The Science of Japanese Personnel Management - Rethinking employment systems in the era of globalization

Handout

Edward P. LAZEAR

Jack Steele Parker Professor of Human Resources Management and Economics, Stanford University / former Chairman of the U.S. Council of Economic Advisors

July 12, 2013

Research Institute of Economy, Trade and Industry (RIETI) http://www.rieti.go.jp/en/index.html Institute of Social Sciences, The University of Tokyo http://www.iss.u-tokyo.ac.jp/

A Personnel Economics Approach to Productivity Enhancement

Edward P. Lazear

Stanford University

Themes

- Productivity is enhanced through
 - incentives
 - worker sorting
 - supervision
- Training and leadership

What is personnel economics and what is its relevance to productivity?

- Application of formal economics, mathematics, and statistics to human resources issues
- Goal is positive and normative

The Use of Compensation to Increase Productivity

- Large effects on productivity
- Money isn't everything: "Psychic" rewards count
 - Everything has a monetary equivalent
 - Compensation consulting firms estimate tradeoffs

Two Types of Incentive Pay

- Payment on levels of output or input
 - Used where measurable
 - Less skilled
 - Agriculture
 - Basic services (Safelite)
 - Simple manufacture (clothing)
 - Most skilled: CEOs paid on stock performance
- Payment based on relative performance
 - Promotion hierarchies
 - Bonuses based on rank

Output-based Pay: Piece Rates

- Use when output observable
 - Both quality and quantity observable
- Creates
 - Incentives
 - Sorting
 - Appropriate when worker heterogeneity

Piece Rates and Performance: Safelite

- Productivity effects are very large (over 40% increase)
- Half from incentives (more effort), half from sorting (better workers)

Safelite Results

	Hourly Wages		Piece rates		
		Standard		Standard	
	Mean	Deviation	Mean	Deviation	
Number of					
observations	13106		15246		
Units-per- worker-per					
dav	2.7	1.42	3.24	1.59	
Actual Pay	\$2,228	\$794	\$2,283	\$950	
PPP pay	\$1,587	\$823	\$1,852	\$997	
Cost-per-unit	\$44.43	\$75.55	\$35.24	\$49.00	

Regression Results: Dependent variable: Units/worker/day

Reg. #	Coeff. on PPPFLAG	Coeff. on TENUR	Coeff. on PPP- TENUR	Coeff. on New Regime	r- sqr.	Description
1	.369 (.013)				.04	Dummies for month and year included
2	.197 (.009)				.73	Dummies for month and year; worker specific dummies included (3181 individual workers)
3	.313 (.014)	.343 (.017)	.107 (.024)		.05	Dummies for month and year included.
4	.309 (.014)	.424 (.015)	.130 (.024)	.243 (.025)	.06	Dummies for month and year included

Productivity Enhancement at Country Level

- Incentive effects relevant at country level
- Sorting
 - Most applicable for firms
 - Some applicability at country level to get workers in right jobs, occupations
 - Pay compression dampens incentives to sort appropriately (e.g., teachers)
 - Performance pay induces self-sorting

Incentives Based on Rank Order

- Almost all judgments are relative
- Firms use relative comparisons to motivate workers because rank is easier to judge than output
- A properly structure worker "tournament" provides good incentives and raises productivity

Tournament Theory

- Three points
 - Prizes are set in advance and determined by relative performance
 - The larger the spread, the larger the effort
 - The spread can be too great
- Pay affects those striving to obtain the job
 - Professional partnerships
 - Corporate hierarchies
 - Academia
 - Politics

Almost all evidence confirms existence and power of tournaments

- In sports (golf, horseracing)
- In experiments (laboratory and field)
 - Subjects behave as formal models predict
 - Women respond differently than men
- In business
 - Chicken farmers
 - Executive compensation in Danish Firms tests
 - Spread and noise
 - Lower average pay in compressed wage structures
 - Raises and hours worked
 - Teamwork and wage structure
- Implications: Salary compression and taxes can harm productivity

Importance of Supervision: Study of Large Technology-Based Service Provider

• A large fraction of advanced economies Examples:

insurance-claims processing, computer-based test grading, technical call centers, in-house IT specialists, technical repair workers, some retail sales, airline gate agents, telemarketers

- The variance in boss effects is large

 Difference between lowest and highest decile boss equals one worker in nine member team
 Variance in boss effect on worker output larger than variance in worker effects themselves
- Average boss increases output by 1³/₄ times as much as average worker (commensurate with pay differences)
- Good bosses are much more likely to retain their workers –one standard deviation better boss results in 12% less worker turnover
- Because some public-good aspect of supervision, better bosses should have larger team

Regressions of Output-per-Hour on Boss Effects

Standard Deviation of Boss E	4.74	
Standard Deviation of Worker Effects		1.33
Number of Observations		5,729,508
Number of Workers		23,878
Number of Bosses		1,940
Average Output per hour	10.26	
Average Team Size	9.04	

Creating Good Bosses, Leaders and Innovators

- General skills are key: Weakest link idea
- For leaders, problems come from many directions

Entrepreneurs Are Those with Balanced Skills

Entrepreneurship & Leadership Evidence

- From Stanford MBA graduates
- Different roles are key
 - Less than 3, 3% chance of being entrepreneur; more than 15, 30% chance of being entrepreneur and clevel
 - General curriculum (no strong specialty) at Stanford
 more likely to be entrepreneur and c-level
 - Certain specialized curricula result in high pay

Job Histories

- Panel data Stanford graduates
- For each respondent, have job history

Probability of Entrepreneurship by Number of Prior Roles Held

Roles					
≤3	3 to 16	more than 16			
.03	.10	.29			

MBA Curriculum and Entrepreneurship

Variable	1	2
	Logit	Tobit
EXP	.0259	.0266
	(.0185)	(.0196)
SPECDIF	1458	1452
	(.0581)	(.0592)
MALE	.6025	.6305
	(.1511)	(.1531)
MBAYear	0318	0384
	(.0215)	(.0224)
AGE	.0250	.0264
	(.0179)	(.1531)
Log likelihood	-841	-1181
Number of obs.	1952	1950

Courses of Study, Income and Leadership

	1 C-Level Clustered Logit	4 Log of Income Clustered Regression
NPRIOR	.141 (.034)	-024 (.012)
EXP	.070 (.027)	.068 (.009)
MBAYEAR	030 (.024)	.020 (.005)
MALE	1.18 (0.21)	.245 (.031)
SPECDIF	-125 (.085)	003 (.016)
ECONOMICS	.147 (.073)	008 (.015)
FINANCE	103 (.058)	.096 (.011)
GPA		.141 (.035)
CONSTANT	-1.74 (2.34)	1.72 (0.50)
LOG LIKELIHOOD or R-square	-951	.13
OBSERVATIONS	4884	4241 (1738)

Entrepreneurship Rates and Aging

(from Liang and Wang)

(Entrepreneurial rate = fraction of population involved in start-up over past two years)

Entrepreneurship and ODF Orowin							
(from Liang and Wang)							
Table 11: Dep var: adjusted GDP growth rate							
(1) (2) (3) (4) (5)							
	OECD	OECD VC	G6	G6+BRIC	All		
lentr	0.00675^*				0.00616		
	(0.00359)				(0.00376)		
lvcpgdp		0.00329^{*} (0.00170)					
avems			0.0396** (0.0131)	0.0810** (0.0221)			
Constant	0.0294** (0.0106)	0.0358** (0.0137)	-0.00482 (0.00577)	-0.0152 (0.0130)	0.0372^{**} (0.00995)		
Observations	24	23	6	10	55		

Entrepreneurship and GDP Growth

Standard errors in parentheses

Note: Adjusted GDP growth rate is the GDP growth rate from year 2000 to year 2009 adjusted by the growth of labor force

lentr is log entrepreneurship rate from the survey data

lvcpgdp is the log venture capital investment as a % of GDP

avems is the average market share of indigenous internet companies

* p < 0.10, ** p < 0.05

Conclusion

- Whenever studied, personnel practices have large effects on productivity
- These include
 - Compensation
 - Pay by absolute performance
 - Pay by relative performance
 - Human resources practices (teams, information, authority)
 - Supervision
 - General training