

TRADE AND INDUSTRIAL POLICY SUBTLETIES WITH INTERNATIONAL LICENSING

by Jota Ishikawa (Hitotsubashi Univ. & RIETI) Toshihiro Okubo (Keio Univ.)

Introduction

- Various hybrid forms of organization and competition among rivals
 - Cooperation in some phases of production and competition in other phases
 - Technology transfer
 - Licensing
 - Key inputs
 - Joint venture
 - Service provisions

Introduction

Technology transfer between rivals

- Mitsubishi Motors Co. → Proton (Malaysian automaker) and Hyundai Motor Co.
- Japanese steelmakers → POSCO (Korean steelmaker)
- Japanese and European electronics companies
 - \rightarrow Samsung Electronics Co.
- \blacksquare Toyota Motor Co. \rightarrow Ford Motor Company
- **\square** Samsung Electronics Co. \rightarrow Apple Inc.

Introduction

- Why firms have incentive to transfer technologies to (potential) rivals?
- → One reason : (Potential) rivals may acquire technologies through R&D
- Which is better for firms with advanced technologies, technology transfer to rival or rival's R&D?
- \rightarrow Technology transfer

Purpose

- To theoretically explore how the availability of both R&D and technology transfer affects optimal trade and industral policies
 in the framework of international duopoly
- 2. To obtain the optimal license fees
 Non-linear fees (fixed fee + royalty)

Basic structure

Standard model (Model without interdependency)

Features

International duopoly

- Imperfect substitutes
- □ Foreign production
 - **R**&D or international licensing
- Intervention
 - **Domestic government** \rightarrow tariff
 - **\square** Foreign government \rightarrow export (production) subsidy

Interesting results

In the case of international licensing

- Domestic government may provide import subsidy instead of tariff
- Foreign government can shift rent from domestic firm
 - by export tax on foreign firm instead of subsidy
 - by R&D subsidy → no subsidy payment in equilibrium

Related literature

- 10
- Trade policy with technology transfer between rivals
 - **•** Kabiraj & Marjit (*EER*,2003)
 - Mukherjee & Pennings (*EER*,2006)
 - Horiuchi & Ishikawa (RIE,2009)
 - **Gosh & Saha** (*RIE*,2008)
- □ Trade policy with R&D
 - Spencer & Brander (*RES*,1983)
 - Bagwell & Staiger (JIE, 1994)

Related literature

License fees
Fixed fee vs royalty
Wang (*JEB*,2002)

Model: international Cournot duopoly with product differentiation

Two goods
 Good X: foreign firm (*firm f*)
 Good Y: domestic firm (*firm d*)
 Utility function

$$U = \alpha x + \beta y - \frac{(x)^2 + (y)^2}{2} - \phi xy + m$$

Inverse demand

$$p_x = \alpha - x - \phi y$$
$$p_y = \beta - y - \phi x$$

Profits with R&D

$$\pi^{f} = (p_{x} - c_{x})x - F$$
$$\pi^{d} = (p_{y} - c_{y})y$$

Stage game

- 1. Licensing stage
- 2. Competition stage: Cournot competition

Licensing

Licensing from *firm d* to *firm f* License fees

- Take-it-or-leave-it licensing offer
- Outside option: R&D
- Patent or key input

Proposition 1 (License fees)

Profits with licensing (non-linear pricing: r ≥ 0, R ≥ 0) $\pi^f = (p_x - c_x)x - (R + rx)$ $\pi^d = (p_y - c_y)y + (R + rx)$ $\pi^d_L \equiv \max_{r,R} \pi^d$; s.t. $\pi^f \ge \pi^f_R, r \ge 0, R \ge 0$ 3 cases

- 1. Fixed fee (R=F>0) and per-unit royalty (r=0)
- 2. Fixed fee (R=0) and per-unit royalty (r > 0)
- 3. Fixed fee (R>0) and per-unit royalty (r>0)

Proposition 1 (License fees)

16

$\square When \phi (4B + B \phi^2 - 4A \phi) \leq 0 (A \equiv \alpha - c_{y} B \equiv \beta - \beta)$
c_{x}
$\square r = 0, R = F$
\Box When $\neg \phi (4B + B \phi^2 = 4A \phi) > 0$
$\square r = r, R = 0 \text{ if } r^* \ge r$
$r^* \equiv \frac{-\phi \left(4B + B\phi^2 - 4A\phi\right)}{2 \left(3\phi^2 - 4\right)},$
$\overline{r} \equiv A - \frac{1}{2}B\phi + \frac{1}{2}\sqrt{\pi_R^{f*}}(\phi^2 - 4),$
$R^* \equiv \left(\frac{2(A-r^*)-\phi B}{4-\phi^2}\right)^2 - \pi_R^{f*}.$

3 types of licensing (Fig. 1)

Intuition

18

$$\pi^d = (p_y - c_y)y + (R + rx)$$

r ↑ →1st term: profits from producing good Y ↑
 2nd term: license revenue from fixed payment ↓
 3rd term: license revenue from royalty ?
 φ(4B + B φ² - 4A φ) ≤ 0

 \rightarrow the effective market size for good Y (*B*) is small relative to that for good X (*A*)

 \rightarrow effect on the 1st term is small

→ set r=0 (*firm d* actually wants to set r<0 which is not allowed)

R&D equilibrium vs Licenisng equilibrium

Suppose MCs of production are identical between R&D and licensing

- Licensing increases profits of firm d relative to R&D
 - **Revenue from licensing**
 - □ firm f's effective MC ↑ if r > 0
- □ Consumer surplus (CS)
 - $\square r > 0 \rightarrow \text{ prices of both goods } \uparrow \rightarrow \text{CS} \downarrow$

Proposition 2 (welfare comparison without intervention: licensing vs R&D)

- If 0 ≤ r< 2A/3, then domestic welfare is higher under licensing than under R&D
 Tradeoff: domestic firm vs domestic consumers
 Foreign welfare is the same between the
 - licensing case and the R&D case

Stage game with rent-shifting

- 1. Government intervention stage
 - 1. Only domestic government intervenes
 - 2. Only foreign government intervenes
 - 3. Both governments intervene
- 2. Licensing stage
- 3. Competition stage: Cournot competition

Proposition 3 (Optimal intervention by domestic government alone)

22

- Fixed fee (*R=F>0*) and per-unit royalty (*r = 0*)
 Import subsidy
 - *r≧ 0, R≧0 →* Subsidy makes the situation just like *r<0*
- □ Fixed fee (R=0) and per-unit royalty (r > 0)
 - A royalty and a tariff are perfect substitutes: $r + T = r \rightarrow$ Optimal tariff is not unique
 - R&D could be better than licensing → Set a tariff so that R&D arises
- Fixed fee (R>0) and per-unit royalty (r > 0)
 Import subsidy

Figure 2: Optimal tariff with licensing with royalty alone

Proposition 4 & 5 (Optimal intervention by foreign government alone)

Proposition 4 □R&D → export (production) subsidy □Licensing → export (production) tax

Proposition 5

Rent-shifting through

- R&D subsidy
- Tax on license fees

Export tax on firm f

25

□ Reduce room for arbitrage \rightarrow indirect rent-shifting $\pi_{L\tau}^d \equiv \max_{r,R} \pi^d; s.t. \ \pi^f - \tau x_L \geq \pi_R^f, r \geq 0, R \geq 0$ $\square \max_{\tau} \tau x_L; s.t.\pi_{L\tau}^d \ge \pi_R^d$ • Suppose $\pi^f - \tau x_L = \pi^f_R at r = R = 0 \& \tau = \tau^*$ • with $\tau = \tau^*$ firm f's effective MC is $c^f + r + \tau = c^f + \tau^*$ and hence $\pi_I^d > \pi_R^d$

Profits of *firm f* under licensing

26

Production tax under licensing

27

Commitment to an R&D subsidy to firm f

- 28
- $\Box \pi_R^f < 0$ could hold No incentive for R&D without subsidy $\rightarrow \pi_B^f + S > 0$ \rightarrow incentive for licensing \rightarrow choose S such that $\pi_{Ls}^{d} (\equiv \max_{r,R} \pi^{d}; s.t. \ \pi^{f} \geq \pi_{R}^{f} + S, r \geq 0, R \geq 0) \geq \pi_{R}^{d}$ $\rightarrow S=F$ \rightarrow No subsidy payment

 \square Subsidy \rightarrow Reduce room for arbitrage

Commitment to an R&D subsidy to firm f

Firm f

Firm d

Tax on license fees

License fees with foreign intervention

License fees: $\pi_L^d \equiv \max_{r,R} \pi^d; s.t. \ \pi^f \ge \pi_R^f, r \ge 0, R \ge 0$ $\lim_{r,R} \pi^d - tx_L$; s.t. $\pi^f \geq \pi^f_R, r \geq 0, R \geq 0$ 2. $\max_{r,R} \pi^d$; $s.t. \ \pi^f - au x_L \geq \pi^f_R, r \geq 0, R \geq 0$ 3. $\max_{r,R} \pi^d$; *s.t.* $\pi^f \ge \pi^f_R + S, r \ge 0, R \ge 0$ r.R

Interventions by both governments

- Domestic government
 - Tariff
- Foreign government
 - Export tax
- Reaction correspondence (curve)

Figure 3: Tariffs and export tax under R&D

Figure 4: Tariffs and export taxes under licensing with a fixed fee alone

Figure 5: Tariffs and export taxes under licensing with a royalty alone Panel (a)

Figure 5: Tariffs and export taxes under licensing with a royalty alone Panel (b)

Figure 5: Tariffs and export taxes under licensing with a royalty alone Panel (c)

Figure 6: Tariffs and export taxes under licensing with both a fixed fee and a royalty

Interesting results

39

In the case of international licensing

- Domestic government may provide import subsidy instead of tariff
- Foreign government can shift rent from domestic firm
 - by export tax on foreign firm instead of subsidy
 - by R&D subsidy → no subsidy payment in equilibrium

Remarks

- \square Other policies \rightarrow rent-shifting
- Purchase of key intermediate inputs from rival firms instead of licensing
- $\square R\&D \rightarrow externalities$
- Bargaining power in the licensing stage
 - **•** Some bargaining power by domestic firm
 - No bargaining power by domestic firm
 - Tiny fixed fee \rightarrow tariff reduction

Remarks

- \square 3rd country market
 - \blacksquare Domestic policy: export subsidy \rightarrow export tax
- □ Incentive to lower tariffs
 - To "benefit" domestic firm and raise domestic welfare