

Highways, Market Access, and Spatial Sorting

Stephan Fretz* Raphaël Parchet[†] Frédéric Robert-Nicoud[‡]

 $^{*}\mathsf{Swissgrid}$ $^{\dagger}\mathsf{Universita}$ della Svizzera italiana (USI) $^{\ddagger}\mathsf{GSEM}$ and CEPR

RIETI, 4 June 2019

Highways, Market Access, and Spatial Sorting

S. Fretz, R. Parchet, F. Robert-Nicoud

Motivation

Expansion of transportation networks

- Expand location choices of workers and residents
- Allow for commuting
- $\rightarrow~\textbf{Sorting}$ of heterogeneous individuals
- \rightarrow Urban **sprawl**

What we do – Theory

Design a reduced form spatial equilibrium model featuring

- Commuting and commuting costs
 - as in Monte, Redding, Rossi-Hansberg (forthcoming)
- Sorting of heterogeneous individuals across heterogeneous locations

Introduction	Model	Data	Identification	Results	Robustness	Summary

What we do – Empirics

Estimate effects of Highway Access on

- Size: Number of residents and number of workers
- Composition: Income and skill distributions
- Commuting and urban sprawl

What we do – Empirics

Estimate effects of Highway Access on

- Size: Number of residents and number of workers
- Composition: Income and skill distributions
- Commuting and urban sprawl

Identification:

- Swiss non-urban municipalities
- Use variation over time ('within')
- Deviations from
 - Municipality-specific time trends
 - Countrywide macro shocks

Summary

What we find – Theory

Model

Highway access

- Raises attractiveness of a municipality
- Improves Commuting Access
 - \rightarrow Attracts residents
 - \rightarrow Attracts firms and workers

Effect is stronger for the higher skilled

Result

Robustness

Summary

What we find – Empirics

Model

Long-term impact of Highway Access on

- Municipality size:
 - +12% residents (#taxpayers)

Data

• +6% employment

Summary

What we find – Empirics

Model

Long-term impact of Highway Access on

- Municipality size:
 - +12% residents (#taxpayers)
 - +6% employment

2 Municipality composition (shares):

- -7% low-income taxpayers (below median)
- +23% high-income taxpayers (top 10%)
- +20% highly-educated workers (university degree)

What we find – Empirics

Model

Long-term impact of Highway Access on

Municipality size:

- +12% residents (#taxpayers)
- +6% employment

2 Municipality **composition** (shares):

- -7% low-income taxpayers (below median)
- +23% high-income taxpayers (top 10%)
- +20% highly-educated workers (university degree)

3 Commuting:

- +43% share high-skilled in-commuters
- +21% share high-skilled out-commuters

Summary

What we find – Empirics

Model

Long-term impact of Highway Access on

Municipality size:

• +12% residents (#taxpayers)

Data

• +6% employment

2 Municipality **composition** (shares):

- -7% low-income taxpayers (below median)
- +23% high-income taxpayers (top 10%)
- +20% highly-educated workers (university degree)

3 Commuting:

- +43% share high-skilled in-commuters
- +21% share high-skilled out-commuters

4 Sprawl:

- Decentralization of jobs and residences
- More pronounced for high-skilled

Why should we care?

Model

Transportation infrastructures are costly (Redding Turner 2015)

- US Interstate Construction Program \$128.9 billion (1991 USD)
- Chinese National Trunk Highway System: \$120 billion (current USD)
- 20% of World Bank lending (Baum-Snow Henderson Turner Zhang Brandt 2018)
- May not be cost effective (Duranton Turner 2012, Gonzalez-Navarro Turner 2018)

Why should we care?

Model

Transportation infrastructures are costly (Redding Turner 2015)

- US Interstate Construction Program \$128.9 billion (1991 USD)
- Chinese National Trunk Highway System: \$120 billion (current USD)
- 20% of World Bank lending (Baum-Snow Henderson Turner Zhang Brandt 2018)
- May not be cost effective (Duranton Turner 2012, Gonzalez-Navarro Turner 2018)

Highways shape the economic geography

- Sub-urbanization of US population 1950-90 (Baum-Snow 2007)
- Sub-urbanization of US jobs 1960-2000 (Baum-Snow 2010)
- Sub-urbanization of population and jobs in China (Baum-Snow et al.)
- Sub-urbanization in Europe (Garcia-López Pasidis Viladecans-Marsal 2016)
- De-industrialization of peripheral Chinese counties (Faber 2014)
- Sector specialization of cities (Duranton Morrow Turner 2014)
- So do subways and other modes (Gonzalez-Navarro Turner 2018)

Why should we care?

Model

Transportation infrastructures are costly (Redding Turner 2015)

- US Interstate Construction Program \$128.9 billion (1991 USD)
- Chinese National Trunk Highway System: \$120 billion (current USD)
- 20% of World Bank lending (Baum-Snow Henderson Turner Zhang Brandt 2018)
- May not be cost effective (Duranton Turner 2012, Gonzalez-Navarro Turner 2018)

Highways shape the economic geography

- Sub-urbanization of US population 1950-90 (Baum-Snow 2007)
- Sub-urbanization of US jobs 1960-2000 (Baum-Snow 2010)
- Sub-urbanization of population and jobs in China (Baum-Snow et al.)
- Sub-urbanization in Europe (Garcia-López Pasidis Viladecans-Marsal 2016)
- De-industrialization of peripheral Chinese counties (Faber 2014)
- Sector specialization of cities (Duranton Morrow Turner 2014)
- So do subways and other modes (Gonzalez-Navarro Turner 2018)

Regional disparities: Sorting matters

- Urban premium (Combes Duranton Gobillon 2008, Davis Dingle 2018)
- Real vs. nominal wage inequality (Moretti 2013, Diamond 2016)
- Skill composition (Glaeser 2008, Glaeser Resseger Tobio 2009, Davis Dingle 2017)

Introduction	Model	Data	Identification	Results	Robustness	Summary

Plan

1 Introduction

3 Data

4 Identification

6 Robustness

Introduction	Model	Data	Identification	Results	Robustness	Summary
--------------	-------	------	----------------	---------	------------	---------

Model

Workers and Geography

- Workers have heterogeneous abilities ('skills' s)
- Live in municipality *n* and works in municipality *i*

Introduction Model	Data	Identification	Results	Robustness	Summar
--------------------	------	----------------	---------	------------	--------

Model

Workers and Geography

- Workers have heterogeneous abilities ('skills' s)
- Live in municipality *n* and works in municipality *i*

Preferences and location choices

- Non-homothetic preferences
- Housing as income inelastic good
- Frechet idiosyncratic preferences over (n, i)
- Fraction of type *s* choosing pair (*n*, *i*):

$$\lambda_{nis} = \left(\frac{V_{nis}}{\mathbb{E}V_s}\right)^{\kappa}, \qquad V_{nis} = \frac{B_n B_i}{d_{ni}} \frac{w_s}{(q_n)^{1-\alpha}} \left(1 - h \frac{q_n}{w_s}\right)$$

Introduction	Model	Data	Identification	Results	Robustness	Summai

Model

Workers and Geography

- Workers have heterogeneous abilities ('skills' s)
- Live in municipality *n* and works in municipality *i*

Preferences and location choices

- Non-homothetic preferences
- Housing as income inelastic good
- Frechet idiosyncratic preferences over (n, i)
- Fraction of type *s* choosing pair (*n*, *i*):

$$\lambda_{\textit{nis}} = \left(rac{V_{\textit{nis}}}{\mathbb{E}V_{s}}
ight)^{\kappa}, \qquad V_{\textit{nis}} = rac{B_{n}B_{i}}{d_{ni}}rac{w_{s}}{(q_{n})^{1-lpha}}\left(1-hrac{q_{n}}{w_{s}}
ight)$$

Implications

- High-B_n locations attract more people
- Command higher housing prices q_n
- Attract high-s residents disproportionately
- Highway connection of either i or n raises B_n or B_i
- $ightarrow \uparrow$ Commuting Access attracts high-s types disproportionately

Highways, Market Access, and Spatial Sorting

Qualitative predictions

Highway Access \Rightarrow

- **1** Size: Employment and #Residents increase.
- 2 Composition: Shift to the right to wage and skill distributions.
- Ormuting: Ambiguous but strongest in absolute value for highest skilled workers.
- 4 Sprawl: idem.

Introduction	Model	Data	Identification	Results	Robustness	Summary
--------------	-------	------	----------------	---------	------------	---------

Plan

1 Introduction

3 Data

4 Identification

6 Robustness

Introduction	Model	Data	Identification	Results	Robustness	Summary
_						
Data						
Data						

Municipality employment, residence, and composition

- Swiss municipalities
- #Taxpaying units: Federal income statistics 1949-2010
- Residential-workplace pairs by education level: Census 1970, 80,...,2010

Introduction	Model	Data	Identification	Results	Robustness	Summary
Data						
Data						

Municipality employment, residence, and composition

- Swiss municipalities
- #Taxpaying units: Federal income statistics 1949-2010
- Residential-workplace pairs by education level: Census 1970, 80,...,2010

Expansion of Highway Network

- Access points: Swiss Federal Office of Topography (VECTOR200)
- Opening dates: Swiss Federal Roads Office (ASTRA)
 - Fischer and Volk (1999)
 - Publicly available sources (newspaper articles, press releases)

Introduction	Model	Data	Identification	Results	Robustness	Summary
Data						
Data						

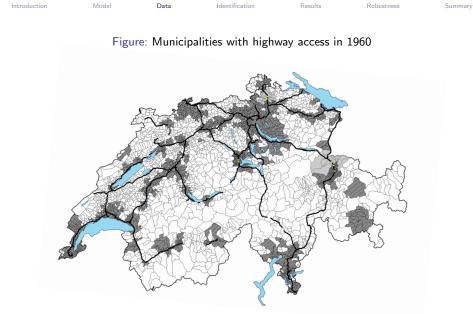
Municipality employment, residence, and composition

- Swiss municipalities
- #Taxpaying units: Federal income statistics 1949-2010
- Residential-workplace pairs by education level: Census 1970, 80,...,2010

Expansion of Highway Network

- Access points: Swiss Federal Office of Topography (VECTOR200)
- Opening dates: Swiss Federal Roads Office (ASTRA)
 - Fischer and Volk (1999)
 - Publicly available sources (newspaper articles, press releases)

Auxiliary data


• Railway stops: Swiss Federal Office of Transport (FOT)

Data

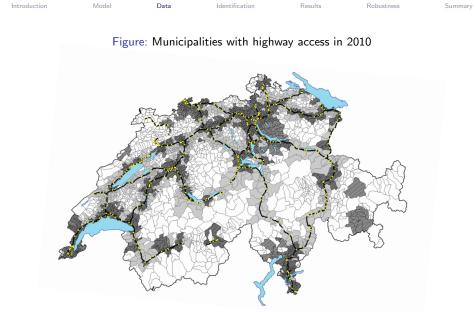

Model

Table: Summary Statistics – Municipalities

	All municipalities	Non-agglomeration municipalities	Non-agglomeration municipalities, access within 10 km	Urban centers
	(1)	(2)	(3)	(4)
Population (in 1,000)	2.73	1.14	1.18	64.10
	(10.72)	(1.42)	(1.47)	(75.48)
#Taxpayers (in 1,000)	0.83	0.31	0.33	25.41
	(4.04)	(0.47)	(0.49)	(31.99)
Share in bottom-50% income	0.57	0.61	0.59	0.50
	(0.12)	(0.11)	(0.10)	(0.06)
Share in 50-25% quartile	0.23	0.23	0.23	0.25
	(0.05)	(0.06)	(0.05)	(0.02)
Share in top-25-10%	0.12	0.11	0.11	0.15
	(0.05)	(0.05)	(0.05)	(0.02)
Share in top-10% decile	0.08	0.06	0.06	0.10
	(0.06)	(0.04)	(0.04)	(0.03)
#Workers (in 1,000)	1.25	0.43	0.43	48.83
	(8.15)	(0.69)	(0.72)	(65.60)
Share with low education	0.34	0.37	0.36	0.24
	(0.17)	(0.18)	(0.17)	(0.09)
Share with middle education	0.53	0.52	0.53	0.54
	(0.12)	(0.13)	(0.13)	(0.06)
Share with high education	0.13	0.11	0.12	0.22
	(0.09)	(0.09)	(0.09)	(0.11)
Railway station	0.39	0.34	0.34	1.00
	(0.49)	(0.47)	(0.47)	(0.00)

Note: Shaded areas denote municipalities that are part of an urban agglomeration area as defined by the Federal statistical office in 2000. Municipalities with highway access within 10km road distance are in light gray. Access points are in yellow.

Note: Shaded areas denote municipalities that are part of an urban agglomeration area as defined by the Federal statistical office in 2000. Municipalities with highway access within 10km road distance are in light gray. Access points are in yellow.

Intro	

Data

Model

Identification

Results

Robustness

Summary

Plan

1 Introduction

2 Model

3 Data

4 Identification

6 Robustness

7 Summary

Highways, Market Access, and Spatial Sorting

Introduction	Model	Data	Identification	Results	Robustness	Summary
Identific	ation					

Identification

- Network planned in 1960
- Aim: connect major cities (as in e.g. Faber 2014)
- Gradually developed over time (as in e.g. Donaldson 2018)
- Municipality-specific time trend

Introduction	Model	Data	Identification	Results	Robustness	Summary
Identifi	cation					

Identification

- Network planned in 1960
- Aim: connect major cities (as in e.g. Faber 2014)
- Gradually developed over time (as in e.g. Donaldson 2018)
- Municipality-specific time trend

Sample

- Municipalities that eventually get Highway Access within 10km
- (Also experiment with other distances)

luctio	

Data

Model

Identification

Summary

Table: Summary Statistics – Timing

Mean values for period 1949-1955 for sample of municipalities

	All opening years (1)	Access opened before 1970 (2)	Access opened 1970-1990 (3)	Access opened after 1990 (4)	Test equality p-value
Population (in 1,000)	0.95	0.98	0.92	0.85	0.54
	(1.15)	(1.32)	(1.00)	(0.89)	
#Taxpayers (in 1,000)	0.16	0.18	0.15	0.15	0.42
	(0.25)	(0.30)	(0.21)	(0.20)	
#Taxpayers growth rate	-7.27	-6.93	-7.73	-6.43	0.18
	(30.29)	(29.00)	(31.37)	(29.93)	
Share in bottom-50% income	0.62	0.62	0.63	0.61	0.06
	(0.10)	(0.10)	(0.10)	(0.10)	
Share in 50-25% quartile	0.21	0.21	0.21	0.21	0.10
	(0.06)	(0.06)	(0.06)	(0.06)	
Share in top-25-10%	0.11	0.11	0.10	0.11	0.11
	(0.06)	(0.06)	(0.06)	(0.06)	
Share in top-10% decile	0.06	0.07	0.06	0.06	0.12
	(0.04)	(0.05)	(0.04)	(0.04)	
#Workers (in 1,000)	0.37	0.38	0.37	0.32	0.55
	(0.51)	(0.62)	(0.43)	(0.38)	
#Residents (in 1,000)	0.40	0.43	0.39	0.35	0.39
	(0.49)	(0.59)	(0.42)	(0.37)	
Railway station	0.33	0.29	0.35	0.40	0.13
	(0.47)	(0.46)	(0.48)	(0.49)	
# Municipalities	782	313	386	83	- 29

Highways, Market Access, and Spatial Sorting

S. Fretz, R. Parchet, F. Robert-Nicoud

Introduction	Model	Data	Identification	Results	Robustness	Summary
Identifica	ation (c	ont.)				

Specification

 $\ln n_{i,t} = \gamma \operatorname{Access}_{i,t} + \sum_{\tau=1}^{10} \beta_{\tau} \left(\operatorname{Access}_{i,t-\tau} - \operatorname{Access}_{i,t} \right) + \alpha_i + \rho_i t + \lambda_t + \varepsilon_{i,t}$

- γ : Long term effect (variable of interest)
- $\{\beta_{\tau}\}$: Transition effects

Introduction	Model	Data	Identification	Results	Robustness	Summary
Identific	ation (c	ont.)				

Specification

 $\ln n_{i,t} = \gamma \operatorname{Access}_{i,t} + \sum_{\tau=1}^{10} \beta_{\tau} \left(\operatorname{Access}_{i,t-\tau} - \operatorname{Access}_{i,t} \right) + \alpha_{i} + \rho_{i} t + \lambda_{t} + \varepsilon_{i,t}$

- γ : Long term effect (variable of interest)
- $\{\beta_{\tau}\}$: Transition effects

Within Estimator - deviation from

- time invariant characteristics: α_i
- individual time trend: ρ_i
- countrywide macro shocks: λ_t (two different ones)
 - municipalities endowed with a railway station
 - without a railway station

	ucti	

Data

Model

Identification

ation

Results

Robustness

Summary

Plan

1 Introduction

2 Model

3 Data

4 Identification

6 Robustness

7 Summary

Highways, Market Access, and Spatial Sorting

Municipality Size (1) and Composition (2) – Taxpayers

Table: Impact of highway access on number and composition of taxpayers

Municipalities not part of urban agglomeration areas, access within 10 \mbox{km}

	# Taxpayers		Share of taxpayers by income quantile				
	(1)	(2)	below 50% (3)	top 50%-25% (4)	top 25%-10% (5)	top 10% (6)	
Long-term effect $(\hat{\gamma})$	0.100*** (0.024)	0.111*** (0.018)	-0.070*** (0.011)	0.065*** (0.017)	0.184*** (0.027)	0.208*** (0.046)	
10 periods lag included	Yes	Yes	Yes	Yes	Yes	Yes	
Municipality fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	
Municipality time trends	No	Yes	Yes	Yes	Yes	Yes	
Year fixed effects	Yes	(Yes)	No	No	No	No	
Year-rail fixed effects	No	Yes	Yes	Yes	Yes	Yes	
# Observations # Municipalities				23243 780			

Summary

Results

- Positive effect on size
- Right-shift of the income distribution

Results

- Positive effect on size
- Right-shift of the income distribution

Possible mechanisms

- Heterogeneous effect on earnings or income sorting?
- Residential or job mobility?

Results

- Positive effect on size
- Right-shift of the income distribution

Possible mechanisms

- Heterogeneous effect on earnings or income sorting?
- Residential or job mobility?

Census data

- Residents and Workers by education level
- $\rightarrow~$ Commuting and Sprawl
 - But shorter panel (1970-2010)

Introduction

Data

(3) Commuting – Census

Model

Table: Impact of highway access on commuting

∦ Em	ployees	Share of employees by education level		
 (1)	(2)	low (3)	middle (4)	high (5)

Panel C: Out-commuters

Long-term effect $(\hat{\gamma})$				-0.079** (0.033)	
# Observations # Municipalities	5197	3602	3602	3602	3602
	782	771	771	771	771

Panel D: In-commuters

Long-term effect $(\hat{\gamma})$	0.146*	0.080	0.087	-0.122**	0.359**
	(0.081)	(0.090)	(0.094)	(0.054)	(0.156)
# Observations	4901	2722	2722	2722	2722
# Municipalities	779	661	661	661	661

Highways, Market Access, and Spatial Sorting

(4) Sprawl – Census

Table: Impact of highway access on urban sprawl (27 cities)

# Emp	ployees	Share of employees by education level			
(1)	(2)	low (3)	middle (4)	high (5)	

Panel C: Out-commuters

Long-term effect (center)	-0.213**	-0.245**	1.170***	-0.274***	-0.741***
	(0.085)	(0.102)	(0.148)	(0.067)	(0.122)
	(0.085)	(0.102)	(0.148)	(0.067)	(0.122)
Long-term effect (\leq 20 km)	0.026	-0.008	0.056	-0.119***	0.061
	(0.036)	(0.041)	(0.053)	(0.025)	(0.065)
Long-term effect (21-40 km)	0.168***	0.030	0.009	-0.060*	0.091
	(0.044)	(0.047)	(0.067)	(0.036)	(0.085)
Long-term effect (>40 km)	0.258**	0.023	0.137	-0.019	0.147
	(0.111)	(0.121)	(0.161)	(0.073)	(0.221)
# Observations	10257	7307	7307	7307	7307
# Municipalities	1528	1517	1517	1517	1517

Data

Summary

Robustness

(4) Sprawl – Census (cont.)

Model

Table: Impact of highway access on employment size and composition (27 cities)

# Em	ployees	Share of employees by education level		
(1)	(2)	low (3)	middle (4)	high (5)

Panel D: In-commuters

Long-term effect (center)	-0.150*	-0.194*	-0.364***	-0.039	0.123
	(0.079)	(0.105)	(0.138)	(0.059)	(0.146)
Long-term effect (\leq 20 km)	0.137*	0.138*	0.071	-0.099***	0.306***
	(0.070)	(0.073)	(0.073)	(0.037)	(0.115)
Long-term effect (21-40 km)	0.186*	0.051	0.095	-0.072	0.375**
	(0.095)	(0.091)	(0.089)	(0.051)	(0.146)
Long-term effect (>40 km)	0.252	-0.142	0.270	-0.159	0.430
	(0.221)	(0.179)	(0.189)	(0.102)	(0.302)
# Observations	9890	6180	6180	6180	6180
# Municipalities	1525	1391	1391	1391	1391

	ucti	

Data

Model

Identification

Results

Robustness

Summary

Plan

1 Introduction

2 Model

3 Data

4 Identification

6 Robustness

Introduction Model Data Identification Results Robustness	Summary
---	---------

Robustness Checks and Additional Specifications

Robustness checks

- Size and Composition effects: census data CENSUS
- Placebo test for opening years PLACEBO
- Include all non-urban municipalities (diff-in-diff)

Additional specifications

- Railway stations
 RAIL
- Initial conditions RESIDENTS/WORKERS EMPLOYMENT IN SECTOR II
- Distance to urban centers DIST
- Opening period OPEN
- Heterogeneous effects HETERO
- Impact over time and leads LEADS

Introduction	Model	Data	Identification
--------------	-------	------	----------------

Results

Robustness

Summary

Plan

1 Introduction

2 Model

3 Data

4 Identification

6 Robustness

Summary and Conclusions

Model

Highways matter

1 Size

- +12% residents/taxpayers
- 2 Composition: Sorting matters!
 - -7% share of below-median taxpayers
 - +20% share of workers with university degrees
- 8 Commuting
 - +43% share of in-commuters with university degree
 - +21% share of out-commuters with university degree

4 Sprawl

- Suburbanization of jobs and residences
- High-skill jobs least affected
- High-skill residents move out of city centres

Highways contribute to sub-urbanization of residences and jobs

 $\rightarrow\,$ Implications for spatial disparities and tax competition.

Introduction

Data

Model

Identification

Results

Robustness

Summary

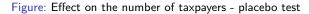
Appendix

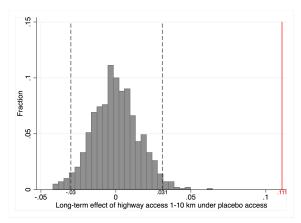
Highways, Market Access, and Spatial Sorting

44 S. Fretz, R. Parchet, F. Robert-Nicoud Data

Model

Appendix - Size and Composition Effects: Census Data


Table: Impact of highway access on employment size and composition


	# Employees		Share of employees by education level		
	(1)	(2)	low (3)	middle (4)	high (5)
Panel A: Residents					
Long-term effect $(\hat{\gamma})$	0.075***	0.001	-0.016	-0.085***	0.103
	(0.022)	(0.037)	(0.047)	(0.029)	(0.077)
# Observations # Municipalities	5201	3750	3750	3750	3750
	782	781	781	781	781
Panel B: Workers					
Long-term effect $(\hat{\gamma})$	0.049	0.025	0.085	-0.101***	0.181**
	(0.034)	(0.052)	(0.059)	(0.037)	(0.083)
# Observations# Municipalities	5114	3568	3568	3568	3568
	782	771	771	771	771

Appendix – Placebo

Note: Highway access opening date randomized 1000 times. Dashed lines show the implied estimate for which an effect is statistically significant at a 5% significance level. Red line is the coefficient from the baseline regression.

Appendix – Diff-in-diff

Table: Impact of highway access on number and composition of taxpayers

	No taxpayers		Share of taxpayers			
	(1)	(2)	below 50% (3)	top 50%-25% (4)	top 25%-10% (5)	top 10% (6)
Long-term $(\hat{\gamma})$	0.079*** (0.021)	0.110*** (0.017)	-0.066*** (0.010)	0.047*** (0.016)	0.190*** (0.026)	0.239*** (0.047)
10 periods lag included	Yes	Yes	Yes	Yes	Yes	Yes
Municipality fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Municipality time trends	No	Yes	Yes	Yes	Yes	Yes
Year fixed effects	Yes	No	No	No	No	No
Year-rail fixed effects	No	Yes	Yes	Yes	Yes	Yes
# Observations				40537		
# Municipalities				1389		

Table: Impact of highway access on tax base - Interaction with railway access

	No taxpayers	Share of taxpayers				
	(1)	below 50% (2)	top 50%-25% (3)	top 25%-10% (4)	top 10% (5)	
Long-term effect (no rail)	0.116*** (0.024)	-0.068*** (0.014)	0.064*** (0.023)	0.196*** (0.038)	0.287*** (0.064)	
Long-term effect (rail)	0.102*** (0.025)	-0.074*** (0.015)	0.067*** (0.021)	0.160*** (0.033)	0.065 (0.059)	
<pre># Observations # Municipalities</pre>			23243 780			

Appendix – Initial Conditions: Residents/Workers

Table: Impact of highway access on tax base - Interaction with 1949 ratio residents/workers

	No taxpayers	Share of taxpayers				
	(1)	below 50% (2)	top 50%-25% (3)	top 25%-10% (4)	top 10% (5)	
Long-term effect $(\hat{\gamma})$	0.119*** (0.019)	-0.064*** (0.011)	0.058*** (0.017)	0.169*** (0.027)	0.157*** (0.045)	
$\begin{array}{l} Long-term \ effect \ \times \\ \left[ln(\mathit{ratio}_i) - ln(\mathit{ratio}_{\mathit{median}})\right] \end{array}$	-0.123 (0.079)	-0.104** (0.049)	0.142** (0.071)	0.336** (0.131)	0.170 (0.286)	
# Observations # Municipalities			20423 655			

Model

Appendix – Initial Conditions: Residents/Workers (cont.)

Table: Impact of highway access on commuting - Interaction with 1949 ratio residents/workers

	# Employees		Share of employees by education level		
	(1)	(2)	low (3)	middle (4)	high (5)
Panel C: Out-commuters					
Long-term effect $(\hat{\gamma})$	0.056	0.044	0.038	-0.096**	0.183*
	(0.038)	(0.047)	(0.071)	(0.041)	(0.096)
$\begin{array}{l} Long-term \ effect \ \times \\ [ln(\mathit{ratio}_i) - ln(\mathit{ratio}_{\mathit{median}})] \end{array}$	-0.082	-0.244	0.073	0.047	0.534
	(0.159)	(0.169)	(0.251)	(0.124)	(0.325)
# Observations# Municipalities	4693	3124	3124	3124	3124
	681	671	671	671	671
Panel D: In-commuters					
Long-term effect $(\hat{\gamma})$	0.092	0.010	0.045	-0.069	0.300*
	(0.085)	(0.109)	(0.115)	(0.062)	(0.176)
$\begin{array}{l} Long-term \ effect \ \times \\ [ln(\mathit{ratio}_i) - ln(\mathit{ratio}_{\mathit{median}})] \end{array}$	0.060	0.884**	0.186	-0.061	-0.328
	(0.321)	(0.374)	(0.375)	(0.215)	(0.619)
# Observations	4400	2304	2304	2304	2304
# Municipalities	678	565	565	565	565

Appendix – Initial Conditions: Sector II Employment Share

Table: Impact of highway access on tax base - Interaction with 1955 share of employment in secondary sector

	No taxpayers	Share of taxpayers				
	(1)	below 50% (2)	top 50%-25% (3)	top 25%-10% (4)	top 10% (5)	
Long-term effect $(\hat{\gamma})$	0.095*** (0.018)	-0.073*** (0.011)	0.070*** (0.016)	0.182*** (0.027)	0.182*** (0.047)	
$\begin{array}{l} Long-term \ effect \ \times \\ [ln(\mathit{ratio}_i) - ln(\mathit{ratio}_{\mathit{median}})] \end{array}$	-0.068* (0.038)	0.007 (0.029)	-0.046 (0.047)	-0.007 (0.065)	-0.187 (0.140)	
# Observations # Municipalities			22245 723			

Model

Summary

Appendix – Initial Conditions: Sector II Employment Share (cont.)

Table: Impact of highway access on commuting - Interaction with 1955 share of employment in secondary sector

	# Employees		Share of employees by education level		
	(1)	(2)	low (3)	middle (4)	high (5)
Panel C: Out-commuters					
Long-term effect $(\hat{\gamma})$	-0.009	-0.016	-0.000	-0.082**	0.211**
	(0.037)	(0.038)	(0.060)	(0.033)	(0.085)
$Long-term \ effect \ imes \ [\ln(\mathit{ratio}_i) - \ln(\mathit{ratio}_{\mathit{median}})]$	-0.145*	-0.211**	0.013	-0.020	0.117
	(0.078)	(0.087)	(0.135)	(0.064)	(0.154)
# Observations# Municipalities	5017	3526	3526	3526	3526
	754	748	748	748	748
Panel D: In-commuters					
Long-term effect $(\hat{\gamma})$	0.101	0.073	0.079	-0.126**	0.347**
	(0.079)	(0.089)	(0.094)	(0.054)	(0.152)
$Long-term \ effect \ imes \ [ln(\mathit{ratio}_i) - ln(\mathit{ratio}_{\mathit{median}})]$	-0.330**	-0.287	-0.084	-0.164	0.213
	(0.166)	(0.277)	(0.224)	(0.151)	(0.319)
<pre># Observations # Municipalities</pre>	4790	2704	2704	2704	2704
	753	655	655	655	655

Highways, Market Access, and Spatial Sorting

S. Fretz, R. Parchet, F. Robert-Nicoud

52

Summary

Appendix – Distance to urban centers

Table: Impact of highway access on tax base - Interaction with distance to city centers

	No taxpayers		Share of taxpayers			
	(1)	below 50% (2)	top 50%-25% (3)	top 25%-10% (4)	top 10% (5)	
Long-term effect ($<$ 20 km)	0.040* (0.021)	-0.078*** (0.016)	0.106*** (0.025)	0.173*** (0.040)	0.171** (0.077)	
Long-term effect (\geq 20 km)	0.173*** (0.027)	-0.053*** (0.014)	0.027 (0.023)	0.191*** (0.038)	0.234*** (0.060)	
# Observations # Municipalities			23018 765			

Appendix – Opening period

Table: Impact of highway access on tax base - Interaction with highway opening period

	No taxpayers	Share of taxpayers				
	(1)	below 50% (2)	top 50%-25% (3)	top 25%-10% (4)	top 10% (5)	
Long-term effect (before 1971)	0.158*** (0.056)	-0.016 (0.030)	-0.013 (0.045)	0.125 (0.083)	0.308* (0.169)	
Long-term effect (after 1971)	0.144*** (0.024)	-0.011 (0.016)	0.012 (0.027)	-0.028 (0.049)	-0.134 (0.088)	
# Observations # Municipalities			23018 765			

Introduction

Model

Identification

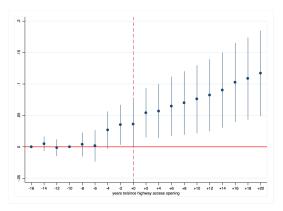
Results

Appendix – Heterogeneous Effects

Data

Table: Impact of highway access on tax base - Distance bands

	No taxpayers	Share of taxpayers				
	(1)	below 50% (2)	top 50%-25% (3)	top 25%-10% (4)	top 10% (5)	
Long-term (0-5 km)	0.099***	-0.059***	0.009	0.137***	0.281***	
	(0.028)	(0.016)	(0.026)	(0.039)	(0.068)	
Long-term (5-10 km)	0.107***	-0.081***	0.086***	0.280***	0.289***	
	(0.022)	(0.013)	(0.022)	(0.036)	(0.063)	
Long-term (10-15 km)	0.008	-0.038***	0.044**	0.138***	0.202***	
	(0.023)	(0.012)	(0.021)	(0.032)	(0.056)	
Long-term (15-20 km)	-0.001	-0.015	0.011	0.069**	0.112*	
	(0.024)	(0.012)	(0.022)	(0.034)	(0.059)	
# Observations # Municipalities			37043 1259			



Highways, Market Access, and Spatial Sorting

Appendix – Leads

Figure: Effect on number of taxpayers over time

Note: The figure shows the point estimates of dummy variables for 16 years before and up to 20 years after the opening of the highway access. The last dummy variables takes the value 1 after 20 years and during all years thereafter. The (balanced) sample includes all municipalities with a highway connection opened between 1969 and 1989. The regression includes municipality fixed effects, time fixed effects and municipality-specific linear time trends. Two-year panel covering the period 1949-2010.

ВАСК

Highways, Market Access, and Spatial Sorting