

What goes around comes around: Export-enhancing effects of import-tariff reductions

Kazunobu Hayakawa, Jota Ishikawa, Nori Tarui

IDE-JETRO Institute of Developing Economies Japan External Trade Organization

Purpose of this paper

 ✓ Empirical investigation of Ishikawa & Tarui (2015) → under revision
 "Backfiring with Backhaul Problems: Trade and Industrial Policies with Endogenous Transport Costs"

Purpose of Ishikawa & Tarui (2015)

- 1st purpose
- To introduce an international transport sector into a standard international trade model
 - To construct the model, characteristics of international shipping are taken into account

Purpose of Ishikawa & Tarui (2015)

2nd purpose

≻To explore the effects of policies

Trade policy: tariffs

Industrial policy: taxes in the transport sector

We study how trade and industrial policies perform differently when transport costs are endogenous and subject to backhaul problems

Trade costs in international trade

- ✓ Anderson and van Wincoop (JEL,2004)
- Trade costs: All costs incurred in getting a good to a final user other than the MC of producing the good itself
 - 1. Transport costs (both freight costs and time costs)
 - 2. Trade barriers: Policy barriers (tariffs and NTBs), Information costs, contract enforcement costs, costs associated with the use of different currencies, legal and regulatory costs
 - 3. Local distribution costs (wholesale and retail)

Trade costs in international trade

- ✓ Anderson and van Wincoop (JEL,2004)
- "The death of distance is exaggerated. Trade costs are large, ..."
- Ad-valorem tax equivalent of trade costs: 170% for industrialized countries
 - 1.7=1.21(transport costs) × 1.44(trade barriers) × 1.55(retail & distribution) 1
 - Ad-valorem tax equivalent of transport costs: 21%
 - Ad-valorem tax equivalent of freight costs: 10.7%
 - Ad-valorem tax equivalent of tariffs and NTBs: 7.7%

Transport costs in trade theory

- Mostly neglected
- ✓ Deardorf (2014) : "The most obvious cost of trade is transportation, but even this has been surprisingly neglected in trade theory."
- Ad hoc even if not neglected
 - Implicit treatment
 - Exogenous
 - Symmetric

→ Iceberg type (Samuelson, 1952) is often assumed
→ Transport costs should be treated "explicitly" in trade theory

Characteristics of international shipping

- 1. Market power
- 2. Asymmetric freight rates
- 3. Backhaul problem

Characteristics of international shipping (Market power)

Operator's share of the world liner fleet in TEU (twenty-foot equivalent unit) terms

Rank	Operator	Country	Share
1	APM-Maersk	Denmark	14.7%
2	Mediterranean Shipping Co	Switzerland	12.9
3	CMA CGM Group	France	8.8
4	China Cosco Shipping Group	China	7.4
5	Evergreen Line	Taiwan	4.5

INTRODUCTION

Characteristics of international shipping (Market power)

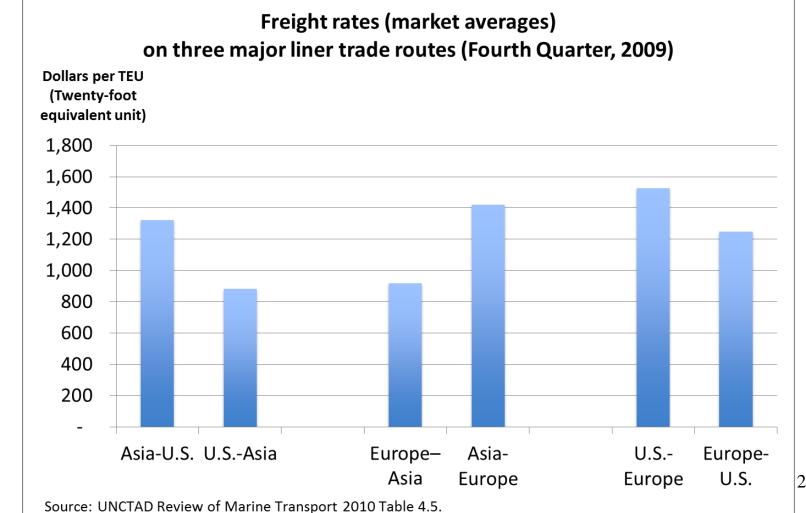
The liner trade is organized into cartels, or conferences

Empirical evidence for market power
 ✓ Sjostrom (1992)

✓ Hummels, Lugovskyy and Skiba (2007)

> Joint operation

✓ April, 2017: CMA CGM + Cosco + Evergreen +
 OOCL (Hong Kong) → share: 23.5%



Characteristics of international shipping (Market power)

- Two large air cargo alliances
 - SkyTeam Cargo
 - Members of the SkyTeam airline alliance
 - **WOW** Alliance
 - SAS Cargo Group & Singapore Airlines Cargo
- Air cargo between Japan and US
 - Alliance between ANA and United \rightarrow Share: over 30%
- Air cargo between Japan and Europe
 - Alliance between ANA and Lufthansa \rightarrow Share: over 30%

Characteristics of international shipping

(Asymmetric freight rates among directions)

Characteristics of international shipping (Asymmetric freight rates among directions)

- Why are freight rates asymmetric among directions?
 - Shipping involves a round trip
 - Carriers have to commit to the shipping capacity to meet the maximum shipping volume
 - → "Backhaul problem" with imbalance in shipping volume in two directions

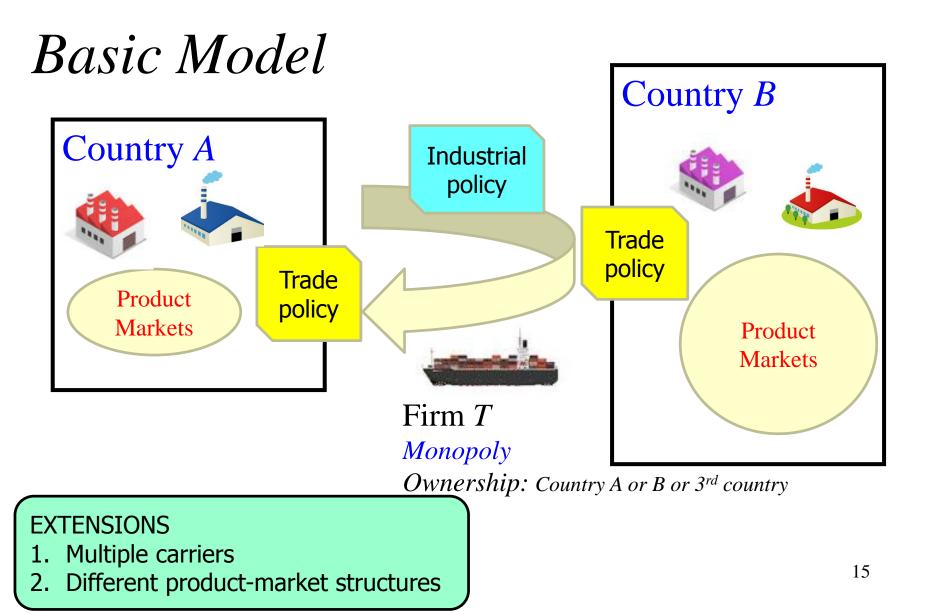
"There is an opportunity cost associated with returning without a full load"

Characteristics of international shipping (Backhaul problem)

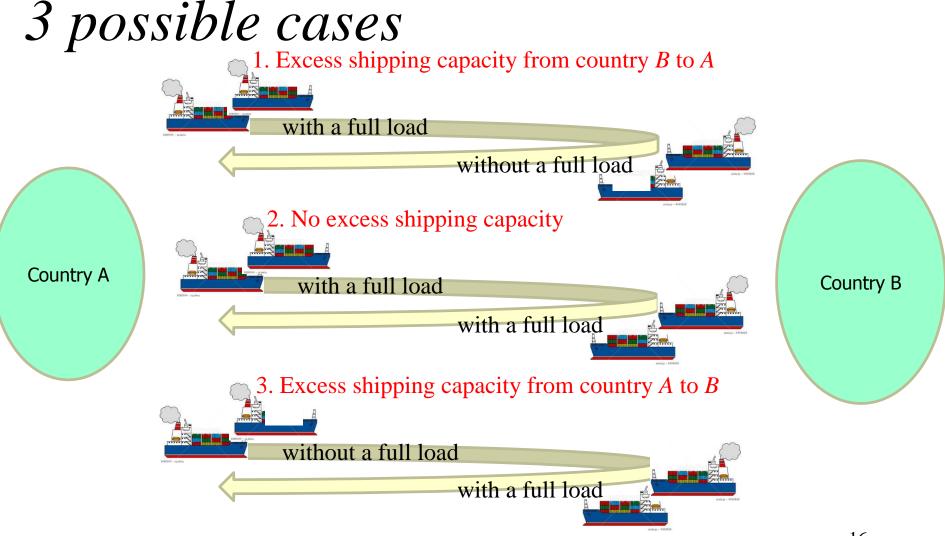
Imbalance in shipping volume in two directions

with a full load

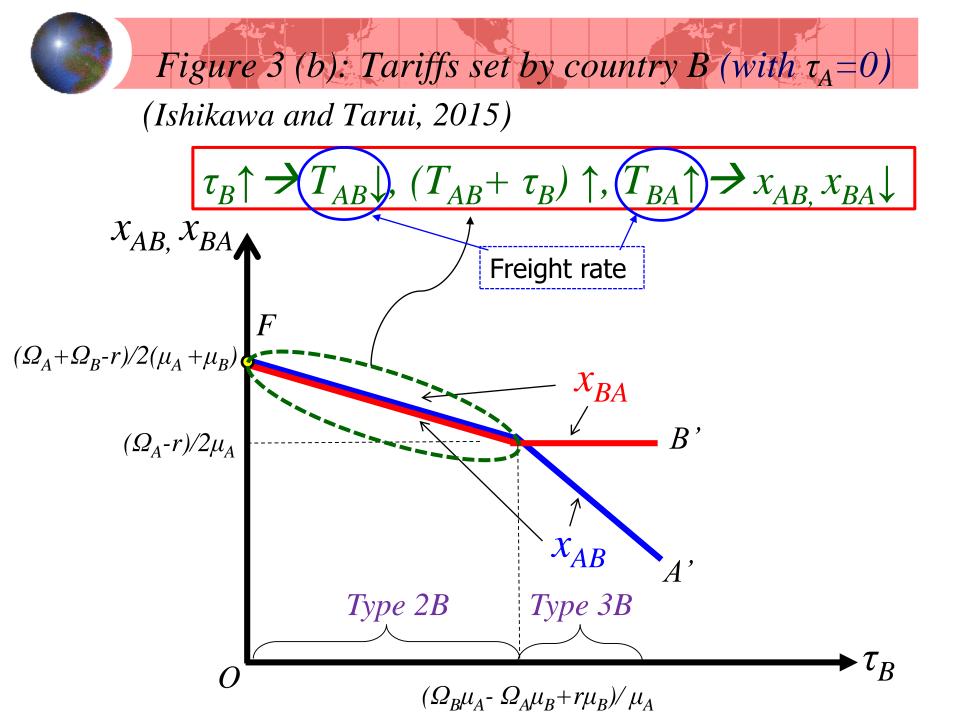
Without a full load


The backhaul problem makes shipping different from standard intermediate inputs

Country A

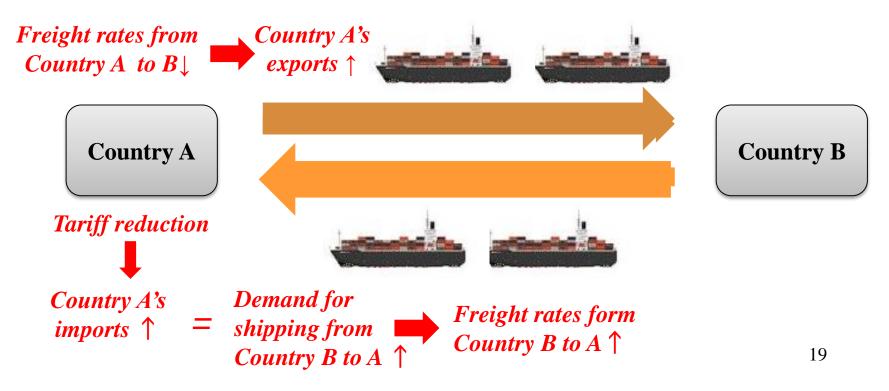

INTRODUCTION

Country B



Main result investigated in this paper

- Country j's import tariffs decrease the freight rate from country i to country j and could increase the freight rate from country j to country i
- \rightarrow Country *j*'s import tariffs could affect the exporting sector by decreasing its exports

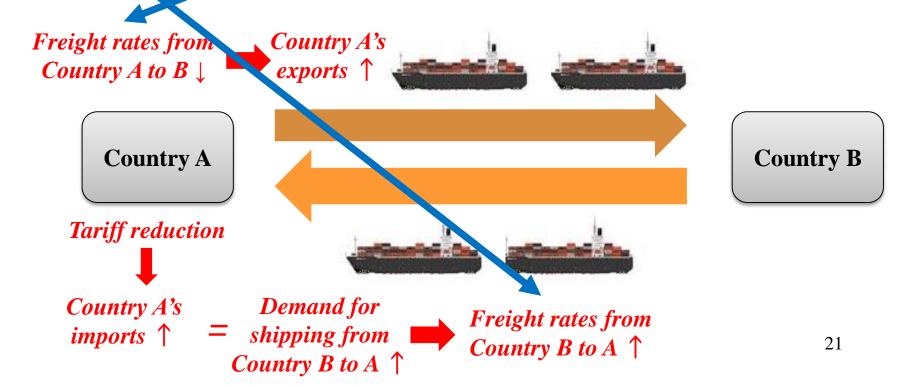


Empirical Specification

Empirically examining two relationships

- Tariffs \rightarrow Freight rates of exporting: Positive?
- ◆ Tariffs → Exports: Negative?

Empirical Specification


□ Freight rates

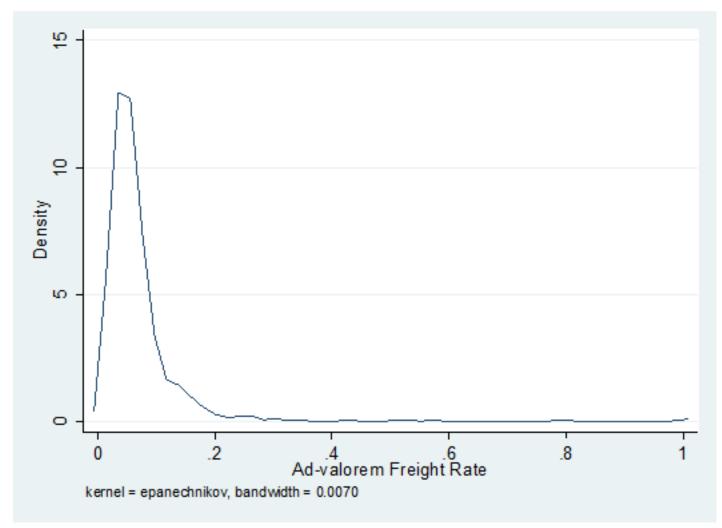
- ◆ Maritime Transport Costs database in the OECD
 - \checkmark 8 destination x 137 origin at an HS 6-digit level during 2003-2007
 - ✓ Australia, New Zealand, the United States, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, and Uruguay
- Compute ad valorem freight rates in transporting products subject to containerized trade
 - ✓ All products except for HS codes 10, 1201-1207, 1507-1514, 25, 26, 2701-2716, 28, 29, 31, 72, 8701-8705, 8716, 8802, and 89
- □ Tariff rates
 - Average of applied tariff rates over commodities subject to containerized trade
 - Weighted average in terms of imports at a commodity-level (HS 6-digit)
 - \checkmark Not taking the sample selection issue into account

Empirical Specification

 $\begin{array}{l} \ln Freight_{ijt} & \text{Positive in Exporter's tariffs} \\ = & \gamma_1 \ln(1 + Tariff_{ijt}) + \gamma_2 \ln(1 + Tariff_{jit}) + \gamma_3 \ln Distance_{ij} \\ + & \gamma_3 Dorder_{ij} + \gamma_4 Colony_{ij} + \gamma_5 Language_{ij} + u_{it} + u_{jt} + \epsilon_{ijt}. \end{array}$ Negative in Importer's tariffs

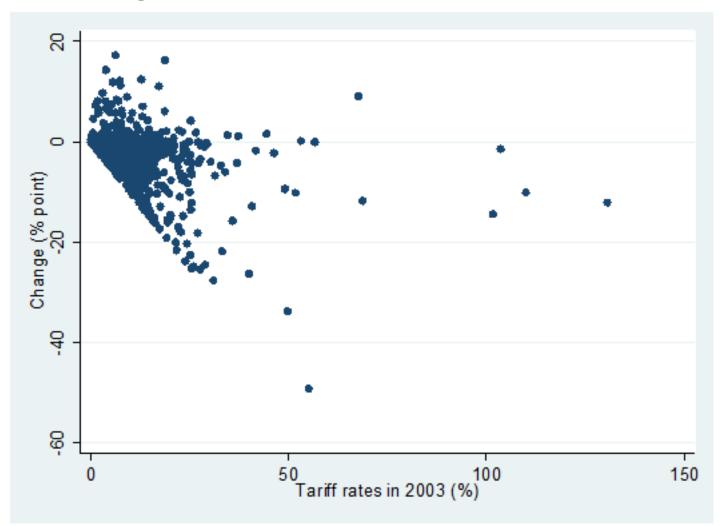
Data Sources

□ Imports


- Used for a weight in tariff variables (imports at a fob basis)
- ◆ BACI database in CEPII
- □ Distance, Border, Colony, and Language
 - ◆ CEPII website

□ Tariffs

- Obtaining raw data from the WITS database
- Identifying the lowest tariff rates among all schemes available for each country pair at a tariff-line level
- Converting to tariff rates at HS 6-digit level (simple average)
- Computing the weighted average of tariff rates by using the average of HS six-digit level imports during 2003-2007 as a weight.


Figure 2. Distribution of Ad-valorem Freight Rates in 2007

Source: Authors computation using the Maritime Transport Costs database

Figure 3. Change of Tariff Rates from 2003 to 2007

Source: Authors computation using the WITS database

Table 1. Basic Statistics

	Obs	Mean	Std. Dev.	Min	Max
Analysis for Freight Costs					
In Freight	4,391	-2.890	0.711	-7.3627	-0.001
ln (1+Importer's tariffs)	4,391	0.071	0.053	0.000	0.343
ln (1+Exporter's tariffs)	4,391	0.082	0.084	0	0.836
In Distance	4,391	9.128	0.661	5.371	9.894
Border	4,391	0.031	0.172	0.000	1.000
Colony	4,391	0.003	0.050	0	1
Language	4,391	0.242	0.429	0	1
Gravity Analysis					
In Value	77,468	8.312	3.482	0	19.451
In Quantity	77,468	7.112	3.919	-6.908	19.074
ln (1+Importer's tariffs)	77,468	0.073	0.078	0.000	1.859
ln (1+Exporter's tariffs)	77,468	0.073	0.078	0	1.859
In Distance	77,468	8.595	0.854	4.107	9.894
Border	77,468	0.025	0.157	0	1.000
Colony	77,468	0.019	0.137	0.000	1.000
Language	77,468	0.162	0.369	0.000	1.000
In Value of Materials	67,786	7.166	3.335	0.000	17.762
In Quantity of Materials	67,786	5.706	3.879	-7.794	16.906

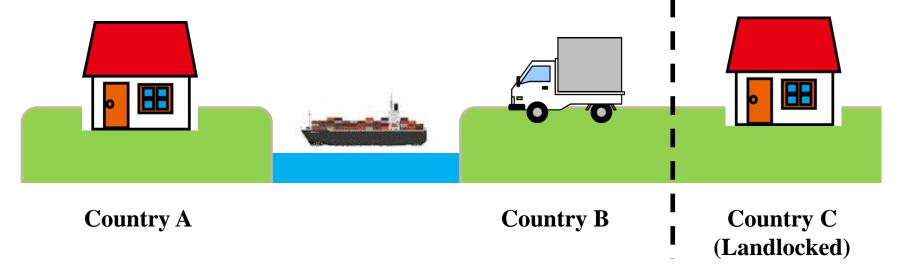
25

Table 2. Baseline Estimation Results

	(I)	(II)	(III)
ln (1+Importer's tariffs)	-0.694**		-0.731**
ln (1+Exporter's tariffs)		0.364**	0.387**
In Distance	0.070**	0.060**	0.066**
Border	-0.371***	-0.354***	-0.364***
Colony	-0.370***	-0.384***	-0.371***
Language	0.042	0.052	0.046
Number of observations	4,391	4,391	4,391
Adjusted R-squared	0.2516	0.2514	0.2524

Notes: The dependent variable is a log of ad-valorem freight rates. ***, **, and * represent significance at the 1%, 5%, and 10% statistical levels, respectively. In the parenthesis is the heteroscedasticity-consistent standard error. In all specifications, we control for exporter-year and importer-year fixed effects.

Table 3. Robustness Checks


	Distance	Coastal
ln (1+Importer's tariffs)	-0.727**	-0.677**
ln (1+Exporter's tariffs)	0.388**	0.370**
In Distance	0.237	0.071**
(In Distance)^2	-0.010	
Border	-0.343***	-0.364***
Colony	-0.373***	-0.362***
Language	0.047	0.022
Number of observations	4,391	3,865
Adjusted R-squared	0.2523	0.2248

Notes: The dependent variable is a log of ad-valorem freight rates. ***, **, and * represent significance at the 1%, 5%, and 10% statistical levels, respectively. In the parenthesis is the heteroscedasticity-consistent standard error. In all specifications, we control for exporter-year importer-year fixed effects. In column "Coastal", we exclude landlocked and importers/exporters.

Excluding Landlocked Importers/Exporters

Freight rates from C to A = Freight rates from C to B + Freight rates from B to A

First-differenced Specification

 $\Delta \ln Freight_{ijt} = \gamma_1 \Delta \ln (1 + Tariff_{ijt}) + \gamma_2 \Delta \ln (1 + Tariff_{jit}) + u_{it} + u_{jt} + \epsilon_{ijt}$

- Eliminating not only time-invariant country pair effects but also all effects that are unchanged between two consecutive years
- □ More efficient than the specification with country pair fixed effects if the error terms are serially correlated and/or follow a random walk

Table 4. First Differenced Specification

	Baseline	Coastal
ln (1+Importer's tariffs)	-1.769***	-1.723**
ln (1+Exporter's tariffs)	1.112	1.397*
Number of observations	3,097	2,765
Adjusted R-squared	0.097	0.0801

Notes: The dependent variable is the first difference of a log of ad-valorem freight rates. ***, **, and * represent significance at the 1%, 5%, and 10% statistical levels, respectively. In the parenthesis is the heteroscedasticity-consistent standard error. In all specifications, we control for exporter-year and importer-year fixed effects. In column "Coastal", we exclude landlocked importers/exporters.

Empirical Specification for Trade

```
Negative in Exporter's tariffs
ln Export<sub>ijt</sub>
=(\gamma_1)n(1 + Tariff_{ijt}) + (\gamma_2)n(1 + Tariff_{jit}) + \gamma_3 \ln Distance_{ij}
+ \gamma_{B}Border_{ij} + \gamma_{4}Colon\gamma_{ij} + \gamma_{5}Language_{ij} + u_{it} + u_{jt} + \epsilon_{ijt}
           Negative in
       Importer's tariffs
  Freight rates from ____ Country A's
   Country A to B \downarrow \longrightarrow exports \uparrow
          Country A
                                                                                    Country B
      Taliff reduction
                    Demand for
      Country A's
                                                      Freight rates from
      imports \uparrow = shipping from
                                                                                            31
                                                      Country B to A \uparrow
                          Country B to A \uparrow
```

Empirical Issues for Analysis on Trade

- Estimating this gravity equation for not only trade values but also trade volume
- □ Obtained from the BACI database in CEPII
 - □ Using trade values at a fob basis
 - **D** Trade quantity measured in ton
- Focusing on and aggregate trade over products subject to containerized trade
- Not taking into account the sample selection issue because of the use of weighted-average of tariff rates
- **□** Estimating for trade among 157 countries in 2003-2007

Table 5. Estimation Results for Import Value and Quantity

	All		Materials	
	Value	Quantity	Value	Quantity
ln (1+Importer's tariffs)	-1.476***	-0.875***	-1.988***	-1.253***
ln (1+Exporter's tariffs)	-0.508***	-0.447***	-0.677***	-0.507***
In Distance	-1.495***	-1.837***	-1.269***	-1.658***
Border	0.646***	0.807***	0.824***	1.210***
Colony	0.909***	1.093***	1.043***	1.231***
Language	0.805***	0.873***	0.653***	0.747***
Number of observations	77,468	77,468	67,786	67,786
Adjusted R-squared	0.7901	0.7078	0.7451	0.6429

Notes: The dependent variable is a log of exports or export quantity. ***, **, and * represent significance at the 1%, 5%, and 10% statistical levels, respectively. In the parenthesis is the heteroscedasticity-consistent standard error. In all specifications, we control for exporter-year and importer-year fixed effects. In column "Material", we focus only on trade in material $\frac{33}{33}$

Focusing on Trade in Intermediate Goods

- □ Other paths to yield the significant relationship between the exporter's tariffs and exports?
- Excluding trade in finished products and focusing instead on trade in materials alone
 - ◆ 111, 112, 21, 31, 42, and 53 in the BEC

Discussion

Empirical support on theoretical predictions

- Lower tariffs by a country induce the transport firms to lower their freight rates on the country's export
- Tariff reductions expand not only the country's imports but its exports.
- So... What goes around "really" comes around with an explicit transport sector under tradepolicy
 - Point to another potential gains from freer trade (cf. welfare analysis in Ishikawa and Tarui 2015)

Mahalo!

