# Offshoring, Relationship Specificity, and Domestic Production Networks

Taiji Furusawa (Hitotsubashi University)

Tomohiko Inui (Gakushuin University)

Keiko Ito (Senshu University)

Heiwai Tang (Johns Hopkins University)

#### Goal of the paper

- Examine the impact of offshoring (importing inputs) on domestic production network
  - Data on domestic production network in 2005 and 2010
    - Active offshoring by Japanese firms partly due to yen appreciation
  - Offshoring → Dropping and Adding of input suppliers
    - What are the characteristics of dropped suppliers and added suppliers?
- Also examine characteristics of buyer-supplier relationships
  - Distance
  - Productivity
  - Relationship specificity
- Hope to assess macro impacts from micro impacts

#### Data

- TSR (Tokyo Shoko Research) data for 2006 and 2011
  - Firm-level transaction relationship data
    - List of suppliers (max 24), customers (max 24)
  - Firm-level data on employment, sales, location, establishment year, and others
- Basic Survey on Business Structure and Activities (BSBSA) collected annually by METI
  - All the firms with 50+ employees and 30+ million yen of paid-in capital for mining, manufacturing, wholesale and retail trade, and other services sectors.
  - Firm-level exports, imports, FDI, and other detailed firm-level information available

Table 2: Characteristics of Downstream Firms (Buyers) in the Basic Business Survey

| All industries                            | 2005   | 2010   |
|-------------------------------------------|--------|--------|
| No. of firms in the BSBSA                 | 22,939 | 24,892 |
| Nb. of importers                          | 5,344  | 5,659  |
| Nb. of importers from Asia                | 4,315  | 4,786  |
| Fraction of firms that import             | 0.233  | 0.227  |
| Fraction of firms that import from Asia   | 0.188  | 0.192  |
| Average importer's import intensity       |        |        |
| (imports/ total purchases)                | 0.183  | 0.212  |
| Aveage firms' shares of imports from Asia |        |        |
| (imports from Asia / total imports)       | 0.795  | 0.821  |
| Manufacturing industries                  |        |        |
| Nb. of firms in the BSBSA                 | 11,021 | 11,361 |
| Nb. of importers                          | 3,270  | 3,494  |
| Nb. of importers from Asia                | 2,747  | 3,082  |
| Fraction of firms that import             | 0.297  | 0.308  |
| Fraction of firms that import from Asia   | 0.249  | 0.271  |
| Average importer's import intensity       | 0.163  | 0.192  |
| (imports/ total purchases)                |        |        |
| Aveage firms' shares of imports from Asia |        |        |
| (imports from Asia / total imports)       | 0.824  | 0.846  |

Sample: BSBSA (2005, 2010)

|             | Table 3: S                    | Summary Sta                | tistics (Num                      | ber of Buyers a                          | nd Sellers) |                                |
|-------------|-------------------------------|----------------------------|-----------------------------------|------------------------------------------|-------------|--------------------------------|
| Sample:     | All mfg.<br>buyers in<br>2005 | Existing Importers in 2005 | Non-<br>importers in<br>2003-2005 | Import starters<br>between 2005-<br>2010 | importers   | Continuous importers 2005-2010 |
| Panel A: Nu | ımber of bu                   | yers (2005)                |                                   |                                          |             |                                |
|             | 8,404                         | 2,117                      | 5,611                             | 341                                      | 4,179       | 1,436                          |
| Panel B: Nu | ımber of sel                  | llers per buy              | er (2005)                         |                                          |             |                                |
| Mean        | 19.33                         | 34.78                      | 13.40                             | 20.67                                    | 13.53       | 38.34                          |
| Median      | 8                             | 11                         | 7                                 | 9                                        | 7           | 12                             |
| Min.        | 1                             | 1                          | 1                                 | 1                                        | 1           | 1                              |
| Max.        | 3,552                         | 3,004                      | 3,552                             | 1,056                                    | 3,552       | 3,004                          |
| Panel C: Nu | ımber of se                   | llers' prefect             | ures per buy                      | er (2005)                                |             |                                |
| Mean        | 4.84                          | 6.79                       | 4.01                              | 5.25                                     | 3.99        | 7.00                           |
| Median      | 4                             | 5                          | 3                                 | 4                                        | 3           | 5                              |
| Min.        | 1                             | 1                          | 1                                 | 1                                        | 1           | 1                              |
| Max.        | 47                            | 47                         | 46                                | 38                                       | 46          | 47                             |

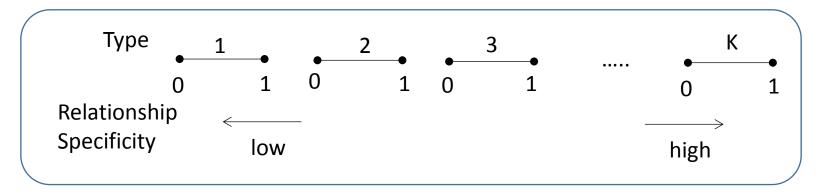
#### Theory

- Simple extension of Antràs, Fort, and Tintelnot (2014) and Bernard, Moxnes, and Saito (2015)
- Features of the model
  - Eaton-Kortum framework
  - 1 final good, K input types (different in terms of relationship specificity)
  - Two-sided firm heterogeneity in productivity
  - M domestic and M\* foreign regions
  - Relationship specificity capture by
    - Elasticity of trade costs in distance  $t_k$
    - ullet Variability of input producer's productivity  $heta_k$

#### Production of final good

- Production
  - 1. Produce K composite inputs each from inputs of [0,1]

$$x_{ik} = \left[ \int_0^1 x_{ik}(j)^{\frac{\rho - 1}{\rho}} dj \right]^{\frac{\rho}{\rho - 1}}$$


2. Produce a final good from K composite inputs

$$y_i = \varphi_i \prod_{k=1}^K \left(\frac{x_{ik}}{\beta_k}\right)^{\beta_k}$$

- $\varphi_i$ : Core productivity of final good producer i
- Monopolistic competition (without entry and exit)

#### Inputs for final good production

 K different types of input with different relationship specificity (with final good producers)



- Inputs are either
  - Insourced: r = 0
  - Domestically outsourced:  $r = 1, \dots, M$
  - offshored:  $r = M + 1, \dots, M + M^*$

## Equilibrium sourcing $\{\Omega_{ik}\}_{k=1}^K$ given : Eaton and Kortum (2002)

Price parameters for final good producer i

$$\Phi_{ikr} = \begin{cases} T_{k0}(w_r c_k)^{-\theta_k} & \text{if } r = 0\\ n_{kr} T_{kr}(w_r c_k \tau_k(d_{ir}))^{-\theta_k} = n_{kr} T_{kr} w_r^{-\theta_k} e^{-\theta_k t_k d_{ir}} & \text{if } r = 1, \dots, M + M^* \end{cases}$$

Price parameter for type k inputs for firm i

$$\Phi_{ik} = \Phi_{ik0} + \sum_{r \in \Omega_{ik}} \Phi_{ikr}$$

Region r's share of input sourcing

$$s_{ikr} = \frac{\Phi_{ikr}}{\Phi_{ik}}$$

#### Sourcing strategy

Profit function for buyer i

$$\pi_i(\varphi_i) = B\phi_i^{\sigma-1} \prod_{k=1}^K \gamma_k^{\beta_k(1-\sigma)} \Phi_{ik}^{\frac{\beta_k(\sigma-1)}{\theta_k}} - \sum_{k=1}^K \sum_{r \in \Omega_{ik}} f_k$$

Condition to search region

$$\pi_i(\varphi_i)|_{\Omega_{ik} \cup \{r_1\}} - \pi_i(\varphi_i)|_{\Omega_{ik}} \approx \frac{\beta_k(\sigma - 1)}{\theta_k} \tilde{\pi}_i(\varphi_i) \frac{\Phi_{ikr_1}}{\Phi_{ik}(\Omega_{ik})} - f_k$$

- $\Phi_{ikr} = n_{kr} T_{kr} w_r^{-\theta_k} e^{-\theta_k t_k d_{ir}}$
- $\theta_k \downarrow t_k \uparrow$  as relationship specificity increases

#### Proposition 2

- If  $\theta_k t_k$  increases with k, relationship specific inputs tend to be
  - Insourced
  - Outsourced to firms in close regions

#### Relationship-specific inputs tend to be sourced from close regions

Table 5: Distance, Scope of Domestic Outsourcing, and Relationship-Specificity of Inputs

| rable 3. Distance, beope of Donnes                                   | ne outsourcing, | and iterations | inp-specificity of | inpuis      |  |
|----------------------------------------------------------------------|-----------------|----------------|--------------------|-------------|--|
| Dependent Variable: ln(# sellers)                                    |                 |                |                    |             |  |
|                                                                      | (1)             | (2)            | (3)                | (4)         |  |
|                                                                      |                 |                | BJRS               |             |  |
|                                                                      |                 |                | Intermediation     |             |  |
| Mesaures of Relationship Specificity (RS)                            | -               | _              | Index              | Rauch Index |  |
|                                                                      |                 |                |                    |             |  |
| ln(dist) <sub>buyer,seller's pref</sub>                              | -0.0913***      | -0.153***      | -0.0296***         | -0.0197***  |  |
| odyci,seller s prei                                                  | (0.001)         | (0.001)        | (0.002)            | (0.001)     |  |
| ln(dist) <sub>buyer,seller's pref</sub> x RS <sub>seller's ind</sub> |                 |                | 0.0441***          | -0.00490*** |  |
| seller's fild                                                        |                 |                | (0.006)            | (0.001)     |  |
| Buyers' Industry FE                                                  | yes             |                |                    |             |  |
| Buyers' Prefecture FE                                                | yes             |                |                    |             |  |

yes

.166

124230

yes

yes

.556

124230

Sellers' Industry FE

Buyer's FE

Nb of Obs

R\_sq

Sellers' Prefecture FE

yes

yes

yes

.271

108394

yes

yes

yes

.271

108127

#### Proposition 3

- Buyer's core productivity  $\varphi_i$  high  $\rightarrow$  offshore
- If  $\theta_k t_k$  goes up with k, generic inputs are more likely to be offshored

## Productive buyers offshore; High RS inputs are offshored

| Dependent Variable: Dumm                         | y for Buyer's Sta | rting to Offshor | e between 2005 and | 2010                |
|--------------------------------------------------|-------------------|------------------|--------------------|---------------------|
|                                                  | (1)               | (2)              | (3)                | (4)                 |
|                                                  | TFP (Olley        |                  |                    |                     |
| Measure of Buyer's Productivity                  | Pakes)            | VA/Emp           |                    |                     |
|                                                  |                   |                  | BJRS               |                     |
|                                                  |                   |                  | Intermediation     |                     |
| Measure of Relationship Specificity              |                   |                  | Index              | Rauch Index         |
| Productivity <sub>buyer,2005</sub>               | 0.00741           | 0.0255***        |                    |                     |
|                                                  | (0.021)           | (0.009)          |                    |                     |
| Relationship Specificity <sub>seller's ind</sub> |                   |                  | 0.264***           | -0.0550***          |
| seller's ind                                     |                   |                  | (0.018)            | (0.008)             |
| Buyer's FE                                       |                   |                  | yes                | yes                 |
| Buyer's Ind FE                                   | yes               | yes              |                    |                     |
| Buyer's Prefecture FE                            | yes               | yes              |                    |                     |
| R_sq                                             | .079              | .0818            | .43                | .441                |
| Nb of Obs                                        | 4530              | 4533             | 75786              | 75786 <sub>1/</sub> |

#### Propositions 4 and 5

- Consider the case where generic inputs are more likely to be offshored (which is empirically confirmed)
- (same type of inputs that are offshored) Buyers weakly narrow search regions
  - Distant suppliers are dropped
- (Different types of inputs) Buyers weakly expand search regions
  - Distant suppliers are added
  - Less efficient suppliers in all other regions are dropped

### Distant suppliers are added and dropped

| Table 8: Offsh | noring and Supplier Churn | ing                                                  |                                                                                                                 |
|----------------|---------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Drop           | Add                       | Add Dummy                                            |                                                                                                                 |
| (1)            | (2)                       | (3)                                                  |                                                                                                                 |
| Sales          | Employment                | Sales                                                | Em                                                                                                              |
| 0.0160*        | 0.0168*                   | 0.0261**                                             | (                                                                                                               |
| (0.008)        | (0.009)                   | (0.013)                                              | ı                                                                                                               |
|                | (1)<br>Sales<br>0.0160*   | Drop Dummy (1) (2) Sales Employment  0.0160* 0.0168* | (1)       (2)       (3)         Sales       Employment       Sales         0.0160*       0.0168*       0.0261** |

|                                      |            | 1 2        |            | 1 2        |
|--------------------------------------|------------|------------|------------|------------|
|                                      |            |            |            |            |
| d(Imp Dummy) <sub>buyer</sub>        | 0.0160*    | 0.0168*    | 0.0261**   | 0.0204*    |
| ·                                    | (0.008)    | (0.009)    | (0.013)    | (0.012)    |
| ln(size) <sub>buyer,t-1</sub>        | 0.000923   | -0.0000650 | -0.0148*** | -0.0202*** |
| ouyes, 1                             | (0.002)    | (0.002)    | (0.002)    | (0.002)    |
| dln(size) <sub>buyer,t</sub>         | -0.0250*** | -0.0242**  | 0.0821***  | 0.105***   |
| , buyei,t                            | (0.009)    | (0.010)    | (0.011)    | (0.014)    |
| ln(size) <sub>seller,t-1</sub>       | 0.0124***  | 0.0149***  | 0.00856*** | 0.00930*** |
| / Sellet,t-1                         | (0.001)    | (0.002)    | (0.002)    | (0.002)    |
| dln(size) <sub>seller,t</sub>        | -0.0252*** | -0.0266*** | 0.0572***  | 0.0547***  |
| × sener,t                            | (0.005)    | (0.005)    | (0.004)    | (0.005)    |
| ln(distance) <sub>buyer-seller</sub> | 0.00790*** | 0.00826*** | 0.0182***  | 0.0190***  |
| v buyer-sener                        | (0.001)    | (0.001)    | (0.002)    | (0.002)    |
| Buyers' Industry FE                  | yes        | yes        | yes        | yes        |
| Buyers' Prefecture FE                | yes        | yes        | yes        | yes        |
| Sellers' Industry FE                 | yes        | yes        | yes        | yes        |
| Sellers' Prefecture FE               | yes        | yes        | yes        | yes        |
| R_sq                                 | 0.0487     | 0.0478     | .0596      | .058816    |
| Nb of Obs                            | 53096      | 53096      | 61344      | 61344      |

(4) Employment

#### Conclusion

- Offshoring firms actively change sourcing pattern
- Continue to investigate how the reduction of offshoring costs affect
  - Firms' sourcing pattern
  - Domestic production network
  - Resulting macro impacts such as aggregate productivity