The shadow of longevity - does social security reform reduce gains from increasing the retirement age?

Karolina Goraus Krzysztof Makarski Joanna Tyrowicz

RIETI International Workshop May 2015

Table of contents

- 1 Motivation and insights from literature
- 2 Model setup
- 3 Baseline and reform scenarios

4 Calibration

- 5 Results
 - Welfare
 - Macroeconomic effects

Motivation and insights from literature

Motivation

Major issues in pension economics:

- increasing old-age dependency ratio
- majority of pension systems fail to assure actuarial fairness
- in most countries people tend to retire as early as legally allowed

Typical reform proposals

- switch to DC systems and strengthen the link between contributions and benefits
- raise the social security contributions
- cut government expenditure or ...
- increasing minimum eligibility retirement age (MERA)

Motivation and insights from literature

Literature review

Two streams of literature:

- Answering the question about optimal retirement age (Gruber and Wise (2007), Galasso (2008), Heijdra and Romp (2009))
- Comparing different pensions system reforms: increasing retirement age vs. cut in benefits/privatization of the system/... (Auerbach et al. (1989), Hviding and Marette (1998), Fehr (2000), Boersch-Supan and Ludwig (2010), Vogel et al. (2012))

Fehr (2000)

Macroeconomic effects of retirement age increase may depend on the existing relation between contributions and benefits

Remaining gaps in the literature

how the macroeconomic effects differ between various pension systems?

🗸 😹 🗸 GRAPE

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

what happens to the welfare of each affected generation and why?

Motivation and insights from literature

Goals and expectations

Goal

Analyse macroeconomic and welfare implications of retirement age increase under DB (defined benefit), NDC (notionally defined contribution), and FDC (**partially** funded defined contribution) systems

Expectations

- under DB: leisure \downarrow , taxes \downarrow , welfare?
- under NDC: leisure \downarrow , pensions \uparrow , welfare?
- under FDC: leisure \downarrow , pensions \uparrow , welfare?

Why a full model? \rightarrow labor supply adjustments & general equilibrium effects...

🟑 🛞 🐺 GRAPE

1 Motivation and insights from literature

2 Model setup

3 Baseline and reform scenarios

4 Calibration

5 Results

Welfare

Macroeconomic effects

Model structure - consumer I

- is "born" at age J = 20 and lives up to J = 100
- optimizes lifetime utility derived from leisure and consumption:

$$U_0 = \sum_{j=1}^{J} \delta^{j-1} \pi_{j,t-1+j} u_j(c_{j,t-1+j}, l_{j,t-1+j})$$
(1)

+ accidental bequests are spreaded equally to all cohorts

$$u(c, l) = \phi \log(c) + (1 - \phi) \log(1 - l),$$
(2)

✓ GRAPE

Model structure - consumer II

- is paid a market clearing wage for labour
- receives market clearing interest on private savings
- is free to choose how much to work, but only until retirement age \bar{J} (forced to retire)

Does social security reform reduce gains from higher retirement age? - Model setup

Model structure - consumer III

Model structure - consumer IV

- is paid a market clearing wage for labour
- receives market clearing interest on private savings
- is free to choose how much to work, but only until retirement age \bar{J} (forced to retire)

The budget constraint of agent j in period t is given by:

$$\begin{aligned} (1+\tau_{c,t})c_{j,t} + s_{j,t} + \Upsilon_t &= (1-\tau_{l,t})(1-\tau_{j,t}^{\iota})w_{j,t}l_{j,t} \leftarrow \text{ labor income} \quad (3) \\ &+ (1+r_t(1-\tau_{k,t}))s_{j,t-1} \leftarrow \text{ capital income} \\ &+ (1-\tau_{l,t})p_{j,t} + b_{j,t} \leftarrow \text{ pensions and bequests} \end{aligned}$$

₩ WGRAPE

Does social security reform reduce gains from higher retirement age?

Model structure - producer

$$\max_{(Y_t, K_t, L_t)} Y_t - w_t L_t - (r_t^k + d) K_t$$
s.t.
$$Y_t = K_t^{\alpha} (z_t L_t)^{1-\alpha}$$
(4)

🥪 🛞 🐺 GRAPE

Standard firm optimization implies:

$$w_t = (1 - \alpha) K_t^{\alpha} (z_t L_t)^{-\alpha}$$
$$r_t^k = \alpha K_t^{\alpha - 1} (z_t L_t)^{1 - \alpha} - d$$

Does social security reform reduce gains from higher retirement age?

Model structure - government

 collects social security contributions and pays out pensions of DB and NDC system

$$subsidy_t = \tau_t^{\iota} \cdot w_t L_t - \sum_{j=\bar{J}}^J p_{j,t} \pi_{j,t} N_{t-j}$$
(5)

- collects taxes on earnings, interest and consumption
- spends GDP fixed amount of money on unproductive (but necessary) activities
- services debt

$$T_{t} = \tau_{l,t} \Big((1 - \tau_{t}^{\iota}) w_{t} L_{t} + \sum_{j=\bar{J}_{t}}^{J} p_{j,t}^{\iota} \pi_{j,t} N_{t-j} \Big) + \Big(\tau_{c,t} c_{t} + \tau_{k,t} r_{t} s_{j,t-1} \Big) \sum_{j=1}^{J} \pi_{j,t} N_{t-j}.$$
(6)

$$G_t + subsidy_t^{\iota} + r_t D_{t-1} = T_t + (D_t - D_{t-1}) + \Upsilon_t \sum_{j=1}^J \pi_{j,t} N_{t-j}.$$
 (7)

and wants to maintain long run debt/GDP ratio fixed

Does social security reform reduce gains from higher retirement age?

Pension systems

• Defined Benefit \rightarrow constructed by imposing a mandatory exogenous contribution rate τ and an exogenous replacement rate ρ

$$p_{j,t}^{DB} = \begin{cases} \rho_t w_{j-1,t-1}, & \text{for } j = \bar{J}_t \\ \kappa_t^{DB} \cdot \rho_{j-1,t-1}^{DB}, & \text{for } j > \bar{J}_t \end{cases}$$
(8)

• Defined Contribution \rightarrow constructed by imposing a mandatory exogenous contribution rate τ and actuarially fair individual accounts

Notional

$$p_{j,t}^{NDC} = \begin{cases} \frac{\sum_{i=1}^{\bar{J}_{t-1}} \left[\Pi_{s=1}^{i} (1+r_{t-i+s-1}^{i}) \right] \tau_{\bar{J}_{t}-i,t-i}^{NDC} w_{\bar{J}_{t}-i,t-i} u_{\bar{J}_{t}-i,t-i}}{\Pi_{s=\bar{J}_{t}}^{J} \pi_{s,t}}, & \text{for } j = \bar{J}_{t} \\ \kappa_{t}^{DB} \cdot p_{j-1,t-1}^{NDC}, & \text{for } j > \bar{J}_{t} \end{cases}$$
(9)

Funded

$$p_{j,t}^{FDC} = \begin{cases} \frac{\sum_{i=1}^{\bar{J}_{t-1}} \left[\Pi_{s=1}^{i} (1+r_{t-i+s-1}) \right] \tau_{\bar{J}_{t-i,t-i}}^{FDC} w_{\bar{J}_{t-i,t-i}} v_{\bar{J}_{t-i,t-i}}}{\Pi_{s=\bar{J}_{t}}^{J} \pi_{s,t}}, & \text{for } j = \bar{J}_{t} \\ (1+r_{t}) p_{j-1,t-1}^{FDC}, & \text{for } j > \bar{J}_{t} \\ (10) \text{ GRAPE} \\ (10) \text{ GRAPE} \\ (10) \text{ GRAPE} \end{cases}$$

What we do

What happens within each experiment?

- **1** Run the no policy change scenario \Rightarrow baseline
- **2** Run the policy change scenario \Rightarrow reform
- 3 For each cohort compare utility, compensate the losers from the winners
- 4 If net effect positive \Rightarrow reform efficient

Welfare analysis - like Nishiyama & Smetters (2007) Macroeconomci analysis

Baseline and reform scenarios

1 Motivation and insights from literature

2 Model setup

3 Baseline and reform scenarios

4 Calibration

5 Results

Welfare

Macroeconomic effects

Baseline and reform scenarios

Reform of the systems

Three experiments:

- \blacksquare DB with flat retirement age \rightarrow DB with increasing retirement age
- **2** NDC with flat retirement age \rightarrow NDC with increasing retirement age
- **3** FDC with flat retirement age \rightarrow FDC with increasing retirement age

What is flat and what is increasing retirement age?

baseline

flat

Does social security reform reduce gains from higher retirement age? - Calibration

Age-productivity profile - flat or ...?

heterogeneity between cohorts due to age-specific productivity, $w_{i,t} = \omega_i w_t$

900

Deaton (1997) decomposition

1 Motivation and insights from literature

2 Model setup

3 Baseline and reform scenarios

4 Calibration

5 Results

Welfare

Macroeconomic effects

Calibration to replicate 1999 economy of Poland

- Preference for leisure (ϕ) chosen to match participation rate of 56.8%
- Impatience (δ) chosen to match interest rate of 7.4%
- **Replacement** rate (ρ) chosen to match benefits/GDP ratio of 5%
- Contributions rate (τ) chosen to match SIF deficit/GDP ratio of 0.8%

- Labor income tax (τ_l) set to 11% to match PIT/GDP ratio
- Consumption tax (τ_l) set to match VAT/GDP ratio
- Capital tax set de iure = de facto

Final parameters

Table: Calibrated parameters

		Age-produ	ctivity profile	
		ω - D97	$\omega = 1$	
α	capital share	0.31	0.31	
$ au_l$	labor tax	0.11	0.11	
ϕ	preference for leisure	0.578	0.526	
δ	discounting rate	0.998	0.979	
d	depreciation rate	0.045	0.045	
au	total soc. security contr.	0.060	0.060	
ρ	replacement rate	0.138	0.227	
		resulting		
Δk_t	investment rate	21	21	
r	interest rate	7.4	7.4	

🥪 🛞 🐺 GRAPE

・ロシュロシュー (main and a state and a state a sta

Does social security reform reduce gains from higher retirement age?

Exogenous processes in the model I

Demographics

- Demographic projection until 2060, after that 80 years, and after that "new steady state"
- No of births (j=20) from the projection, constant afterwards
- Mortality rates from the projection, constant afterwards

Exogenous processes in the model II

Productivity growth

- Labor augmenting productivity parameter
- Data historically, projection from AWG, after that "new steady state", 1.7%

590

ヘロト ヘロト ヘビト ヘビト

1 Motivation and insights from literature

2 Model setup

3 Baseline and reform scenarios

4 Calibration

5 Results

- Welfare
- Macroeconomic effects

Does socia	I security	reform	reduce	gains	from	higher	retirement	age?
------------	------------	--------	--------	-------	------	--------	------------	------

Results

- Welfare

Is the reform efficient?

Yes!

Deaton	Flat
9.88%	3.70%
11.31%	4.41%
11.81%	4.70%
	Deaton 9.88% 11.31% 11.81%

Results

- Welfare

Who gains? Everybody!

GRAPE

590

Does social	security	reform	reduce	gains	from	higher	retirement	age
Results								

- Welfare

Why they gain? Benefits under DC systems ...

Results

Welfare

... and taxes under DB system ...

Does social se	ecurity reform	reduce gain	s from higl	her retirement	age
----------------	----------------	-------------	-------------	----------------	-----

Results

Welfare

Is there any behavioral response? Of course!

GRAPE

590

Results

Macroeconomic effects

Labor supply in the final steady state

	Labor supply	Labor supply with MERA increase				
	(no reform)		<i>j</i> < 60	$j \ge 60$	Total	
	Average	Average	Aggregate	Average	Aggregate	
			(baseline=100%)		(baseline=100%)	
DB	63.2%	59.6%	94.4%	71.8%	113.7%	
NDC	62.0%	58.8%	94.8%	72.3%	114.7%	
FDC	61.7%	59.0%	95.5%	72.2%	115.4%	

Results

Macroeconomic effects

Aggregated labor supply (in mio of individuals)

≪ ∰ ∰GRAPE এন ১ এট ১ এই ১ এই ১ এই ৩৫০

Results

Macroeconomic effects

Capital (per effective unit of labor) decreases

েচ্চ ব্দি ব্≣ দ্বিদ্য প্রথম হা ব্≣ ব্য

Results

Macroeconomic effects

But mostly due to decrease in "precautionary savings"

Results

Macroeconomic effects

Conclusions

- extending the retirement age is universally welfare enhancing
- some downward adjustment in individual labor supply, but the aggregated supply increases
- effects on capital are "overstated"

Does social security reform reduce gains from higher refirement ag	uce gains from higher retirement ag	reduce	y reform	security	s social	Do
--	-------------------------------------	--------	----------	----------	----------	----

Results

Macroeconomic effects

Questions or suggestions?

Thank you!

