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Abstract

We investigate incidence and evolution of patent thickatgheoretical model of patent-
ing encompassing complex and discrete technologies sdated. It is shown that de-
creased technological opportunities increase patentiogntives in complex technolo-
gies. This effect gets stronger as complexity grows. In et lower technological
opportunities reduce patenting incentives in discretbrtelogies. We also analyze under
which conditions greater complexity increases patentiogmtives in complex technolo-
gies. A new measure of technological complexity is propabed captures density of
patent thickets. Additionally, measures of fragmentatm technological opportuni-
ties are constructed exploiting European patent citatiéhie employ a panel capturing
patenting behavior of 2074 firms in 30 technology areas osgrehrs. GMM estimation
results show that patenting conforms to our theoretical ghodihe results indicate that
patent thickets exist in 9 of the 30 technology areas. We fawtahsing technological
opportunities are a surprisingly strong driver of patertkibt growth.
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1 Introduction

Strong increases in the level of patent applications haea lodserved at the United States
Patent and Trademark Office (USPT®p¢tum and Lernef1998 andHall (2005) as well
as the European Patent Office (EP@r{ Graevenitz et a(2007). These “patent explosions”
pose serious challenges for existing patent systems andgilsompetition authorities.

Explanations for the shift in patenting behavior concdetan changes in the legal envi-
ronment, changing management practices, the complexitppbrtant technologies such as
semiconductors, greater fecundity of technology and as®d strategic behavior on the part
of firms. While it has been shown that most of these factorg plaole empirically, there
are no formal models of patenting behavior that explicitiydal these influencesThis pa-
per provides a model that encompasses complexity and fegufdechnology as well as
strategic behavior. A new measure of complexity of blockialgationships is introduced to
make the model testable. We show the predictions of the nfumldlusing European patent
data. Using the measure of complexity of blocking, we are alse to characterize extent and
intensity of patent thickets in Europe.

Kortum and Lerne (1998 have investigated the explosion of patenting at the USPTO,
which began around 1984all (2005). By a process of eliminatioKortum and Lerner
(1998 1999 argue that the shift towards increased patenting is manmdyesult of changed
management practices making R&D more applied and raisimgitid of patents from R&D.
In contrastHall and Ziedonig2001) argue that the patenting surge is a strategic response to
an increased threat of hold-up in complex technologiess Threat resulted from the “pro-
patent” legal environment ushered in after the establistiraethe Court of Appeals for the
Federal Circuit in the United Statedaffe (2000). In this changed environment hold-up en-
sues if blocking patents are enforced through the courtmplexity of a technology implies
that patents are naturally complements and therefore inplid-likely to arise in the process
of negotiations over licenses if firms enforce their patéBtsapiro(2001 2006). Neither
Kortum and Lernef1998 1999 norHall and Ziedonig2003) find any evidence for the influ-
ence of technological opportunity on patenting in theidsts.

Our model of patenting covers complex and discrete teclymedo It shows how tech-
nological opportunity, complexity of a technology and puditeg costs jointly determine the
rate of patenting. We model the choice between pursuing eelanblogical opportunities and
deepened protection of existing technologies by patemtiritacets” of the technologies. The
model shows that firms in a complex technology should pdesain response to increasing
technological opportunity. Additionally, the model indies that greater complexity of a tech-

For extensive discussions of the policy questions surrmgruirrent functioning of the patent systems in the
United States and in Europe referNational Research Counc2004; F.T.C.(2003; Jaffe and Lerne2004);
von Graevenitz et a(2007) andBessen and Meuré2008.

2Formal models of patenting abound, for a survey of this ditere refer toScotchmer(2009 or
Gallini and Scotchmg2002. Formal models of patenting in patent thickets do not gtemspan both complex
and discrete technologies as we do h&esser(2004,Clark and Konrad2005 andSiebert and von Graevenitz
(2006. These models usually build on the older patent race titeegioneered bizoury (1979, Lee and Wilde
(1980; Reinganunm(1989 andBeath et al(1989.



nology will raise firms’ incentives to patent. These effe@sult from strategic interactions
of firms using a complex technology: greater technologiggastunity reduces the pressure
on firms to defend their stake in existing technologies bempiang heavily, whereas greater
complexity increases the scope for hold-up and raises the foe strategic build-up of patent
portfolios.

To test the model we use a comprehensive dataset based ondE&td gata. It comprises
information on patenting behavior between 1987 and 2003 gaper considers patenting
across the full range of patentable technologies. Thiswnallos to identify differences in
patenting behavior between complex and discrete techreso@/e construct a novel measure
of the complexity of blocking in a technology based on infation specific to European
patents. Our measure exploits the fact that patent exasatehe EPO indicate which prior
patents block or restrict the breadth of the patent apphicainder review. We count how
often three or more firms apply for mutually blocking patewighin a three year period.
This gives rise to a count of mutually blocking finmples. The measure captures effects of
complex blocking relationships which arise in technolsgeen if patent ownership remains
relatively concentrated. We validate this new measure loyvsiy that greater incidence of
such complex blocking relationships corresponds well existing measures of technological
complexity, such as the one suggestedopen et al(2000.

Additionally, a measure of technological opportunity i€ded to test our hypotheses. We
use the extent to which patents reference non-patenttliteréor this purpose Meyer(2000);
Narin and Nom#1985; Narin et al.(1997) show that the share of references pointing to non-
patent literature (mostly scientific publications) can lgmead proxy for strength of the science
link of a technology. Variation in the strength of the scietiak within a technology area will
indicate how much technological opportunity there is ategitime.

Patenting behavior is known to be highly persistent, duéédang term nature of firms’
R&D investment decisions. We control for the persistencgaiknting which arises from
long term R&D investment decisions by including a laggedetglent variable in the em-
pirical model. The model is estimated using systems GMhesirs Blundell and Bond
(1998; Arellano (2003 andAlvarez and Arelland2003) to control for endogeneity of the
lagged dependent variable. Additionally we treat our messsof technological opportunity
and complexity as predetermined. Evidence from GMM regpessas well as results from
OLS and a fixed effects estimator support theoretical ptiedis we derive from our model.

Our results can be used to compute quantitative measureeadttent to which patent
thickets exist within the patent system administered byEheopean Patent Office (EPO).
Our data indicate that incidence and complexity of thesek#is are increasing. There are
important institutional differences between the patestays administered by the USPTO and
the EPO: in particular, it is claimed that examination ofgoeis is more thorough at the EPO
and that the opposition system existing there provides apgreway for rival firms to weed
out weak patents than patent litigation does in the UnitedeStHall and Harhoff(2004),
von Graevenitz et al2007). Therefore, it is not a foregone conclusion that pateiukets



also affect the European patent system. Our results shdwstitedegic patenting behavior
has become very important in technology areas central wygtwvity growth in recent years
(Jorgenson and Wessn@007).

The remainder of this paper is structured as follows. Se&jrovides a theoretical model
of patenting which explains firms’ patenting strategies. d&gve three hypotheses from this
model that are empirically testable. In Secti®dnve describe our dataset and the variables
we employ to analyze firms’ patenting behavior. As theretiklcross industry evidence of
patenting trends at the EPO, Sectibprovides a descriptive analysis of these trends, focusing
particularly on our measure of complexity and alternatieasures thereof. Sectiéiprovides
the empirical model and results and Secttoconcludes.

2 A Model of Patenting

In this section we model firms’ patenting behavior. In paiae, we analyze how firms’ profit

maximizing patenting decisions are influenced by the copaténting, existing technological
opportunity and the complexity of the technology area inchitfirms patent. Before present-
ing our formal model we discuss the mechanisms modelledbelo

2.1 Discussion

We model firms’ patenting efforts as a function of the comijesf the underlying technology.
Technological complexity is modeled by appealing to theespatead notion that products re-
late to a (potentially large) number of patents held by vasidifferent patentees in a complex
technology. In contrast a direct product-patent link dastess in a discrete technology.

In order to measure complexity, we distinguish technolagyastunitiesO) representing
separate sub-technologies within a technology area aetsfd€) of these sub-technologies.
For example, a technological opportunity might be contdiby research related to the de-
velopment of a certain chemical compound in organic cheyite search for a drug in the
pharmaceutical area or the development of a specific cirteiectronics. Complexity within
these technology opportunities arises if it is possibleatept several facets within an op-
portunity. Where only one facet of an opportunity can be &, the technology is discrete.
At least two facets must be patentable to introduce sitnatioa which different patentees
own patent rights related to the same technology. We defieetmblogy to be complex if
F > 1. An increase in the number of patentable facets increagepdtential number of
patentees owning patents relating to the same technolagppartunity. Hence, we capture
complexity of a technology by the number of patentable facEigurel presents a graphical
representation of this idea.

The total set of patentable facets in a technoldg@y ¢onsists ofO technology opportu-
nities andF' facets such thatFO = ). Variation in the two dimensions of this set arises
for different reasons. Changes in the number of technolpgpdunities that are available at
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Figure 1. Relation between complexity and the number ofrgatde facets per technologi-
cal opportunity. Note thab, is discrete by definition as there is no chance of overlapping
ownership rights in this technology.

a specific time will affecD. This dimensions must be thought of a being exogenous in the
short run, but endogenous in the long run as current reseéfiatts will open additional new
opportunities in the future. In contrast the number of fasehich are patentable on a given
opportunity depends mainly on institutional and legal dagt Most importantly the breadth
of patents will determine how many facets are patentable. brbader each patent the fewer
facets will be available on a given technological opporuniAdditionally, the ability of a
patent office to prevent overlap of patents will matter to tlaenber of facets that are avail-
able. If a patent office has few resources to check patenicapiphs carefully it is likely that
many granted patents overlap. Where firms anticipate tressffective breadth of each patent
application is reduced and more facets become availabfestenting.

We assume each firm knows there is a contest for patents oadhatsfof a technologial
opportunity. The probability of obtaining a patent on a fasanversely proportional to the
number of rivals seeking to patent the facet. This assumptittoduces competition for
patents into our model; it captures the fact that a patenheefa subspace of technology
space within which rival firms cannot patent.

In our model patenting allows firms to benefit from the totdueal’) of a technological
opportunity. To capture maximum value of the technologiggdortunity a firm must obtain as
many patents as possible on facets of the opportunity. Fawesa tradeoff between patenting
more facets per opportunity and patenting more differesttrielogy opportunities.

The benefits of patenting are a function of the value of each technological opporyunit
V' and of the expected share of facetgach firm receives a patent oB:= Vw(s;). Herew
represents a function mapping the share of received patent® the share of value captured
by the firm. We assume thgt" > 0.

Now define the expected share of facets per patent which eaclolitains as; = 7,
wheres; € [0,1]. Here f; is the number of facets each firm invests in per opporturdity,
represents total available facets per opportunityarepresents the probability of winning a



patent on a given facet. The probability of obtaining grdrgatent on a given facet is:

1
pP=—<5 5, - 1)
1+ Zj;;igj J
This definition of the probability of obtaining a patent oraadt of a technological opportunity
reflects our assumption that there is a contest betweenadévens for each such patent. Then
the probability of obtaining the patent depends on the nurrfajeof rival firms simultaneously
trying to obtain the patent. Each firm vying for a patent onaefawill win that patent with

p = . In the expression above we assume that all rival firms meke, fjo; patent

T
applic;tions. Dividing these by the set of all patentabtzfar’O we obtain the number of
rivals’ patent applications that compete with each firm'sxapplications.

The interpretation o$; is not entirely trivial. Consider what happens if all firm&ea to-
gether only apply for patents on a subset of the facets dkaifar a given opportunity. Then
the model, as presented here, indicates that a firm thatnelakggatents on all of the facets
which received at least one application, would not rec&ivét would receive only a fraction
of V equal tow(fi/F). This interpretation of the model is adequate for technielofpr which
we believe that each new patent protects something of valgediety. If we adopt a more
cynical attitude to the value of the average patent for $gcieen we might be inclined to
argue that granted patents just represent bargaining.chphis case the value of a techno-
logical opportunity is divided according to the number afdts actually patented by all firms
(F) ands; = f;p/F. We show in AppendiA that this version of the model has the same
implications as the model we present here.

As the number of facets per opportunity grows, so does thiegimibty that different firms
will own patents related to the same opportunity. Hold upoinees increasingly likely. There-
fore, firms need to disentangle their ownership rights,mgjviise to legal costsL). We do
not explicitly model the bargaining process between firnas thivn patents on the same tech-
nological opportunity. The literature on patent thicketsl @omplex technology shows that
there are many institutional arrangements that allow fimmdigentangle overlapping property
rights - these include licensing, patent pools, standattthgeas well as litigation $hapiro
(20010). Irrespective of the precise mechanism firms may use teepteor resolve hold up,
the patenting explosion is driven primarily by the assuomptihat firms with larger patent
portfolios benefit substantially from the size of their folibs in reducing the costs of hold
up. Therefore, we assume that firms which own a greater slhaeatents on a technology op-
portunity have lower legal costg—g < 0). This assumption is consistent with the arguments
advanced byiedonis(2004) to explain patent portfolio races in the semiconductoustdy.

Three additional sources of patenting costs are recogivizedr model:

I For each opportunity a firm invests in, it faces a fixed cofRR&D: ..

il For each facet which a firm patents the firm faces costs ofiaidtering and enforcing
the patent if it is granted?,,.



iii The coordination of R&D on different technologies immsscosts".(0;). We assume
that = > 0.

Given these benefits and costs the expected value of pajentatechnology area is:
mi = 0;|Vw(si) — L(si, N)| — 0iCo — 0 [ipCo — Ccl0) (2)

where total legal costs of owning patents on an opportumiy/ds;) which decrease in the
share of facets owned on that opportunitys;) represents the share of value of a technolog-
ical opportunity obtained by firm It is an increasing function of the firm’s share of patents
held on a given opportunity.

Note that technological opportunities in this model areespnted by the number of differ-
ent technologies®) which offer patentable facets within a technology areaelH@creases in
technological opportunities do not directly affect theaéincy of R&D efforts as in an earlier
literature focusing on R&D efforts and spillovets{/in and Reis$1988). Rather technolog-
ical opportunities in our model increase the size of thergatde domain for firms. The direct
effect is the same - in a discrete technology firms’ R&D efancrease. We show here that in
a complex technology in which firms do R&D in order to patert tiverall effect of increased
technological opportunities will be reversed: firms wiltett less R&D towards patenting and
will apply for fewer patents.

2.2 Solving the model

To simplify the derivation of comparative statics results show that the game firms are
playing is supermodular. Then we use results on supermiodataes to derive comparative
statics resultsMilgrom and Robertg1990), Vives (1990 1999).2 We define a symmetric
game in which firms’ payoffs depend on own strategies and tiggegate strategy of their
rivals. Additionally we will assume that strategy spaces eompact. These assumptions
imply that only symmetric equilibria exisW{ves (1999). Additionally, we can characterize
the comparative statics for these equilibria by considecioss-partial derivatives.
We begin by characterizing the game firms are playing:

e There areV + 1 firms.

e Each firm simultaneously chooses the number of technolbgjgortunities; € [0, O]
and facets; € [0, F] to investin. The firms’ strategy sef§ are elements oR?.

e Each firm has the payoff functionr;, defined in equation 2, which is twice continu-
ously differentiable and depends only on rivals’ aggregatstegies.

Firms’ payoffs depend on their rivals’ aggregate strategecause the probability of obtaining
a patent on a given facet is a function of the sum of rivalsépaaipplications ., ; f;0;.
We can show that:

3For additional expositions of this method refeiQarter(2001) or Amir (2005.
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Proposition 1
The game is a smooth supermodular game.

To prove this proposition we must show that the firms’ profitdtions are supermodular
(i) in their own actions and (ii) in every combination of theivn actions with those of rival
firms (Milgrom and Robert$1990).

To begin with we derive the first order conditions charaeteg the optimal number of
technological opportunities and facets firms invest in:

or oC

Po; =Vw(s;) — L(s;) — C, — fipCy — 0, =0 3)
on Ow  OL D

— _ R 0l = 4
af, [V 9s;  Os: C”] 0i =0 “)

These first order conditions constitute a system of impledations which determine the opti-
mal choice of opportunities’;) and facets ;) chosen by each firm in equilibrium.

Given this system of first order conditions we can show thatdirprofit functions are
supermodular. To see this we derive the cross partial dem@sawith respect to firms’ own
actions as well as those of rival firms:

O*r; dwp OLp

90;0f; 0s; F  0s; F

pCa =0 (5)

Notice that this expression must be zero as it can be tramsfbto the first order condition
(4) for the optimal number of facets by multiplication with Next consider effects of rivals’
actions on firms’ own actions:

2, i) T 3 f.

°; i) i N f.
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where the first two conditions are transformations of the @rder condition for the optimal
number of facets4). In case of the lower two conditions notice that the firstrtén square
brackets is zero as it is just that same first order conditibme terms in the second set of
brackets are negative if:

i) the marginal share of value appropriated with additidaakts of a technology is de-
creasing:2"4 < 0;

i) legal costs fall at a decreasing rate as firms’ share adttaon a technological opportu-
nity increasesZ% > 0.



At least one of these two conditions must be fulfilled for theng outlined above to be smooth
supermodular.

Condition (i) indicates that as a firm’s share of patents on a technologjgabrtunity
increases, the marginal value of additional patents isedsong. For this assumption to hold
a firm with some patents on a technological opportunity mesable to make use of the
technology covered to some extent in the face of blockingmgat. Additionally, there must
be decreasing returns to additional patents. In contrastyifone patent on a technological
opportunity blocks the use of the technology entirely, thguanption is violated.

Condition (iz) indicates that firms’ legal costs of appropriating a shar¢hefvalue of
a technological opportunity fall if they own a larger shafepatents on that technological
opportunity. This assumption reflects the widespread btieg larger patent portfolios are
beneficial to firms operating in technology areas that fathimicomplex technologies because
they provide firms with bargaining chipsléll and Ziedonig2001). The greater firms’ patent
portfolios, the easier it is to threaten countersuits agjany firms that are holding up a firm.
Our assumption requires decreasing returns to heapingrgpibang chips.

Conditions:i andi: are more likely to hold as the complexity of technologieswgo At
low levels of complexity the full nonlinearity of the sharbvalue appropriated by firms or of
legal costs, in the share of patents firms own on a techna@bgpportunity, is not likely to be
strong. Then the game will be at best weakly supermodulahidtier levels of complexity
we expect at least conditianto hold.

Note that the game will not be smooth supermodular if therteldgy is not complex. By
definition in that case there is only one fa¢ét = 1) per technological opportunity. Then
firms appropriate the whole value of the technological oppoty with one patent and the
second derivatives ir8f and Q) are zero. We will return to this case below.

Now we turn to the comparative statics effects of an incr@asechnological opportunity
on firms’ actions. We show that:

Proposition 2
Greater technological opportunity reduces firms’ patenéfforts as complexity of technolo-
gies grows.

To determine the effects of an increase in technologicabdppity O we investigate the
following cross-partial derivatives:

— — _FC, | =22 = 10

80180 [ 85’@' 882‘ Ca] 00 F 0 ( )
0, Ow OL 0; Op 0w O?LN pf; Op

= — —FC,| === V——0— === 11

af;00 [V&si as; Ca] F o0 + (Olv&sﬂ oi 851-2) F200 <0 (11)

The terms in square brackets in both expressions above ardyehe first order condition
(4) for the optimal number of facets. The term in round bracketsquation {1) is negative

4Such a setting is modelled Biebert and von Graevenit2008 2006
SClark and Konrad2005 make such an assumption.



if the game is smooth supermodular, i.e. if the technologypaplex.

Therefore, greater technological opportunity lowers firoverall investments in patent-
ing. It reduces the intensity of competition to dominatevidlal technological opportunities
which lowers investments in facets and the number of newni@olgies which firms invest in.

Now we turn to the question how an increase in the compleXity technology affects
firms’ incentives to patent. We find that the effect is ambiggiand depends on the relative
strength of two effects: the costs of administering morepiatand the marginal benefits of
additional patents. Only if these marginal benefits are bigbugh will the term be positive.

To see this consider the following cross-partial derivediv

0?m; ow 0L Jdp 0s;
= — o Pl 5550 = 12
90:0F v 95 0s, Cal 3657 =" (12)
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Here the terms in square brackets are zero by the first ordetitean (4) for the optimal
number of facets. The term in round brackets in equatid) {s positive if the costs of
administration of patentS, are insignificant.

This shows that:

Proposition 3
Greater complexity of a technology will increase firms’ paitieg efforts if the costs of admin-
istering patents are low relative to their value as bargagichips.

Finally, consider again the case of a discrete technolbgjmaortunity. HereF' = f; = 1
by definition. Therefore firms’ payoffs are defined as:

T = 0;Vp — 0;co — 0;pCy — Ce(0;) . (14)

We have already noted that a game with this payoff functigroiknger supermodular. How-
ever we can show that under the slightly stronger assumgiiatrcosts of coordinating tech-
nological opportunities((.(o,)) are strictly convex in the number of opportunities firmseisi/
in, we obtain a unique equilibrium for the game. We can thenalestrate that:

Proposition 4
Greater technological opportunity increases firms’ patgrefforts in a discrete technology.

To see that this is true consider the first and second ordematiges of the payoff function
with respect to technological opportunities invested in:

on oc. _, &n__oC

602‘ - (V B Ca)p B (90Z- N 80i2 - 80i2 . (15)

If we assume that costs of coordinating technological ofppaties are strictly conve@if;c >



0, then Propositiod can be proved with the help of the implicit function theorem:

_ 2 2
(%Z: 67?/87r>0 (16)

00~ 00;00/ 902 ’

Wherea‘gi% = (V- Ca)g—g > 0.
To conclude our analysis of the model we offer remarks onetegionship of Propositions
2 and4. The reversal of Propositioh as we move from’ = 1 (Equation (4)) to F > 1
(Equation R)) is a consequence of our assumptions about the funetigy) which maps the
share of patents held on a technological opportunity intcstiare of value of that opportunity
obtained by a firm. This function captures our intuition tiratcomplex technologies the
marginal value share which a firm obtains through an additipatent may be decreasing in
the size of the patent stock which the firm already owns. Fitipas2 and3 hold only if this

is the case. This cannot be the case if only one facet is &laieer technology opportunity.

3 Dataset and Variables

In this section we discuss the data used to test our theaketiodel. In particular, a new
measure of complexity of a technology is discussed.

Our empirical analysis is based on the PATSTAT database@‘®Prldwide Patent Sta-
tistical Database”) provided by the EPOhis database includes data on about 56 million
patent applications filed at more than 65 patent offices wwitte. It contains procedural and
bibliographic information on patents including infornation referenced documents (patent
citations). We analyze all patent applications filed at tR©Bbetween 1980 and 2003 — more
than 1,5 million patent applications with about 4.5 milli@ierenced documents.

We classify patents using the IPC classification which adlas to analyze sectoral dif-
ferences in patenting activities. The categorization usdzhsed on an updated version of
the OST-INPI/FhG-ISI technology nomenclatdrd&his classification divides the domain of
patentable technologies into 30 distinct technology atesde also classify selected tech-
nology areas as discrete or complex using to the classdicati Cohen et al(2000. This
classification received additional supporHall (2005.

Below we show that there are clear differences between aogpld discrete technologies
on the basis of this distinction. However, we also provideew rwontinuous variable that
captures the degree of complexity of technologies. We sheavthere are some differences
between this variable and the classification suggestecidinen et al(2000.

In the following we discuss our measures of patenting, teldgical opportunity and com-
plexity. These are the most important variables neededtdtte theoretical model. Addition-
ally, we discuss several variables that will be used as obwériables in the empirical model

6We currently use the September 2006 version of PATSTAT.
’SeeOECD (1999, p. 77
8These are listed in Tab®in the appendix
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of section5. These describe additional influences on firms’ patentitensity.

Measures of Patenting, Complexity and Technological Oppdunity

Number of Patent Applications We compute the number of patent applicatiohg filed
by applicanti separately for all OST-INPI/FhG-ISI 30 technology areasn an annualt
basis. To aggregate patent applications to the firm leveldwallenges must be overcome:
firm names provided in PATSTAT are occasionally misspelledi subsidiaries of larger firms
are not identified in the dataset. Therefore, we devoted aiderable amount of resources
to clean applicant names and to consolidate ownershiptstes® The aggregation of patent
applications are based on these consolidated applicalgstities. The variables discussed
below are also based on this consolidation.

Due to the skew distribution of patent applications we tfams the variable logarithmi-
cally to derive a dependent variable for estimation. Taédéows the transformed variable is
much closer to a normally distributed variable than the raxasure of patent applications.

Technological Opportunity In our model, we establish a clear relationship between firms
patenting levels in complex technologies and the emergehisew technological opportuni-
ties. Unfortunately, a direct measure of existence or eararg of new technological oppor-
tunities does not exist. Instead, we use a construct thaagedon the strength of the link
between R&D firms conduct within a technology area and relelasic research as an indi-
rect measure of the emergence of new technological oppbesinThis construct is based on
the assumption that basic research is more likely to opereuptechnological opportunities
than applied research which predominantly refines exisdolgnologies.

Early stages of the evolution of a technology are charasdrby a large share of basic
research often conducted in publicly-funded labs. In latages of a technology industry
driven development of existing technological opport@stivill dominate basic research. Then
the focus is on refining existing opportunities rather thewatting new ones. While there is
no perfect measure for the position of a technology areaarstyllized cycle of technology
evolution, the share of references listed on a patent whoait fp non-patent literature (mostly
scientific publications) can be used as a good proxy for tlength of the science link of a
technology Meyer(2000; Narin and Nomd1985; Narin et al.(1997).

Therefore, we use the share of non-patent references/eetatall references contained on
a patent as a proxy for a patent’s position in the technolgglecand hence as a measure for
the creation of new technological opportunities. As we aterested in the characterization
of technological areas with regard to the existence of nahrtelogical opportunities, we

9The aggregation of patenting activities on the firm level®ived great efforts consolidating subsidiaries of
large corporations. Detailed information on the cleaning aggregation algorithms can be obtained from the
authors upon request. We would like to thank Bronwyn Hallgi@viding us with software for this purpose. We
used this and undertook additional efforts to consolidate fiames.
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compute the average of the share of non-patent refererlegigsedo all references on a patent
on the level of OST-INPI/FhG-ISI areaand year for our multivariate analysis.

Complexity of Technology Areas The distinction between discrete and complex technolo-
gies is widely accepted in the literatur€dhen et al.(2000, Kusonaki et al.(1998, Hall
(2005). Discrete technologies are characterized by a relgtisgbng product-patent link,
e.g. in pharmaceuticals or chemistry, whereas in compldustries products are likely to
build upon technologies protected by a large number of patesid by various parties. It is
often held that patent filing strategies vary largely betweiscrete and complex industries.

Despite the widely acknowledged notion of a technologyisiptexity there is no direct
measure of it nor is there an indirect construct related toptexity. Kusonaki et al (1998
andCohen et al(2000 (footnote 44) provide schemes which classify industrgediacrete or
complex based on ISIC codes. These classification scheméssed on qualitative evidence
gathered by the authors from various sources in order targepdifferent industrial sectors
into complex or discrete areas. A major drawback of a clasgitin based on prior informa-
tion from industry codes is that is does not allow to analyeeinfluence of different levels of
complexity but only to distinguish the binary cases disegid complex.

To improve on this, we measure complexity of a technologg #neough firms’ patenting
activities. Our measure is derived from to the degree oflapdyetween firms’ patent portfo-
lios. Such overlap leads to blocking dependencies among filfrexisting patents containing
prior art critical to the patentability of new inventionsarfield are held by both firms, each
firm can block its rival’'s use of innovations. Then, a firm caayaccommercialize a technology
if it gets access to a rival’s patented technology. In ardasrevproducts draw on technologi-
cal opportunities protected by numerous firms (complexrteldyies) we expect to observe a
large number of such dependencies. In discrete technaltiggeinverse should be true.

We capture blocking dependencies among firms by analyzmgetierences contained in
patent documents. References to older patents or to nemgdaéerature are included in EPO
patents in order to document the extent to which inventiatisfy the criteria of patentability
(Harhoff et al.(2006). Often, existing prior art limits patentability of an iemtion. For ex-
ample, the existence of an older but similar invention caluce the patentability of a newer
invention. In these casesitical documents containing conflicting prior art are referenced i
patent documents and are classified as X or Y references Ipatkat examiner at the EPO
during the examination of the patent applicatifnf the patentability of a firm A's inventions
is frequently limited by existing patents of another firm Bsireasonable to assume that the
R&D of A is blocked by B to a certain degree. If the inverse soarue, A and B are in a mu-
tual blocking relationship which we call a blocking pairnibre than two firms own mutually
blocking patents the complexity of blocking relationshipsreases and resolution of blocking

10A patent contains various different types of referencest-athof them are critical. Often, related inventions
which are not critical for the patentability of the inventiseeking patent protection are also included in the
patent document. The EPO provides a full classification @féfierences included in patent documents allowing
us to identify critical references which are classified ag X.o
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Figure 2: Identification of our measures of a technology Betdmplexity.

becomes increasingly costly. To capture more complextsires of blocking we compute the
numberTriplesin which three firms mutually block each other’s patents.urég® provides a
graphical example of our complexity measure.

From a computational perspective, pairs and triples anetiftled using the following ap-
proach: For each firmwe analyze all critical patent references contained in fienpatents
applied for in a technology areaover the current and the two preceding yedrs @ to t)
and identify the owners of the referenced patent documéntke next step we keep the most
frequently referenced firms (top 20) yielding annual lidtirons which are blocking firmi in
yeart.!! Pairs are then established if firmhis on firm B’s list of most frequently referenced
firms and, at the same time, firf is on firm A’s list of most frequently referenced firms.
Finally, triples are formed if firmA and firm B, firm A and firmC and firm B and firmC
form pairs in the same year. We include the total number ofteg triples; in areaa and
yeart in our regression in order to analyze how the complexity @chhology area influences
firms patenting behavior in this area.

Control Variables

Fragmentation of Prior Art  Ziedonis(2004 showed that semiconductor firms increase
their patenting activities in situations where patent hmad are largely fragmented across
different parties. Ziedonis’ fragmentation index has prathantly been studied in complex
industries Ziedonis(2004, Schankerman and No€006) where increasing fragmentation
has been found to increase the number of firms’ patent apipisa This has been attributed to

1The threshold of keeping only the 20 most frequently refeeeipatent owners is an arbitrary choice. Our
results are robust to different choices of the thresholellev
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firms’ efforts to reduce potential hold-up by opportunigiatentees owning critical or block-
ing patent rights — a situation which is often associateti wie existence gbatent thickets.

We construct an index of fragmentation of patent ownersbipefich firm based on the
fragmentation index proposed BEyedonis(2004):

n

Fragi, =1— Z Sijt (17)

J=1

wheres;;, is firm ‘s share of critical references pointing to patents held by fi. Small
values of this fragmentation index indicate that prior eferenced in a firm’s patent portfolio
is concentrated among few rival firms and vice versa.

Unlike previous studies of patenting in complex technasgielying on USPTO patent
data Ziedonis(2004,Schankerman and No€2006§) we base the computation of the frag-
mentation index solely on critical references which aresifeed as limiting the patentability
of the invention to be patented (X and Y references). Thigrdison is not available in the
USPTO data. Computing the fragmentation index based analrieferences should yield a
more precise measure of the hold up potential associatedragmentation of patent holdings
in a technology area.

Technological Diversity of R&D Activities A firm’s reaction to changing technological or
competitive characteristics in a given technology areahirdg influenced by its opportunities
to strengthen its R&D activities in other fields. For exampie firm is active in two tech-
nology areas it might react by a concentration of its agésiin one area if competition in
the other area is increasing. If a firm is active in only onétedogy area, it does not similar
possibilities to react to increases in competitive pressur order to control for potential ef-
fects of opportunities to shift R&D resources we includetthtal number of technology areas
(Areas,) with at least one patent application filed by fiinm yeart.

Size Dummies. While we do not explicitly model the influence of firm size oneyaing
behavior, it seems reasonable to assume that the cost ahiolgtand upholding a patent
depends on the size of a firm. In particular, larger firms miglse lower legal cost due
to economies of scale, increased potential to source irl Bgaices and accumulation of
relevant knowledge which in turn might lead to a differentgpéing behavior than smaller
firms. For instance&Somaya et al(2007), find that the size of internal patent departments
positively influences firms’ patenting propensity.

If the economies-of-scale argument holds, the cost of piagershould not be directly
related to size characteristics such as a firm’s number of®mes, its total revenues or sales.
Rather, the cost of patenting can be assumed to be a fundtitve dotal amount of patents
filed by a firm. Therefore, we include a 'size dummy’ variabésed on the number of patents
filed by a firm in a technology area in a given year in our regoess We distinguish between
small and large patentees. These size categories are bas@thwal patent applications in a
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given area:. Firms belonging to the upper half of the distribution ofgrdgees in a given year
are coded as large firms.

4 Descriptive Analysis of Patenting in Europe

In this section we provide descriptive aggregate stasistic patenting trends at the EPO.
Discrete and complex technology areas are compared widlnaeg selected patent indicators.
Using our measure of complexity we show that descriptivel@wte on patenting provides
support for the theoretical model.

Annual Patent Applications at EPO between 1977 and 2003

125000

— Total applications
— Applications in complex technologies
— Applications in discrete technologies

100000

75000—

50000—

Patent Applications at the EPO

25000—

I T I
1980 1990 2000
Year

Figure 3: Annual number of patent applications filed at th€OB# priority year. Note:
Blue line indicates total patent applications. Red lingaates patent applications in complex
technology areas. Green line indicates patent applicatiodiscrete technology areas.

Figure3 presents annual patent applications filed at the EPO beti@&hand 2003. We
distinguish applications filed in complex and discrete tetbgy areas using the categoriza-
tion of Cohen et al(2000. The Figure shows patenting grew strongly over this penath
the main contribution coming from technology areas classiéis complex. This development
is comparable to trends at the USPTall (2005 shows that the strong increase in patent
applications is is driven by firms patenting in the electricamputing and instruments area
all of which are complex technology areas by the classificedif Cohen et al(2000.

Now we turn to explanations for the strong growth in patemtiRirst, consider a leading
explanation for increased patenting in complex technokrggs: the fragmentation of patent
rights in a complex technology area is likely to raise firnnahtsactions costs as they must bar-
gain with increasing numbers of rivals in order to preverithgp of their productsZiedonis
(2004 andSchankerman and Nog&006 show that increased fragmentation of patents leads
to greater patenting efforts in the semiconductor and ss#wndustries respectively. Figute
provides annual averages of the fragmentation index at @ fér the years 1980 to 2003.

12The precise definition of this measure is given in Seclatove.

15



Fragmentation of Patent Ownership at the EPO

1980-2003
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Figure 4: Average fragmentation index. Note: Blue line gades average level of fragmen-
tation index in complex technology areas. Red line indeateerage level of fragmentation
index in discrete technology areas.

Two observations derived from Figudeare striking: First, fragmentation of ownership rights
fell steadily before 1995 and then increased graduallyetfésr. Second, the difference in the
fragmentation index in complex and discrete technologgsre negligible.

Both observations raise the question whether the growtlaterp applications can be at-
tributed to fragmentation alone. While the developmentrafjfinentation in complex and
discrete areas is almost identical we observe strikingidifices in the growth of patent appli-
cations between complex and discrete technology areas.

Triples in Discrete and Complex Technology Areas at EPO
1980-2003
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Figure 5: Average number of triples identified. Note: Thegdine indicates average number
of triples in complex technology areas. The red line indisadverage number of triples in
discrete technology areas.

Next we explore two explanations for the increase in patgnit the EPO that build on
the theoretical model developed above: firstly firms builtepaportfolios to strengthen their
bargaining positions if complex bargaining situationsrae likely to arise and secondly the
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pressure to obtain patents becomes more intense as tegluablopportunity declines. The
first of these explanations is similar to the explanationg@atenting derived from fragmenta-
tion of property rights: it also emphasizes transactiorstimcreases derived from bargaining
over blocking patents. However, we believe that transastemsts also rise if a small number
of firms own patent rights that depend on the rights of otherdithat also block each other.
Then, bargaining will become increasingly complex as hiogkannot be resolved through a
series of bilateral negotiations. Our measure of mutualkig between three and more firms
(Triples) captures the degree to which complex blockingesi

In Figure5 this measure is presented. The Figure presents annuabasesathe number
of Triples in complex and in discrete arédswWe observe very different developments of the
count of Triples in these two fields. The number of Triples aéma largely stable at values
well under 10 in discrete technology areas, while it incesastrongly in complex technology
areas. It is reassuring to see that our measure of complgaibarg situations is greater in
complex technologies as previously definedCphen et al(2000.

Non Patent References in Complex and Discrete Technology Are: Non Patent References in Complex Technology Areas
1980-2002 1987-2002

— Complex technology areas
— Discrete technology areas
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Average Non Patent References per Patent
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Figure 6: The left panel presents average non patent refesgrer patent for complex (blue
line) and discrete (red line) technology areas. The rigiiep@resents average non patent
references per patent for several complex technology arBais panel focuses only on the
sample period we use for our regressions below.

This shows that blocking intensities almost certainly cboted to the strong increases in
patenting that we observe in Figuse Next we turn to the development of technological op-
portunity. In our theoretical model Propositi@nndicates greater technological opportunity
in a complex technology should lower the pressure to patesanoted in Sectiol3 we mea-
sure technological opportunity using changes in the ratefefences to non patent literature
within a technology area. This measure will provide infotim@about variation in technolog-
ical opportunity between and across technology areas. dfhpdnel of Figures shows that
technological opportunity was generally greater in digctechnology areas after 1990, than
in complex technology areas. The right hand panel of therEighows that the average level
of non patent references in complex technology areas masissderable variation across and
especially within complex technologies over time.

3We distinguish complex and discrete using the classifinatimgested bgohen et al(2000 here.

17



Note that the level of non patent references in the complexiglogy areas began to de-
cline just after 1992, which coincides with the date at whighgrowth in patent applications
at the EPO picked up as FiguBesshows. These descriptive results suggest that a multiearia
analysis of patenting levels based on the theoretical mudslented above will prove to be
interesting.

Table 1: The Distribution of Triples Between 1987 and 2002

Technology area Mean Median Std. dev. Minimum Maximum
Electrical machinery, Electrical energy24.23 20 8.99 10 42
Audiovisual technology 116.48 120 17.68 74 148
Telecommunications 99.64 93 39.17 27 166
Information technology 57.16 59 10.71 28 73
Semiconductors 62.84 63 17.89 26 91
Optics 57.30 58 12.02 42 77
Analysis, Measurement, Control 6.61 4 6.31 0 21
Medical technology 4.10 3 2.16 1 8
Nuclear engineering 0.95 1 1.17 0 4
Organic fine chemistry 3.77 2 4.03 0 15
Macromolecular chemistry, Polymers 16.00 14 8.17 4 32
Pharmaceuticals, Cosmetics 3.47 4 2.68 0 8
Biotechnology 0.00 0 0.00 0 0
Agriculture, Food chemistry 0.07 0 0.26 0 1
Chemical and Petrol industry 11.16 10 5.49 4 22
Chemical engineering 1.35 1 0.87 0 3
Surface technology, Coating 3.48 3 2.82 0 9
Materials, Metallurgy 2.41 2 2.12 0 6
Materials processing, Textiles, Paper 3.92 3 2.73 1 9
Handling, Printing 20.26 16 13.55 4 50
Agricultural and Food processing, 0.35 0 0.71 0 2
Environmental technology 3.23 0 4.73 0 15
Machine tools 1.91 1 1.57 0 5
Engines, Pumps and Turbines 21.72 15 21.10 3 69
Thermal processes and apparatus 0.37 0 0.62 0 2
Mechanical elements 2.33 2 2.14 0 7
Transport 16.54 14 12.00 2 50
Space technology, Weapons 0.00 0 0.00 0 0
Consumer goods 0.72 0 1.05 0 4
Civil engineering, Building, Mining 0.00 0 0.00 0 0
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To complete this section Table provides additional information on the distribution of
Triples across all 30 technology areas. This shows howfsignt the hold up potential mea-
sured by Triples is in the ICT technologies. The number opl€s is between five and six
times as large there as it is in other industries such as lapdPrinting which still exhibit
significant complexity.

5 The Empirical Model and Results

In this section we set out our empirical results. To begimhwit provide a discussion of our
empirical model and discuss descriptives for the sampleenThe turn to the results from
estimation and a discussion of their implications.

5.1 An Empirical Model of Patenting

Building on the results of Sectiahwe estimate a reduce form model predicting the level of
patent applications filed by a firm in a given year at the EP@ethat patent applications are
highly persistent as they generally reflect long term inwesits in R&D capacity we include

a lagged dependent variable in our model. We estimate tlwviolg dynamic relationship?

Aiy = Bo+ Badir—1+ 800+ BcCiv + Bx' Xy
+ BacAi-1Cis + BocOiCiv + BocrOiiCiiLiy + BorOi Ly (18)
+xi + Gt where:
A, — Patent Applications O, — Technological Opportunity: Non Patent References

C;. — Complexity: Triples X, — Control variables: Fragmentation, Area count, Size(L)

This specification allows us to simultaneously control fifees of technological oppor-
tunity 5o and complexity3- and to analyze whether the effect of technological oppdastun
differs in discrete an complex technologies by interachiath variables@; .C; ;). Further, we
also include interaction terms that allow us to distingufsi patenting behavior of large and
small firms in complex and discrete technologies. We do thiswx theoretical model indi-
cates that firms’ patenting behavior will depend on the sbipatents they expect to receive
on a given technological opportunity.

The parameter estimates from this specification allow uegbthe following hypotheses
that reflect the predictions derived from the theoreticatleio

H1 : Increased technological opportunity lowers the levgbatent applications as tech-
nologies become more complex (Propositi)n

40ur model did not explicitly account for dynamic aspects oh§’ strategic decisions. However, it seems
appropriate to take the persistent nature of patentingsgcinto account when analyzing cross-sectional time-
series of patenting.
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H2 : Increased complexity of a technology raises the levpbdént applications in complex
technologies (Propositics);

H3 : Increased technological opportunity raises the le¥@adent applications in discrete
technologies (Propositiof).

Hypothesis H2 reflects our belief that the strategic valugaténts outweighs administra-
tive costs of patenting in complex technologies.

Applying these hypotheses to our spcification it may be shihahHypothesis 1 implies
that 3o < 0, Hypothesis 2 implies thatc + Soc x O, + Bac x Ay > 0 and Hypothesis 3
implies that5, > 0.

5.2 Descriptive Statistics for the Sample

Our dataset consists @3, 448 observations of firms patenting in specific technology areas
in a given year and covers the period between 1978 when thetleB&n operating and 2003.
We excluded small patentees from the sample using two ieriterst, we excluded all those
patentees with fewer thart) patent applications over the entire period. Second we drdu
those patentees who had fewer than three years of positiestggpplications in a technology
area in the fifteen years after 1987. These criteria are wsexictude firms that do not have a
long term patenting strategy. Only patentees with a longégrging horizon will be affected
by changes in technological opportunity, or the degree @flbohg over time.

Table 2: Panel Descriptives for the Sample

Firm level (n=2074) Mean Median SD
Total patents 628.27 205 1944.94
Total patents (annual) 37.02 12 111.65
Technological areas (annual) 5.54 4 4.56
Area-Year level (n=650) Mean Median SD
Total patents in area 2594.23 2310 1778.8)
Total patents in sample 1449.35 1012 1695.86
Total firms in area 1077.62 893 668.14
Total firms in sample 266.84 263 253.71
Triples 14.67 2 27.69
Non Patent References 0.98 0.75 0.75
Fragmentation 0.001 0 0.009

Table2 provides information about the structure of our panel detdotal there are 2074
different firms left in the panel. The average size of thesedipatent portfolios in 2003 was
628 patents resulting from an average of 37 patent apmitsiper firm and year across all
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technology areas.

We treat firms operating in several technology areas asaepaiservations in each area.
Hence, our panel structure is not defined over firms’ totatmiadpplications per year (firm-
years) but over firms’ annual patent applications withincdpetechnology areas (firm-area-
years). We do this to control for area specific patenting Wehaf individual firms and
its relation to area characteristics like complexity. Where use panel data, the panel is
unbalanced due to entry and exit of firms into technologysar@de lower half of Tabl&
shows that our sample covers on average% of the yearly mean of 2594 annual patent
applications filed within a technology area. As our sampbtgtegy is focused on large
patentees it is not surprising that the share of firms we coveur analysis is smaller with
about24.8% of all patentees at the EPO between 1978 and 2003 (seedjable

Table 3: Descriptive Statistics for the Sample (1987-2002)

Variable Aggregation | Mean Median Standard Mini-  Maxi-
level deviation mum mum
Patent applications Firm 5.431 1.000 18.594 0.000 752.000
log Patent applications Firm 1.051 0.693 1.052 0.000 6.624
Areas Firm 8.751 7.000 6.027 0.000 30.000
Large dummy Firm 0.504 1.000 - 0.000 1.000
Non Patent References  Area 1.151 0.894 0.827 0.174 4.532
Triples Area 18.480 5.000 30.085 0.000 166.0P0
Fragmentation Area 0.001 0.000 0.006 0.000 0.355

Observations= 173,448

Sample statistics for 1992

Patent applications Firm 4.235 1.000 14.024 0.000 387.000
log Patent applications Firm 0.923 0.693 0.990 0.000 5.961
Areas Firm 7.746 6.000 5,563 0.000 27.000
Large dummy Firm 0.438 0.000 - 0.000 1.000

Non Patent References  Area 1.205 0.970 0.747 0.290 3.5%4
Triples Area 15.761 3.000 25.348 0.000 104.000
Fragmentation Area 0.001 0.000 0.006 0.000 0.168

Observations= 11,325

Table3 presents descriptive statistics on the firm-area-yeat.l&év&ows that most firms
in the sample patent relative broadly across technologgsar@/hile the number of patent
applications within a given technology area is relativelw lwith 5.43 application per year
firms are active in 8 or 9 different technology areas. Thedatgmmy splits firms almost
exactly into the largest and smallest firms in the sample. &sgage technology area con-
tained about 18.5 Triples in a given year — however the tistion is skew with a median of
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5 and a maximum of 166 Triples (observed in Telecommuninatio 2000). The level of non
patent references in the average technology area is 1.Hflle Jalso contains information
about sample statistics for the year 1992, after which pateplications increased markedly
as Figure3 shows.

A comparison of sample means (upper part of Ted)land means for 1992 (lower part
of 3) shows that firms patent in more areas, face more Triples andrgte fewer non patent
references after 1992 than before. This confirms what we $lao@n in the previous section.

5.3 Results

In this section we present our empirical results and disimusfich extent we find evidence for
our hypotheses derived from our model of patenting behaViler start by estimating a basic
specifications which is gradually extended to include a#raction terms introduced in Equa-
tion 18. Table4 presents results of system GMM estimators using forwardatiens trans-
formations Blundell and Bond 1998, Arellano and Bovef1995 andAlvarez and Arellano
(2003).*® Reported standard errors are based on two step estimaiogsthis correction sug-
gested bywindmeijer(2005. Tests for first, second and third order serial correlafiofh-m3)
indicate presence of first and second order serial corelain all specifications we instru-
ment predetermined variables with third order lags and gadous variables with fourth order
lags. Instrument sets are collapsed in order to reduce timdauof instruments used.

Specification GMM A contains the lagged dependent variabkgsures of technological
opportunity (NPR), complexity (Triples), the breadth of mnf$’ activities within the patent
system (Areas), a dummy for the size of a firms’ patent padfglarge) as well as dummies
for the year and the main technology area of a firm. Additiyn&MM B contains a corrected
measure of fragmentation. Hansen tests for both specditateject their validity.

In contrast, specification GMM C allows for interactions af complexity measure (Triples)
with the lagged dependent variable and with the measurebht#ogical opportunity (NPR).
This specification performs much better, tytestatistic being much lower than for the previ-
ous specification&

In specification GMM FULL Fragmentation is interacted witietcomplexity measure,
to capture the expectation that fragmentation of patenfglmrs is costly in complex tech-
nologies. The specification represents another improveowen the previous in terms of the
Hansen test. Finally, specification GMM L includes intei@ts$ which test the effects of firm
size on non patent references. This specification perfoastsds all, the Hansen test does not
reject the model.

We find that greater technological opportunity raises gatgrevels. This effect is highly
significant across all estimated specifications (see Caduihto (5) of Tablet).

1SAll models were estimated witktabond?2 in Stata 9.2 . This package is describedRo¢dman(2006).
®In unreported results we find the model improves through tratination of both interaction effects re-
ported. This indicates that the interactions capture ammtapt aspect of the data generating process.
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Table 4: Patent Applications Estimates

1) ) ©) 4 ()
Variable SGMMA SGMMB SGMMC | SGMM FULL SGMM L
log Patentcount 0.777**  0.709***  (0.485*** 0.533*** 0.678***
(0.042) (0.047) (0.074) (0.087) (0.068)
log Patentcount | x Triples -0.015%** -0.016*** -0.015***
(0.002) (0.002) (0.002)
Non Patent References (NPR)0.216***  0.191***  1.525*** 1.613*** 1.386***
(0.031) (0.032) (0.190) (0.241) (0.182)
NPR x Triples -0.041%** -0.043*** -0.034***
(0.004) (0.005) (0.004)
NPR x Triples x Large 0.006***
(0.001)
NPR x Large -0.425%**
(0.052)
Fragmentation 5.685* -4.606 -13.208 -12.482*
(2.309) (4.608) (9.279) (6.192)
Fragmentationx Triples 0.305** 0.247*
(0.114) (0.097)
Triples -0.000 -0.000 0.069*** 0.072*** 0.057***
(0.000) (0.000) (0.007) (0.008) (0.006)
Areas 0.059***  0.066***  (0.115*** 0.113*** 0.096***
(0.007) (0.007) (0.012) (0.013) (0.010)
Large -0.115***  -0.094*** 0.042 0.031 0.409***
(0.027) (0.027) (0.054) (0.061) (0.081)
Year dummies YES YES YES YES YES
Primary area dummies YES YES YES YES YES
Constant -0.358***  -0.357*** -1.531*** -1.625%** -1.515%**
(0.041) (0.041) (0.177) (0.223) (0.167)
N 173448 173448 173448 173448 173448
ml -25.48534 -21.6864 -10.69893 -9.690637 -13.49454
m2 18.08254 15.15458 2.488548 2.477419 5.564835
m3 -1.650511 -1.709003 1.14326p6 1.446003 .7390595
Hansen 566.1257 558.1005 29.0312 20.61644 10.67657
p-values 0.00000 0.00000 0.00000 .00095 .05818
Degrees of freedom 4 4 5 5 5

1. Asymptotic standard errors, asymptotically robust tietweskedasticity are reported in parentheses

*p<0.05, ** p<0.01, ** p<0.001

2. m1-m3 are tests for first- to third-order serial correlatin the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It istdbuted as¢? under the null of instrument

validity, with degrees of freedom reported below.
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4. In all cases GMM instrument sets were collapsed and lags limeited.

The inclusion of the interaction between or measure of cerigyl (Triples) and techno-
logical opportunity shows that the effect differs in digereechnologies and complex technolo-
gies. In particular, if the number of Triples in a given argdarger than 37 (in specifications
(3) and (4)) or larger than 40 in specification (5) of TabJehe overall effect from increas-
ing technological opportunity is negative ds + Soc x C;; < 0. This finding supports our
Hypothesis 1 that increasing technological opportunitfuces patenting efforts in complex
areas. As Tablé shows the average number of Triples for 5 of the technologgsam our
sample is higher. For Audiovisual technology and Optics ialways the case. In case of
larger firms the predicted effects of complexity alreadg@nvhen the number of Triples is
above4. This is always the case f@rtechnology areas in our sample. This effect is further
strengthened for large firms @scr, x Ci¢ x L;; + Bor x L;y < 0in Column (5) of Table
4. Sincefo + Boc x C; > 0 for areas with fewer Triples (even in the case of large firms)
Hypothesis 3 can not be rejected.

With regard to complexity we find that firms’ patenting leveisrease significantly in
response to greater complexity (see Columns (3) to (5) ofeFabThe coefficient orfriples
is positive and greater than that on the sum of interactibmis pleswith Non patent references
and the lagge®atentcount. Therefore, we cannot reject Hypothesis 2. Additionallg, fimd
weak evidence that suggests fragmentation (measuredpesaehby Ziedonis 2004) of patent
ownership affects firms’ incentives to patent in complextedogies.

In a next step, we test the robustness of our results usieghative GMM estimators.
Results from these robustness tests are reported in $alblere, we vary size of the instru-
ment set and the estimator used. All models reported in Table estimated using forward
deviations and reported standard errors are based on tranWijer correction as previously.
The models presented differ in the number of overidentgyiestrictions employed as well
as assumptions about the correlation of the explanatorgiMas with fixed effects. The four
models reported in the central part of the table allow forelation between all explanatory
variables apart froririples with fixed effects. In the two specifications on the right safiéhe
table we assume that subsets of the explanatory variatdesiaorrelated with fixed effects.

Additionally, Table7 (AppendixB) provides results from OLS on the pooled sample and
from fixed effects regressions. These results are known taidsed due to inclusion of the
lagged dependent variable. However, they provide lowerugpper bounds on the values of
the lagged dependent variable for GMBIdnd (2002). We find the coefficient of the lagged
dependent variable in the models GMM C and GMM FULL lies witkine range given by
results of OLS on a pooled sample and a fixed effects modeade of GMM L the coefficient
of the lagged dependent variable is marginally greater thamesults of OLS estimation.

The number of observations in our dataset implies #yaf — 0. Therefore, a systems
GMM estimator Blundell and Bond1998) using forward deviations is asymptotically con-
sistent Alvarez and Arelland2003; Hayakawa(2006). We employ the estimator as the
persistence of the patenting series is very high in our santpke coefficient on the lagged
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dependent variable in an AR1 model with time and primary dreamies i9).92.

Table 5: Robustness Checks for Patent Applications Estisnat

Allowing correlation

Assuming no correlation

with fixed effects with fixed effects
Variable SGMMMIN SGMML DGMML SGMML2 | SGMMNPR SGMMF
log Patentcount ¢ 0.684*** 0.678***  0.863***  (.735*** 0.715%** 0.915%**
(0.072) (0.068) (0.091) (0.058) (0.047) (0.039)
log Patentcount | x Triples -0.017**  -0.015*** -0.012*** -0.011*** -0.007*** -0.004***
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
Non Patent References (NPR) 1.581*** 1.386**  1.198**  (0.968*** 0.271%** 0.171
(0.221) (0.182) (0.164) (0.113) (0.019) (0.119)
NPR x Triples -0.038***  -0.034*** -0.028***  -0.024*** -0.008*** -0.003
(0.005) (0.004) (0.004) (0.002) (0.001) (0.003)
NPR x Triples x Large 0.006*** 0.006***  0.006***  0.005*** 0.004*** 0.002***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.000)
NPR x Large -0.436***  -0.425*** -0.262***  -0.397*** -0.466*** -0.506***
(0.055) (0.052) (0.033) (0.042) (0.034) (0.032)
Fragmentation -15.234* -12.482*  -13.998* -4.848 -1.448 -2.313
(6.510) (6.192) (6.123) (3.654) (1.210) (1.946)
Fragmentationx Triples 0.262** 0.247* 0.181* 0.188* 0.102* 0.156*
(0.100) (0.097) (0.091) (0.083) (0.044) (0.071)
Triples 0.063*** 0.057**  0.042***  (0.040%** 0.015*** 0.007
(0.007) (0.006) (0.005) (0.004) (0.001) (0.004)
Areas 0.095*** 0.096*** 0.031* 0.086*** 0.085*** 0.058***
(0.010) (0.010) (0.014) (0.008) (0.007) (0.006)
Large 0.430%*** 0.409***  0.257**  (0.325*** 0.442%** 0.412%**
(0.087) (0.081) (0.053) (0.065) (0.049) (0.048)
Year dummies YES YES YES YES YES YES
Primary area dummies YES YES YES YES YES YES
Constant -1.672%* -] 5]15%** -1.15] %+ -0.597*** -0.526***
(0.198) (0.167) (0.105) (0.046) (0.106)
N 173448 173448 171380 173448 173448 173448
m1l -12.75267  -13.49454 -9.115675 -16.66586 -20.32686 -28.27661
m2 4.690134 5.564835 5.686894  9.293913 12.525 20.07668
m3 1.093296 7390595 -.4191068 -.4131314-1.354271 -1.478497
Hansen 2.178791 10.67657 7.067067  70.62775 184.0212 288.5185
p-values 0.1399 0.0582 0.1324 0.0000 0.0000 0.0000
Degrees of freedom 1 5 4 9 7 7

1. Asymptotic standard errors, asymptotically robust tietuskedasticity are reported in parentheses

*p<0.05, ** p<0.01, ** p<0.001
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2. m1-m3 are tests for first- to third-order serial correlatin the first differenced residuals.

3. Hansen is a test of overidentifying restrictions. It istdbuted as¢?> under the null of instrument
validity, with degrees of freedom reported below.

4. In all cases GMM instrument sets were collapsed and lags limeited.

Blundell and Bond1998 note that a difference GMM estimator will be affected by alwe
instruments problem in this context. Specification DGMM poged in Table, estimated by
difference GMM, does not suggest this problem is severe Hére coefficient on the lagged
dependent variable is somewhat above that reported forahmparable systems estimators.
It is also significantly above the coefficients from the OL§ressions reported in Table
Therefore, we focus our analysis on the results from theegysistimators. The substantive
results provided by the difference estimator are the sartteoas from the systems estimators.

In all models reported in Tablg the instrument sets were collapsédnd instrumenting
lags were limited as described below. This was done as thaedthatest and difference in
Hansen tests rejected the overall instrument sets as wall&gdual instruments where larger
instrument sets were employed. Specification SGMM L2 ithtsis how sensitive the Hansen
testis to the size of the instrument set here. This speddit# identical to SGMM L, we just
allow for an extra lag on the instrument sets for the endogewrariables in this specification.
The specification is rejected by the Hansen test.

All models reported in Tabl®& contain the following explanatory variablebton patent
references, Triples, Fragmentation, Area count, Large dummy and the lagged dependent vari-
able as well as interactions of some of these variables. \WsiderLarge andArea count to
be endogenous as they reflect decisions about how widely &edevio engage in research
which may be contemporaneous with decisions determiniadetvel of patent applications.
We consider the remaining variables to be predeterminex ey depend in large part on
the aggregated decisions of rival firms. Finally note thatimetude only year and primary
area dummies as well dsiplesin the levels equation as it is likely that the fixed effects ar
correlated with differences in the remaining explanatayiables. Triples is the only vari-
able that reflects purely technology area specific chaiatiter which may be assumed to be
orthogonal to firm specific effects.

We estimate two models in which we treat Fragmentation (GMMriel Non patent refer-
ences (GMM NPR) as uncorrelated with fixed effects. Restoi® fthe Hansen tests for both
specifications reported in Tabfeshow that these models are clearly rejected.

Our preferred models are reported as SGMM MIN and SGMM L inl§&b In SGMM
MIN we restrict the number of instruments such that the majakt overidentifiedHayakawa
(2006 argues that such a minimum instruments specification igased in settings wherg
is fixed andN — oo. Specification SGMM L includes one additional lag for the egpehous
variables. Results from these two specifications are statily indistinguishable.

Based on this specification Tabfeprovides effects of changes in complexity (Triples),
technological opportunities (Non patent references) aaghmentation for patenting rates in

Collapsing instrument sets reduces the number of momeulitimms used for GMM Roodmar(2008).
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nine technology ared$§.The table presents effects for small and large firms. Five®téch-
nology areas presented are highly likely complex as the resahof Triples is clearly above
42 in these areas (viz. Tablg. They are Audiovisual Technology, Telecommunications, |
formation Technology, Semiconductors and Optics. We alssent results for four areas that
are certainly less complex by this measure: Electrical Maaly; Analysis, Measurement,
Control; Medical Technology and Pharmaceuticals. Ourritézal predictions are borne out
by specification SGMM L and Tablg First, we find that in discrete technologies additional
technological opportunity raises firms’ patenting rateke Toefficient foiNon patent refer-
ences is positive and highly significant. Even in case of large fitimes overall effect remains
positive. This supports our previous finding that Hypote@scannot be rejected.

Table 6: Percentage Changes in Patent Applications focteel&/ariables

Triples Non patent references Fragmentation

Technology SD change SD change Unit change SD
area Small Large Small Large (+0.0001) change
Audiovisual Mean 6,64%  18,66% -50,69% -54,86% 0,17% 21,66%
Technology Median| 16,42% 29,61% -51,72% -56,96% 0,17% 22,48%
Telecom- Mean -3,74%  22,96% -34,37% -36,95% 0,13% 10,21%
munications Median| 2,82%  43,96% -29,92% -35,63% 0,10% 8,24%
Information Mean -2,88%  3,46% -10,60%  -16,57% 0,02% 1,48%
Technology Median| 1,65% 8,00% -10,94%  -17,75% 0,02% 1,59%
Semiconductors Mean -24,.82% -13,01% -24,42% -32,94% 0,03% 2,44%

Median | -21,73%  -9,45% -25,01% -36,21% 0,03% 2,57%
Optics Mean -4,79%  7,65% -7,69% -12,13% 0,02% 1,20%

Median| 0,90%  14,46% -7,84% -13,14% 0,02% 1,26%
Electrical Mean 12,43% 17,42% 3,51% 1,11% -0,06% -2,46%
Machinery Median | 17,35% 22,64% 4,55% 1,79% -0,08% -2,89%
Analysis, Mean 1,94% 7,41% 10,35% 5,81% -0,11% -2,34%
Measurement, | Median| 5,02% 10,66% 10,35% 6,48% -0,12% -2,54%
Control
Medical Mean 6,85% 8,45% 5,69% 3,40% -0,11% -5,13%
Technology Median| 7,55% 9,13% 5,69% 3,38% -0,11% -5,16%
Pharmaceu- Mean -13,59% -12,55% 49,02% 30,11% -0,12% -4,53%
ticals Median | -13,99% -12,96% 48,97% 28,96% -0,11% -4,50%

Second, the coefficient on the interactiorNmin patent references andTriplesis negative.

The overall effect of additional Non patent references aemiang becomes negative if there
are more thad2 Triples in a technology area. As Talflshows the effects of increases in Non
patent references on the level of patenting are substamtteg technology areas we identify as

8These effects are calculated taking account of the logaiittransformation of the dependent and the lagged
dependent variable.
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complex. These findings show that Hypothesis 1 cannot betegje Turning to Hypothesis 2
we find that the coefficient ofriplesis positive and greater than that on the sum of interactions
of Triples with Non patent references and Patentcount;_;. This shows that greater blocking
complexity and therefore greater complexity of a technglagea increase firms’ levels of
patenting. Tablé shows that this result generally holds at the median andeaintan for
large firms in complex technology areas. In these areas the of@atentcount;_; andTriples
is often significantly greater than the median, indicatimgt the mean firm is usually a large
firm. We view these results as supporting Hypothesis 2.

Interestingly, Tabl® also shows that the effect of Fragmentation on firms’ patereiforts
in complex technology areas is positive and quite hetereges. Also, Fragmentation has a
negative effect on patenting in discrete technology ar@d®e positive effects for complex
technology areas support the findingsZa¢donis(2004 and Schankerman and No&006
who show that additional fragmentation of patent ownersgiipeases patenting efforts in the
Semiconductor and Software industries in the United States

Finally, our results on the interaction of the lagged dependariable with Triples indi-
cate that the persistence of patenting decreases as teglirasleas become more complex.
This suggests that patentees are more responsive to tmepetibors’ patenting behavior in
complex technology areas than in discrete technology areas

6 Conclusion

Patent applications have been increasing steeply at th§ O%d the EPO since 1984 and
1992 respectively. In both cases these increases have gisstions about the operations
of the affected patent offices as well as effects of thesedsrem economic activity more
generally E.T.C.(2003,National Research Coundi2004, von Graevenitz et a[2007) and
Bessen and MeurgR008). There is strong evidence by now that patenting has iseca
response to evolution of the legal environment, specifigalthe United States, to changes in
the management of R&D and patenting, and to increasing aaxitplof technology and more
strategic behavior of patent applicank®(tum and Lernef1998; Hall and Ziedonig2002);
Ziedonis(2004). The contribution of technological opportunity to curtgpatenting trends
and its interaction with other determinants has been lefdweerstood.

Our model is one of the first to consider the effect of compjeand of technological
opportunityjointly. Moreover, the model encompasses discrete and complerdiechies,
providing predictions for patenting behavior in both tympésechnology. We show theoret-
ically that greater technological opportunity will raisatenting in discrete technologies but
will lower it as technologies become increasingly complé&dditionally, we show greater
complexity of technologies raises firms’ patenting levels.

Using data on patenting in Europe we find that patenting hehaenforms to the pre-
dictions of our theoretical model. Most importantly ouruks demonstrate that variation in
technological opportunity has had important effects ondirpatenting levels in Europe. Our
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data show that increased technological opportunity dutiegearly 1990'’s retarded the onset
of the patenting explosion that is observable after 1994alat show that greater complexity
of technology has positive effects on patenting levelsalirwe confirm that greater fragmen-
tation of patent ownership had positive effects on patgnienels as suggested &Aredonis
(2009.

To test our model we derive a new measure of complexity ofKnhacrelationships in
patent thickets. This measure exploits information onaaitreferences to capture mutual
blocking between the patent portfolios of firms containe&imopean patent data. Using the
measure we are able to confirm that blocking is a much morewuseproblem in complex
technology areas than in discrete technology areas. Weea[doit information on critical
references to provide a sharper measure of fragmentatéonitas been available using data
from the USPTO. Using this measure we confirm the effectsagfifrentation which are strong
in some complex technology areas. Finally we make use ofaeées to non patent literature
to measure technological opportunity.

With the help of our measures of complexity and technoldggportunity, we are able
to show that patent thickets exist in nine out of thirty tedlogy areas at the EPO. Our data
indicate that the extent of patent thickets at the EPO hasibeesasing in recent years. These
increases are concentrated in complex technology ardis(2005 andvon Graevenitz et al.
(2007). Resulting increases in transactions costs affect Bxduise technologies that have
been central to large productivity increases in the recastJorgenson and Wessn@007).
Extended "patent wars” may threaten this source of prodiiztjains in the long run. In future
work we therefore intend to investigate whether strategtemting has measurable effects on
the productivity of firms’ R&D investments and how the dearsvariables of patent offices
(fees an administrative rules) might be used to influencenpdilings.

While we provide some evidence on the level of complexity lotking relationships in
specific technologies here, open questions remain. Indwtiark we intend to investigate to
what extent technology areas have become more complexiower tJsing extensions of the
complexity measure introduced here we will seek to charaet¢hese trends in greater detalil
than was possible here.

Our findings on the effects of technological opportunityseainteresting questions about
the relationship between patent breadth, the fecunditgsdarch areas and firms’ R&D in-
vestments. We find that the contest for patent rights becanm@e intense as the level of
technological opportunities decreases if a technologymplex. This raises the question
how firms’ incentives to patent more intensively interadihmncentives to undertake basic re-
search which might stem the reduced fecundity of these tdogies. At a more fundamental
level the findings indicate that research into the relatigmbetween technological opportuni-
ties and R&D is important if we are to understand the welfarglications of recent patenting
trends better.
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Appendix

A Robustness of the Theoretical Model

As noted in Sectior2.1 it may be the case that not all facets of a technology oppiytun
receive patent applications.
The average number of patent applications per technologgrtymity (£) is:

fit 221
No; 0

J

F= (19)

Using probability theory it can be shown that the number oéfa not receiving any patent
applications is:

F OjON
F(l _ (E) ) (20)

Therefore in a model in which the number of facets receivinigast one patent application

matters we have:
o\
(- () o

Using this alternative definition of; it can be shown that the Propositions derived in Section
2.2holdaslongag — e ! > % This constraint is easily met i¥ is large.

To see how this statement is arrived at consider the first acongl order derivatives de-
rived in Sectior2.2. Note that all that has changed is the definitios;0fGiven the definition
of s; from equation 21) we have:

on oC. o Ow 0L 0s;
2o, Vw(s;) (s;) — Cy, — fipC, 20, 0; o7 [V 95, 95, Ca] 01 7, 0
(22)
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B Robustness of the Empirical Model

Table 7: Patent Applications Estimates using OLS and Fixéstts

OLS models Fixed effects models
Variable OLS1 OLS2 OLS3 FE1 FE2 FE3
log Patentcount 0.599***  (0.583***  (.583*** 0.172**  0.157**  0.156***
(0.002) (0.002) (0.002) | (0.002) (0.002) (0.003)
log Patentcount ; x Triples 0.001***  0.001*** 0.001**  0.001***
(0.000) (0.000) (0.000) (0.000)
Non Patent References (NPR)0.064***  0.076***  0.067*** 0.002 0.016 -0.007
(0.002) (0.002) (0.003) | (0.007) (0.008) (0.009)
NPR x Triples -0.002***  -0.002*** 0.000 0.000
(0.000) (0.000) (0.000) (0.000)
NPR x Triples x Large 0.000* 0.000
(0.000) (0.000)
NPR x Large 0.020*** 0.038***
(0.004) (0.006)
Fragmentation 29.910** 30.332*** 30.352*** | 34.246*** 33.811*** 33.825***
(0.269) (0.320) (0.320) | (0.346) (0.392) (0.392)
Fragmentation< Triples -0.028***  -0.028*** 0.016 0.016
(0.007) (0.007) (0.009) (0.009)
Triples 0.000***  0.002***  0.002*** 0.001*** 0.000 0.000
(0.000) (0.000) (0.000) | (0.000) (0.000) (0.000)
Areas 0.018**  0.018***  (0.018*** 0.084***  0.084**  (0.084***
(0.000) (0.000) (0.000) | (0.000) (0.000) (0.000)
Large 0.279**  0.282***  (0.256*** 0.305***  0.306***  0.263***
(0.004) (0.004) (0.006) | (0.005) (0.005) (0.009)
Year dummies YES YES YES YES YES YES
Primary area dummies YES YES YES YES YES YES
Constant 0.122*%*  0.116***  0.128*** 0.029 0.031* 0.060***
(0.011) (0.011) (0.012) | (0.015) (0.016) (0.016)
R-squared 0.671 0.672 0.672 0.300 0.301 0.301
N 173448 173448 173448 173448 173448 173448

*p<0.05, ** p<0.01, *** p<0.001
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C Complex and discrete technologies

Table 8: Classification of technology areas according to-O8/FhG-ISI

Area Code | Description Classification
1 Electrical machinery, electrical energy Complex
2 Audiovisual technology Complex
3 Telecommunications Complex
4 Information technology Complex
5 Semiconductors Complex
6 Optics Complex
7 Analysis, measurement, control technology Complex
8 Medical technology Complex
9 Nuclear engineering Complex
10 Organic fine chemistry Discrete
11 Macromolecular chemistry, polymers Discrete
12 Pharmaceuticals, cosmetics Discrete
13 Biotechnology Discrete
14 Agriculture, food chemistry Discrete
15 Chemical and petrol industry, basic materials chemistry| Discrete
16 Chemical engineering Discrete
17 Surface technology, coating Discrete
18 Materials, metallurgy Discrete
19 Materials processing, textiles paper Discrete
20 Handling, printing Discrete
21 Agricultural and food processing, machinery and apparatus Discrete
22 Environmental technology Complex
23 Machine tools Complex
24 Engines, pumps and turbines Complex
25 Thermal processes and apparatus Complex
26 Mechanical elements Complex
27 Transport Complex
28 Space technology, weapons Complex
29 Consumer goods and equipments Complex
30 Civil engineering, building, mining Complex

Description of the 30 technology areas contained in the O&T/FhG-1SI technology nomenclature.
We classified the 30 technology areas as complex or discitetaating to replicate the classification
of Cohen et al(2000.
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