

## Japan's Potential Growth in a World Perspective

by Dale W. Jorgenson Harvard University

### http://post.economics.harvard.edu/faculty/jorgenson/

Presented at the RIETI Policy Symposium Determinants of Total Factor Productivity and Japan's Potential Growth: An International Perspective Tokyo, Japan July 25, 2006

# **Economic Growth in the Information Age**

## **INTRODUCTION:**

Prices of Information Technology

THE INFORMATION AGE:

Faster, Better, Cheaper!

**ROLE OF INFORMATION TECHNOLOGY:** 

IT Prices and the Cost of Capital

WORLD GROWTH RESURGENCE:

IT Investment and Productivity Growth

**ECONOMICS ON INTERNET TIME:** 

The New Research Agenda

# THE INFORMATION AGE: Faster, Better, Cheaper!

<u>MOORE'S LAW:</u> The number of transistors on a chip doubles every 12-24 months. (Itanium 2 Processor, released November 8, 2004, has 592 million transistors.)

### **INVENTION OF THE TRANSISTOR:**

Development of Semiconductor Technology.

### THE INTEGRATED CIRCUIT:

Memory Chips; Logic Chips.

SIA Annual Report 2005: In 1978, a commercial flight between New York and Paris cost \$900 and took seven hours. If the principles of Moore's Law were applied to the airline industry, that flight would now cost about a penny and take less than one second.

# **Integrated Circuit Complexity**



Source: No Exponential is Forever, Gordon Moore ftp://download.intel.com/research/silicon/Gordon\_Moore\_ISSCC\_021003.pdf

# HOLDING QUALITY CONSTANT Matched Models and Hedonics

## **SEMICONDUCTOR PRICE INDEXES:**

Memory and Logic Chips.

## COMPUTER PRICE INDEXES:

The BEA-IBM Collaboration.

## **COMMUNICATIONS EQUIPMENT:**

Terminal, Switching, and Transmission.

### SOFTWARE:

Prepackaged, Custom, and Own-Account.

### **Relative Prices of Computers and Semiconductors, 1959-2004**

All price indexes are divided by the output price index





**Semiconductor Roadmap Acceleration** 

# **ROLE OF INFORMATION TECHNOLOGY: IT Prices, Investment, and Productivity.**

## **INPUT SHARES OF IT:**

Computers, Communications Equipment, and Software.

## **CAPITAL CONTRIBUTION:**

IT versus Non-IT Capital Services.

### CAPITAL CONTRIBUTION BY TYPE:

Computers, Communications Equipment, and Software.

### Input Shares of Information Technology by Type, 1948-2004



### **Capital Input Contribution of Information Technology by Type**



### **Capital Input Contribution of Information Technology**

Input contributions are the average annual growth rates, weighted by the income shares.



#### Capital Input Contribution: G7



■ Non-IT Capital ■ IT Capital

#### **Capital Input Contribution: World and Regions**



■ Non-IT Capital ■ IT Capital

#### **Capital Input Contribution: Developing and Transition Economies**



■ Non-IT Capital ■ IT Capital

WORLD GROWTH RESURGENCE: IT Investment and Productivity Growth.

## TOTAL FACTOR PRODUCTIVITY:

IT-Production versus Non-IT Production.

### SOURCES OF ECONOMIC GROWTH:

Capital Input, Labor Input, and TFP.

### LABOR INPUT GROWTH:

Hours Worked and Labor Quality.

### **Contributions of Information Technology to Total Factor Productivity Growth**

Contributions are average annual relative price changes, weighted by average nominal output shares.



### **Sources of Gross Domestic Product Growth**



### **Sources of Gross Domestic Product Growth**



#### Sources of Growth by Country: World and Regions



■ Labor ■ Non-IT Capital ■ IT Capital ■ TFP



#### **Sources of Economic Growth: Developing and Transition Economies**

■ Labor ■ Non-IT Capital ■ IT Capital ■ TFP

# ECONOMICS ON INTERNET TIME: The New Research Agenda.

•The Solow Paradox -- we see computers everywhere but in the productivity statistics -- versus the Information Age.

•Equity Valuations and Growth Prospects: accumulation of intangible assets versus irrational exuberance.

•Widening Wage Inequality:capital-skill complementarity versus skill-biased technical change.

• Modeling IT and the semiconductor industry: permanent versus transitory contributions to economic growth.