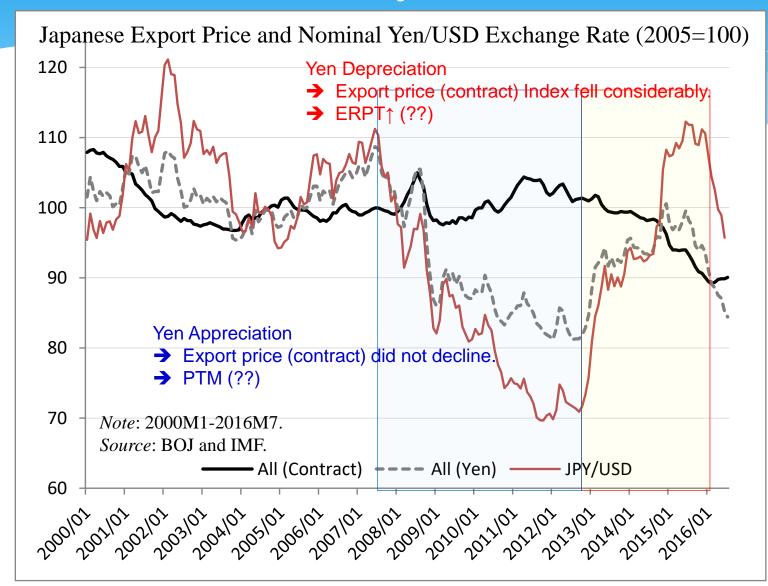
REITI-IWEP-CESSA Joint-Workshop Exchange Rate and International Currency: Perspective from China and Japan Beijing, 19 November 2016

Firm's Predicted Exchange Rate and Nonlinearities in Pricing-to-Market

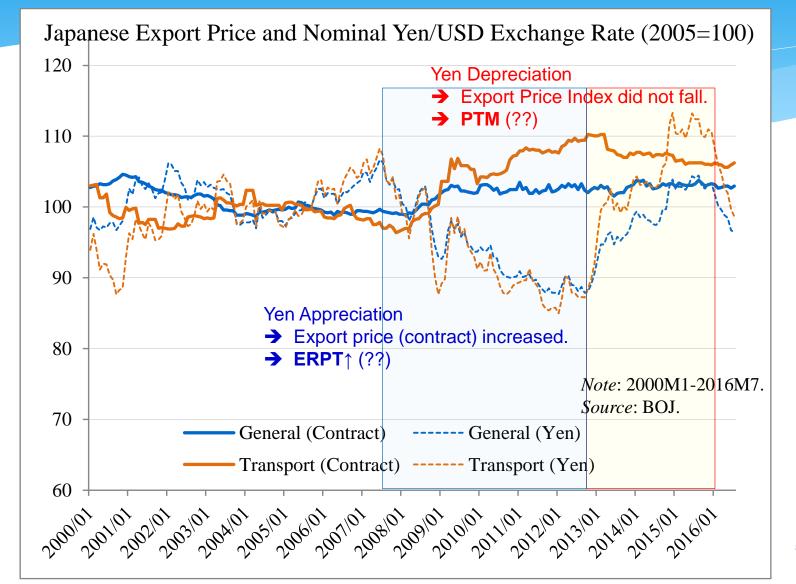
Thi-Ngoc-Anh Nguyen (Yokohama National University and JSPS) Kiyotaka Sato (Yokohama National University)

Outline

1. Introduction: Motivation and Literature Review


2. Empirical Analysis: Model and Data

3. Results


4. Concluding Remarks

INTRODUCTION — Motivation and Literature Review —

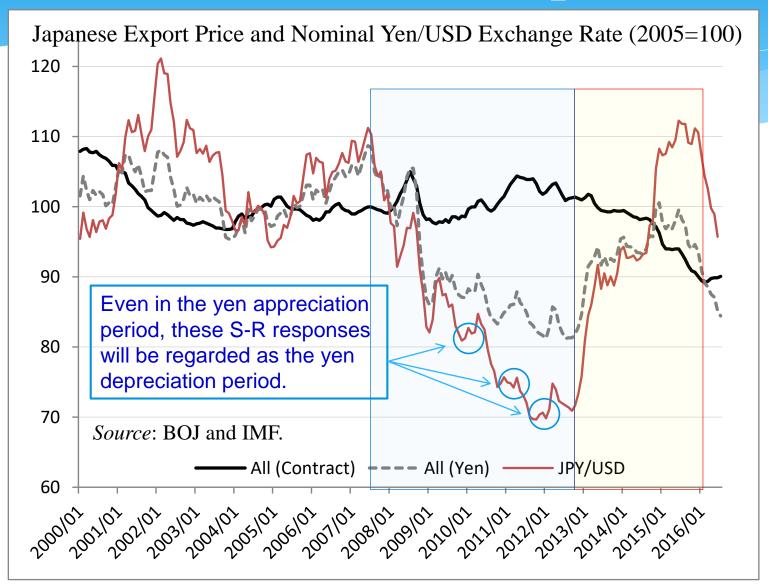
Motivation 1: Asymmetric ERPT

Motivation 1: Asymmetric ERPT

Motivation 1: Asymmetric ERPT

- ERPT/PTM behavior of Japanese firms:
 - ✓ Likely different across industries.
 - May differ between yen appreciation and depreciation periods.
- Object
 - To analyze possible differences in ERPT/PTM between yen appreciation and depreciation periods

How to distinguish between yen appreciation and depreciation periods?


• Knetter (1994), Mahdavi (2002), Pollard and Coughlin (2004)

 $\Delta E > 0 \implies$ Exchange rate depreciation period

 $\Delta E < 0 \implies$ Exchange rate appreciation period

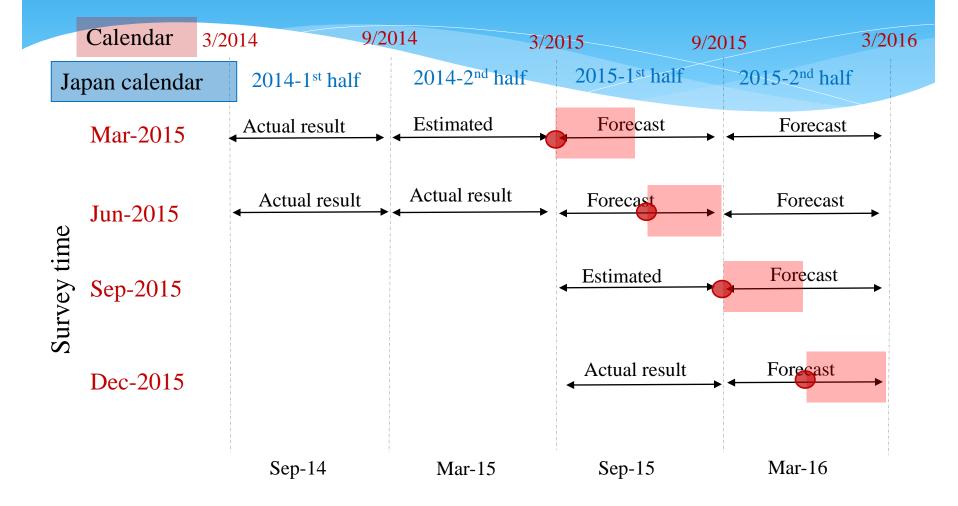
However, ...

<u>Changes</u> in the monthly exchange rate series do not correctly capture the yen appreciation/depreciation periods.

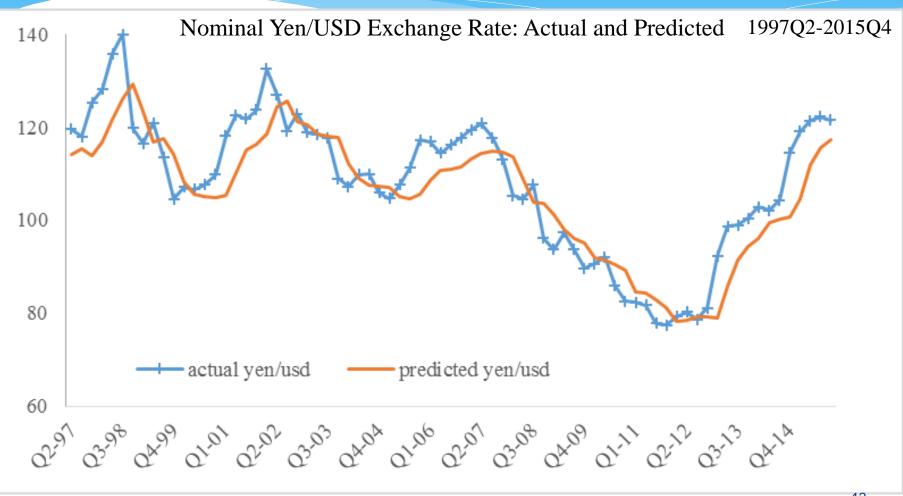
• Balke and Fomby (1997), Belke *et al.* (2009), Belke *et al.* (2012)

 $\Delta E > c$ \implies Exchange rate depreciation period

 $-c < \Delta E < c \implies$ Inaction band


 $\Delta E < -c$ \implies Exchange rate appreciation period

The method to choose critical value *c* remains <u>ambiguous.</u>


Firms predict exchange rate and use it as a reference when setting export price.

- Use expected exchange rates as a threshold specification
 - ✓ rarely used in the literature because of its unavailability.
 - Bank of Japan conducts Tankan survey quarterly, including a question about firms predicted exchange rate

Predicted exchange rate – Tankan data

Predicted and actual exchange rate

Source: BOJ and IMF.¹²

Research motivation

• To test the possible nonlinearity of PTM level in Japanese export using a new threshold specification method

Model: Nonlinear Autoregressive Distributed Lag (NARDL)

Data: World IPI, NEER, Input price, Yen-based export price Threshold data: JPY/USD actual and predicted exchange rate

Sample period: From 1997M4 to 2015M12.

Empirical Analysis
— Model and Data—

ARDL Model

• PTM in long- and short-run

$$\Delta ex_{t} = \pi \underbrace{+ \theta_{1} ex_{t-1}}_{j=1} \underbrace{+ \theta_{2} er_{t-1}}_{k=0} + \theta_{4} dp_{t-1} + \theta_{5} ipi_{t-1}$$

$$+ \sum_{j=1}^{n} \alpha_{j} \Delta ex_{t-j} + \sum_{k=0}^{o} \beta_{k} \Delta er_{t-k} + \sum_{l=0}^{p} \gamma_{l} \Delta dp_{t-l} + \sum_{m=0}^{q} \delta_{m} \Delta ipi_{t-m} + \mu_{t}$$

• Cointergration test

F-test
$$H_0: \theta_1 = \theta_2 = \theta_3 = \theta_4 = 0$$

t-test $H_0: \theta_1 = 0$

NARDL Model

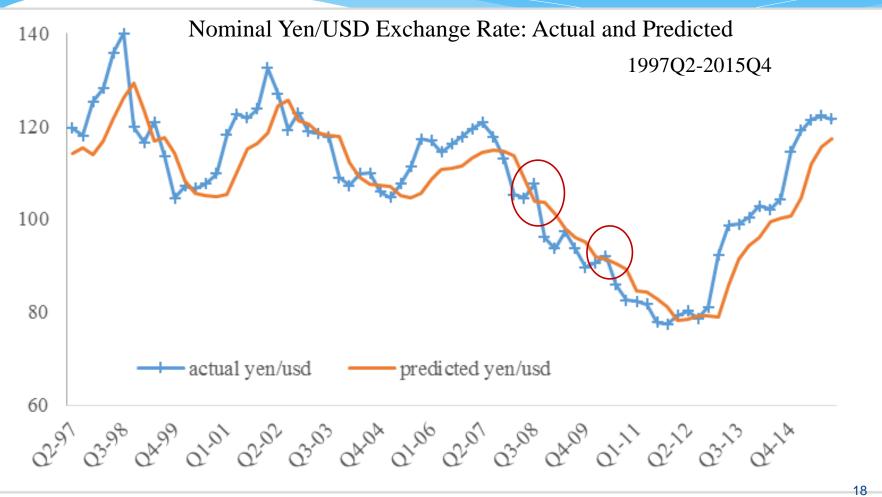
$$\Delta ex_{t} = \pi + \theta_{1}ex_{t-1} + \theta_{2}^{+}er_{t-1}^{+} + \theta_{3}^{-}er_{t-1}^{-} + \theta_{4}dp_{t-1} + \theta_{5}ipi_{t-1}$$
$$+ \sum_{j=1}^{n} \alpha_{j}\Delta ex_{t-j} + \sum_{k=0}^{o} \left(\beta_{k}^{+}\Delta er_{t-k}^{+} + \beta_{k}^{-}\Delta er_{t-k}^{-}\right) + \sum_{l=0}^{p} \gamma_{l}\Delta dp_{t-l} + \sum_{m=0}^{q} \delta_{m}\Delta ipi_{t-m} + \mu_{t}$$

Where er^+ captures the depreciation regime er^- captures the appreciation regime

Cointegration testAsymmetry testF-test
$$H_0: \theta_1 = \theta_2^+ = \theta_3^- = \theta_4 = \theta_5 = 0$$
LR $H_0: -\theta_2^+/\theta_1 = -\theta_3^-/\theta_1$ t-test $H_0: \theta_1 = 0$ SR $H_0: \beta_k^+ = \beta_k^-$ for $k=0,...,0$ or $H_0: \sum_{k=0}^o \beta_k^+ = \sum_{k=0}^o \beta_k^-$

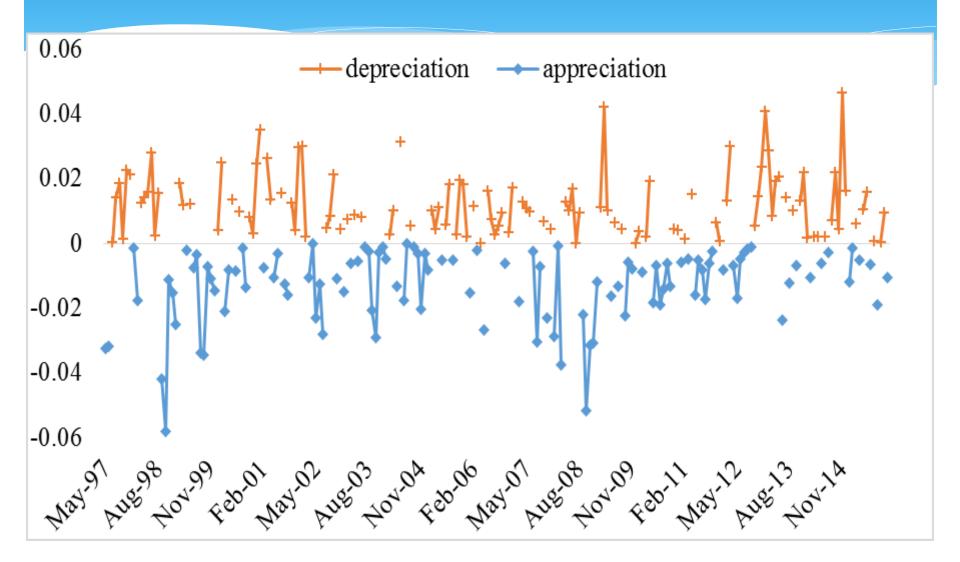
Regime specification

Conventional threshold

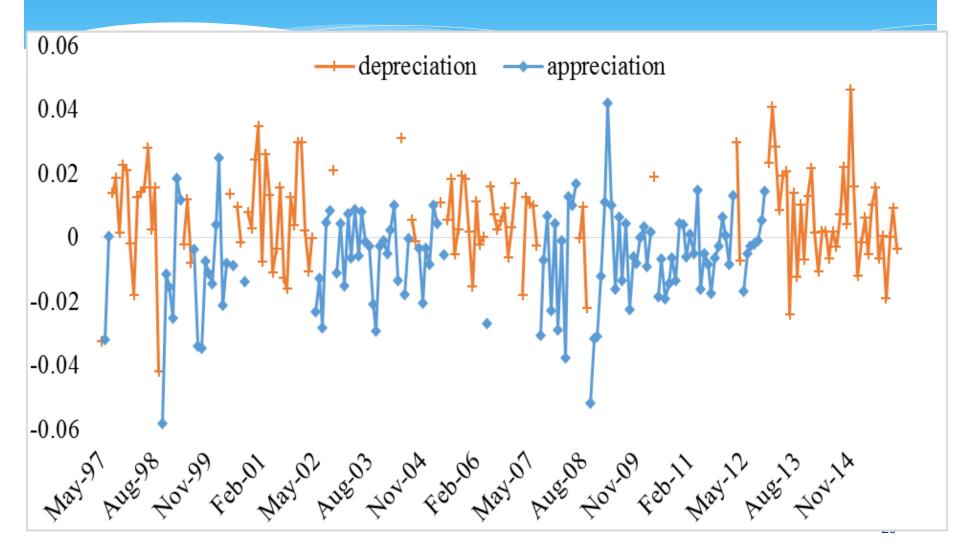

$$er_{t}^{+} = \sum_{i=1}^{t} \Delta er_{i}^{+} = \sum_{i=1}^{t} \max(\Delta er_{i}, 0)$$
$$er_{t}^{-} = \sum_{i=1}^{t} \Delta er_{i}^{-} = \sum_{i=1}^{t} \min(\Delta er_{i}, 0)$$

• Using prediction error as a threshold

$$er_{t}^{+} = \sum_{i=1}^{t} \Delta er_{i}^{+} = \sum_{i=1}^{t} \Delta er_{i}I \{error > mean (error)\}$$
$$er_{t}^{-} = \sum_{i=1}^{t} \Delta er_{i}^{-} = \sum_{i=1}^{t} \Delta er_{i}I \{error < mean (error)\}$$


with *error* = actual ER – predict ER

Why mean(*error*) as a threshold?



Source: BOJ and IMF.

NEER change in conventional threshold

NEER change in new threshold

Nominal JPY/USD Exchange Rate

140 120 100 80 - JPY/USD Source: IMF. 60

1997M01-2015M12

Data Description

1. World demand: World IPI

- Choose destination countries (areas) which account for 1% or more in Japan's total exports as of 2005 and 2010.
 - => 20 countries are chosen. (Source: IMF, DOT.)
- Re-calculate Japanese export weight using the "20country-world".
 - Export weight is revised every year from 1997 to 2014. The weight in 2015 is assumed to be equal to the weight in 2014.
- World IPI at year *t* is:

World IPI_t =
$$\sum_{i=1}^{20} IPI_t^i \times weight_t^i$$

Data Description (cont'd)

2. Contract Currency Based NEER (C-NEER)

- C-NEER is calculated by industry from the Export Price Index published from Bank of Japan (1997M4-2015M12).
- 3. Domestic Input Price (DIP)
- 4. Export Price Index (EXP)
 - Source: Bank of Japan (from 1997M4 to 2015M12).
 - > Industry-specific data: All manufacturing and 7 industries.
 - > All data is in natural logarithm.
 - > First-difference series to ensure the stationarity of variables.

Contract currency based NEER (1)

Two types of **BOJ export price index**:

(1) Contract currency based export price index (P_{con}^{EX})

$$P_{con}^{EX} = P_{yen}^{\alpha} (P_{\$})^{\beta} (P_{euro})^{\gamma} \qquad \alpha + \beta + \gamma = 1$$
(2) Yen based export price index (P_{yen}^{EX}) :

$$P_{yen}^{EX} = (P_{yen})^{\alpha} (P_{\$} \cdot E_{yen/\$})^{\beta} (P_{euro} \cdot E_{yen/euro})^{\gamma}$$

$$= (P_{yen})^{\alpha} (P_{\$})^{\beta} (P_{euro})^{\gamma} \cdot (E_{yen/\$})^{\beta} \cdot (E_{yen/euro})^{\gamma}$$

$$= (P_{con}^{EX}) (E_{yen/\$})^{\beta} \cdot (E_{yen/euro})^{\gamma}$$

Contract currency based NEER (2)

Two types of **BOJ export price index**:

$$\begin{array}{c} P_{yen}^{EX} = \left(P_{yen}\right)^{\alpha} \left(P_{\$} \cdot E_{yen/\$}\right)^{\beta} \left(P_{euro} \cdot E_{yen/euro}\right)^{\gamma} \\ P_{con}^{EX} = \left(P_{yen}\right)^{\alpha} \left(P_{\$}\right)^{\beta} \left(P_{euro}\right)^{\gamma} \end{array}$$

Contract currency based NEER by industry:

$$\rightarrow NEER \stackrel{Contract}{yen} = \frac{P_{yen}^{EX}}{P_{con}^{EX}} = \left[(1)^{\alpha} \cdot (E_{yen/\$})^{\beta} \cdot (E_{yen/euro})^{\gamma} \right]$$

Increase in NEER => Yen Depreciation Decrease in NEER => Yen Appreciation

Contract currency based NEER (2)

Advantage:

- Able to calculate industry-specific contract-NEER.
- Reflect the degree of exchange rate risk that exporters face in each industry

Prediction error

Bilateral exchange rate of yen vis-à-vis USD

Predicted yen/usd exchange rate:

Industry level, all size firm data

Metal = Iron and steel, Nonferrous metal and Processed metal with weight Prediction is fixed for 3 months in the same quarter

- Period: 1997M4 2015M12
- > Actual yen/usd exchange rate: IFS

> error = ln(actual yen/usd) - ln(predict yen/usd)

Empirical Result

Result and Interpretation

$$\Delta ex_{t} = \pi + \theta_{1}ex_{t-1} + \theta_{2}^{+}er_{t-1}^{+} + \theta_{3}^{-}er_{t-1}^{-} + \theta_{4}dp_{t-1} + \theta_{5}ipi_{t-1} + \sum_{j=1}^{n} \alpha_{j}\Delta ex_{t-j} + \sum_{k=0}^{o} \left(\beta_{k}^{+}\Delta er_{t-k}^{+} + \beta_{k}^{-}\Delta er_{t-k}^{-}\right) + \sum_{l=0}^{p} \gamma_{l}\Delta dp_{t-l} + \sum_{m=0}^{q} \delta_{m}\Delta ipi_{t-m} + \mu_{t}$$

• Model: NARDL

✓ Long-run relationship among variables (*F*-test and *t*-test)

✓ Long-run asymmetry of PTM level
$$-\frac{\theta_2^+}{\theta_1} \neq -\frac{\theta_3}{\theta_1}$$

 Sample period: full sample 1997-2015 sub sample 1997-2006 and 2007-2015

NARDL model (prediction error with mean threshold)									
Industry	Full sample (1997-2015)			First half sample (1997-2006)			Second half sample (2007-2015)		
	LR ⁺ coeff.	LR ⁻ coeff.	sign.	LR ⁺ coeff.	LR ⁻ coeff.	sign.	LR ⁺ coeff.	LR ⁻ coeff.	sign.
All manufacturing	0.497	0.900	a***	0.466	0.856	a	0.584	0.858	a***
Textile	0.534	0.456	***	0.536	0.331	a	0.412	0.574	***
Chemical	0.504	0.135		0.010	-0.023		0.291	0.670	с
Metal	0.465	0.238	a	0.358	-0.038	a	0.142	0.635	a***
Machinery	0.725	0.825		0.222	0.146		1.137	0.726	a**
Electric	2.175	-1.611		0.737	-0.605		0.875	1.584	l
Transport	0.828	0.617		0.828	0.617		0.923	0.601	a***
Other	-0.448	0.127	a	0.597	0.328	a***	-3.720	0.865	-

Notes: */**/*** denote the significance of cointegration test for 10%, 5% and 1%, respectively a/b/c denote the significance of long-run symmetry test for 1%, 5% and 10%, respectively

Cointegration and asymmetry in long-run

- Full sample (1997-2015) and first sub-sample (1997-2006)
 - ✓ No cointegration and PTM asymmetry in most cases
- Second sub-sample (2007-2015)
 - Strong evidence (5/8 industries) of cointegration and PTM asymmetry in the long-run

	Yen depreciation	Yen appreciation	
Competitive (Machinery, Transport)	Almost full PTM	Incomplete PTM	
Less competitive (Metal, Textile, Chemical)	Closer to full ERPT	(57-73% PTM) 31	

Concluding Remarks

Findings

- 1. ERPT (PTM) behavior of Japanese exporters differs between the yen appreciation and depreciation regimes.
 - \checkmark Clear evidence cannot be found before 2007.
 - ✓ Strong evidence for nonlinearities in PTM strategy from 2007.
- 2. Different PTM behavior across industries.
 - Yen appreciation: Incomplete PTM in all industries except Electric and Other manufacturing.
 - ✓ Yen depreciation:
 - Almost full PTM in competitive industries
 - Closer to full ERPT in less competitive industries.

Contribution

- Employ a new threshold specification method using firms' predicted exchange rate
- Explain the unresponsiveness of Japanese trade balance to the yen depreciation from 2012
 - ✓ 45% of Japanese export are Transportation and General Machinery, who conduct full PTM in yen depreciation

References

- Balke N.S, Fomby T.B., 1997, Threshold cointegration, International Economic Review 38(3), 627-645
- Belke A., Goecke M., Guenther M., 2009, When does it hurt? The exchange rate "pain threshold" for German exports, Ruhr Economic Paper No. 148, University of Duisburg-Essen, ruhr University Bochum, Technical University Dortmund and RWI Essen, Essen.
- Belke A., Goecke M., Guenther M., 2012, Exchange rate bands of inaction and play-hysteresis in German exports – sectoral evidence for some OECD destinations, DIW Discussion Paper No. 1203, German Institute for Economic Research (DIW), Berlin.
- Knetter, M.M., 1994, "Is export price adjustment asymmetric?: evaluating the market share and marketing bottlenecks hypotheses", *Journal of International Money and Finance* (13), pp. 55-70
- Mahdavi, Saeid, 2002, "The Response of the US Export Prices to Changes in the Dollar's Effective Exchange Rate: Further Evidence from Industry Level Data," *Applied Economics*, 34(17), pp.2115-2125.
- Pollard, Patricia S. and Cletus C. Coughlin, 2004, "Size Matters: Asymmetric Exchange Rate Pass-Through at the Industry Level," Federal Reserve Bank of St. Louis Working Paper Series 2003-029C (revised July 2004).
- Shin, Y., Yu, B., Greenwood-Nimmo, M., 2013, "Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework, Electric copy available at http://ssm.com/abstract=1807745