mean value 〈μi〉 is
<1, then the activity generated by an exogenous event at time tc
does not cascade beyond the first few generations, and the activ-
ity is proportional to the direct (or “bare”) memory function
φ(t − tc):

Abare(t) ≈ 1
(t − tc)1+θ

. [3]

• Exogenous Critical. If instead, the network is ripe for a particu-
lar video, i.e., 〈μi〉 is close to 1, then the bare response is renor-
malized as the spreading is propagated through many genera-
tions of viewers influencing viewers influencing viewers and so
on, and the theory predicts the activity to be described by ref. 7:

Aex−c(t) ≈ 1
(t − tc)1−θ

. [4]

• Endogenous Critical. If in addition to being ripe, the burst
of activity is not the result of an exogenous event, but is
instead fueled by endogenous (word-of-mouth) growth, the
bare response is renormalized giving the following time depen-
dence for the view count before and after the peak of activity (7):

Aen−c(t) ≈ 1
|t − tc|1−2θ

. [5]

• Endogenous Subcritical. Here, the response is largely driven
by fluctuations and not bursts of activity. We expect that many
time series in this class will obey a simple stochastic process.

Aen−sc(t) ≈ η(t), [6]

where η(t) is a noise process.

The dynamics described by the above classifications are illus-
trated in Fig. 2.

Predictions of the Model: Peak Fraction
In addition to these dynamic classes, the model predicts, by con-
struction, a relationship between the fraction of views observed
on the peak day compared with the total cumulative views (Fig.
2 Inset), henceforth referred to as “peak fraction” or F. This sim-
ple observation turns out to be a useful metric for grouping time
series into categories based on whether they are endogenous or
exogenous. For the exogenous subcritical class, the absence of
precursory growth and fast relaxation following a peak imply that
close to 100% of the views are contained in the peak. For the
exogenous critical class, the fractional views in the peak should be
smaller than the previous case on account of the content penetrat-
ing the network resulting in a slower relaxation. Finally, for the
endogenous critical class, significant precursory growth followed
by a slow decay imply that the fractional weight of this peak is very
small compared with the total view count.

Results
We find that most videos’ dynamics (≈90%) either do not expe-
rience much activity or can be described statistically as a Poisson
process (verified using a Chi-Squared test). This large set of data is
consistent with the endo-subcritical classification. For the remain-
ing 10% (≈500, 000 videos), we find nontrivial herding behavior
that accurately obeys the three power-law relations described
above. Characteristic examples of endogenous and exogenous
dynamics are shown in Fig. 3.

For these videos that experience bursts, we extract the relax-
ation exponents using a least-squares fit on the logarithm of the
data over a window of 10 days after the peak. This procedure
is repeated for all possible window sizes ranging from 10 to 224
days. The “best” window is then chosen to be the largest num-
ber of days over which one can assume that the residuals of the
percent deviation from the best fit are normally distributed. Once
this assumption is violated at the 1% level, which occurs when
the dynamics are no longer governed by Eqs. 3, 4, or 5, the fit is
stopped. Although estimation of scaling laws is a subtle and con-
troversial issue (14, 15), this procedure has been extensively tested
by using synthetic data and is able to sufficiently recover exponents
with an accuracy of ±0.1.

15650 www.pnas.org / cgi / doi / 10.1073 / pnas.0803685105 Crane and Sornette
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Fig. 2. A schematic view of the four categories described by our models: Endogenous-subcritical (Upper Left), Endogenous-critical (Upper Right), Exogenous-
subcritical (Lower Left), and Exogenous-critical (Lower Right). The theory predicts the slope of the response function conditioned on the class of the disturbance
(exogenous/endogenous) and the susceptibility of the network (critical/subcritical). Also shown schematically in the pie chart is the fraction of views contained
in the main peak relative to the total number of views for each category. This is used as a simple basis for sorting the time series into three distinct groups for
further analysis of the exponents.

An unconditional examination of the distribution of these expo-
nents (Fig. 4, black line, large dashes) reveals the existence of a
bimodal distribution with one peak near 0.2 and a second broader
peak between 0.5 and 0.6, suggesting the existence of at least two
dynamic classes. In order to obtain a more detailed test of the pre-
dictions of our model, we calculate the fraction F of views on the
most active day compared with the total count as described above
and sort the time series into three classes:

1. Class 1 is defined by 80% ≤ F ≤ 100%.
2. Class 2 is defined by 20% < F < 80%.
3. Class 3 is defined by 0% ≤ F ≤ 20%.

Should our model have any informative power, we should find
a correspondence

Class 1 ←→ Exogenous subcritical
Class 2 ←→ Exogenous critical
Class 3 ←→ Endogenous critical.

Based on this simple classification, we show in Fig. 4 the his-
togram of exponents characterizing the power law relaxation
≈ 1/tp. The exponents in these classes cluster into three distinct

Fig. 3. An illustration of the typical response found in hundreds of thousands of time series on YouTube. (A) The endogenous-critical class is marked by
significant precursory growth followed by an almost symmetric relaxation. (B) The exogenous-critical class is marked by a sudden burst of activity followed by
a power-law relaxation. (Inset) The post peak relaxation on log–log scale, revealing the power-law behavior that lasts over months for both classes.
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Fig. 4. Histogram of all of the exponents of the power-law relaxation ∼ 1/tp

of the view counts following a peak (black dashed line). The bimodal distrib-
ution provides evidence of the existence of at least two dynamic classes in the
absence of conditioning. A more refined analysis based on the peak fraction
F reveals three distinct distributions belonging respectively to Class 1 (dashed
green line), Class 2 (dotted blue line) and Class 3 (continuous red line). The
predicted values for the exogenous subcritical class (Eq. 3), exogenous critical
class (Eq. 4) and for the endogenous critical class (Eq. 5) are shown by the ver-
tical dashed lines with their quantitative values determined with the choice
θ = 0.4.

groups with the most probable exponent in each class given respec-
tively by p ≈ 1.4, 0.6, and 0.2. These values are compatible with the
predictions Eqs. 3–5 of the epidemic model with a unique value
of θ = 0.4 ± 0.1.

The existence of the exogenous critical (Class 2) and endoge-
nous critical (Class 3) are unaffected by the choice of class bound-
aries, as one can see by examining the unconditional distribution
of exponents in Fig. 4. However, the question of existence of a dis-
tinct exogenous-subcritical class requires more attention, because
this class has a very poorly defined peak in its distribution (Fig. 4,
small green dashes). To this end, we have examined the stabil-
ity of this distribution with respect to changes in F. We find that
although this distribution is very broad, the weight of the distrib-
ution is concentrated between p = 1.0 and p = 1.5—much higher
than the exogenous-critical class—and the bulk features are insen-
sitive to changes once F is >70%. As the lower boundary of F for
Class 1 is increased further toward 100%, the weight of the dis-
tribution continues to shift toward larger exponents and always
maintains its most probable value (i.e. peak in its distribution)
between 1.25 < p < 1.40, in good agreement with the predictions
of the model.

As a further test of whether the exponents actually cluster into
distinct classes or are instead only negatively correlated with F,
we have performed a fuzzy clustering analysis following ref. 16
in the 2D plane (F, p) and find the centroids of the three main
clusters at exponent values of 0.22 (with F = 6.5%), 0.58 (with
F = 45%), and 1.42 (with F = 56%), a result that is also visible to
the naked eye (data not shown). That the clustering analysis recov-
ers exactly the results found by a much simpler analysis based on
the simple classification on the peak fraction F (0% ≤ F ≤ 20%,
20% < F < 80%, 80% ≤ F ≤ 100%) provides additional support
for the existence of the dynamic classes proposed by our model.

Having empirically extracted a value for the key parameter
θ of the model and having verified the existence of three main
classes with interesting structured relaxations, we can further test
the model with the last distinctive property not yet exploited,

Fig. 5. Test of the precursory dynamics. The (endogenous/exogenous) and
(critical/subcritical) classification is based on measuring the exponent gov-
erning the relaxation after a peak. However, the epidemic branching model
also predicts significant precursory growth before a peak for the endogenous
class with p centered on 1 − 2θ ≈ 0.2 and no precursory growth for the two
exogenous classes. The figure shows the peak-centered, aggregate sum for
all videos with exponents near either 1.4 (ex-sc), 0.6 (ex-c), or 0.2 (en-c). We
observe that videos classified as endogenous-critical (continuous red line) on
the basis of their relaxation exponent, indeed have significantly more precur-
sory growth. We also see very little precursory growth for the two exogenous
classes.

namely the preshock dynamics. We check this by performing a
peak-centered, aggregate sum for all videos with exponents near
1.4, 0.6, or 0.2, with the intent of visualizing the characteristic time
evolution of each class. Each time series is first normalized to 1 to
avoid a single video from dominating the sum, and the final result is
divided by the number of videos in each set so we can compare the
three classes. The model predicts, and we indeed observe in Fig.
5, that videos whose post peak dynamics are governed by small
exponents have significantly more precursory growth. One also
sees very little precursory growth for the two exogenous classes.
Because, by construction, our selection of videos was based on the
exponent characterizing the relaxation after the peaks, this test on
the precursory behavior before the peaks provides a remarkable
independent validation of the epidemic model.

The model goes further and predicts that the precursory accel-
eration of views culminating in an endogenous critical peak should
be also a power law with the same exponent 1 − 2θ as the relax-
ation after the peak. Fig. 6 shows a plot of pre-event exponent
versus relaxation exponent for all time series. Although the test
of whether the pre-event and post-event exponents are identical
is, according to the model, applicable only to the videos in the
endogenous-critical class, we have performed the analysis of the
pre-event exponents on the full dataset to avoid any selection bias
in analyzing the data. We find that the highest density of exponents
cluster around p ≈ 0.15 for both the pre- and post-peak exponent.
This result provides support that p ≈ 0.15 is correctly associated
with the endogenous-critical class, independent of our previous
methods of analysis, because this class has the largest number of
videos satisfying the predicted exponent equality. An additional
result of this analysis is that our algorithm failed to measure an
exponent very often for time series classified as exogenous (i.e.
having a relaxation exponent p > 0.6). There were two common
reasons that our algorithm failed to extract a pre-event exponent.
The first was a result of not having enough data preceeding an
event. This is consistent with videos in the exogenous class because
their peaks often occur shortly after the videos are uploaded to
the site. The second reason was a result of not being able to fit
an exponent to the data, which occurs when the data are not of
the form 1/tp, again consistent with the definition of an exogenous
peak.

15652 www.pnas.org / cgi / doi / 10.1073 / pnas.0803685105 Crane and Sornette
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Fig. 6. 2D Histogram of the pre-event and relaxation exponents for
the 54,312 time-series whose preevent exponent is defined. The high-
est density of points cluster near p = 0.15. This not only provides evi-
dence that the preevent and relaxation exponents are equal within the
precision of our analysis algorithm, but provides independent support
that we have correctly identified the endogenous-critical class, since this
class has the largest number of videos satisfying the predicted exponent
equality.

Discussion
These results provide direct evidence that collective human
dynamics can be robustly classified by epidemic models and under-
stood as the transformation of the distribution of individual wait-
ing times by collective cascades propagating through word-of-
mouth. One of the strong points validating the proposed epidemic
model of social influence is that the various classes are related by
a single common parameter θ . Its numerical value determined
here (θ = 0.4 ± 0.1) is close to what has been found in other
studies (12), suggesting a common origin, perhaps in the psychol-
ogy of time perception in humans (17).† From the view point of
the epidemic word-of-mouth model, θ controls the persistence of
external perturbations both at the individual and collective level.
Paradoxically, when the social network is at criticality, the faster
the individual response function to an external shock (larger θ
within the interval 0 ≤ θ < 1), the slower and more persistent is
the collective response.

†Burroughs C, Brown K (1991) Time perception: Some implications for the development
of scale values in measuring health status and quality of life, presented at the Australian
Health Economists Group Conference, September 5–6, 1991, Canberra, Australia.

In addition to these results, understanding collective human
dynamics opens the possibility for a number of tantalizing appli-
cations. It is natural to suggest a qualitative labeling that is quan-
titatively consistent with the three classes derived from the model:
viral, quality, and junk videos. Viral videos are those with precur-
sory word-of-mouth growth resulting from epidemic-like propaga-
tion through a social network and correspond to the endogenous
critical class with an exponent 1 − 2θ . Quality videos are similar
to viral videos but experience a sudden burst of activity rather
than a bottom-up growth. Because of the “quality” of their con-
tent, they subsequently trigger an epidemic cascade through the
social network. These correspond to the exogenous critical class,
relaxing with an exponent 1 − θ . Last, junk videos are those that
experience a burst of activity for some reason (spam, chance, etc.)
but do not spread through the social network. Therefore, their
activity is determined largely by the first generation of viewers,
corresponding to the exogenous subcritical class, and they should
relax as 1/t1+θ. Although one might argue that these labels are
inherently subjective, they reflect the objective measure contained
in the collective response to events and information. This is fur-
ther supported by the average number of total views in each class,
which is largest for “viral” (33,693 views) and smallest for “junk”
(16,524 views), as one would expect for these arguments.

Although the above description applies to videos, one could
extend this technique to the realm of books (9, 12), movies, and
other commercial products, perhaps using sales as a proxy for mea-
suring the relaxation of individual activity. The proposed method
for classifying content has the important advantage of robustness
because it does not rely on qualitative judgment, using informa-
tion revealed by the dynamics of the human activity as the referee.
More importantly, the method does not rely on the magnitude
of the response because of the scale-free nature of the relaxation
dynamics. This implies that identification of relevance—or lack of
relevance—can be made for content that has mass appeal, along
with that which appeals to more specialized communities. Fur-
thermore, this framework could be used to provide a quantitative
measure of the effectiveness of marketing campaigns by measuring
the sales response to an exogenous marketing event.

A tenant of complex systems theory is that many seemingly
disparate and unrelated systems actually share an underlying uni-
versal behavior. In the digital age, we now have access to unprece-
dented stores of data on human activity. This data is usually almost
trivial to acquire—in both time and money—when compared with
“traditional” measurements. If the complex behavior in social
systems is shared by other complex systems, then our approach,
which disentangles the individual response from the collective,
may provide a useful framework for the study of their dynamics.
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