"Natural Disasters, Damage to Banks, and Firm Investment"

HIT-TDB-RIETI International Workshop on the Economics of Interfirm Networks Nov. 29th-30th , 2012

Kaoru Hosono (Gakushuin / MOF), Daisuke Miyakawa (DBJ-RICF), Taisuke Uchino (Daito Bunka / RIETI), Makoto Hazama (Hitotsubashi), Arito Ono (Mizuho Research Institute), Hirofumi Uchida (Kobe) lichiro Uesugi (Hitotsubashi / RIETI)

1. Introduction & Motivation

- Bank lending and firms' capital investment: Bernanke (1983)
- Identification problem: Peek & Rosengren (2000)
 ⇔ Better to employ separated exogenous shocks to banks and firms

• <u>This paper</u>

- Natural disaster as an **experiment**: The Kobe earthquake in January 1995
- Data of the firms located inside (Fi) / outside (Fo) the earthquake-affected area & the lender banks located inside (Bi) / outside (Bo) the earthquake-affected area
- Study how the financial friction associated with earthquake-affected banks affects capital investment by client firms located outside the affected area.
- Two measures for the damage of banks (on "Headquarter" or "Branch network")

2. Key Findings

 Firms located <u>outside</u> the earthquake-affected area but associated with a main bank located <u>inside</u> the area had a lower investment ratio compared to the firms associated with a main bank located outside the area.

> Exogenously damaged banks' lending capacity has a significant effect on firm investment

- This finding above is robust to two alternative measures of bank damage
 - (i) Damage to the headquarter
 - Deteriorated managerial capacity to process loan applications at the back office
 - (ii) Damage to the branch networks

Deteriorated financial health and risk-taking capacity

• The impact of (i) emerges **immediately** while that of (ii) emerges with a **one-year lag**

3. Literature

- Bank loan and firm Activity
 - Aggregate data: Berbanke (1983), Bernanke & Lown (1991)
 - Event study: Slovin et al. (1993), Yamori & Murakami (1999), Bae et al. (2002)
 - Micro data: Gibson (1995, 1997), Hori (2005), Minamihashi (2011)
 - Identification strategy: Peek & Rosengren (2000), Khwaja & Mian (2008), Berg and Shrader (2012)
 - Int'l transmission: Chava & Purnanandam (2011), Schnabl (2012), Popov & Udell (2010), Paravisini et al. (2011), Catorelli and Goldberg (2012)

Natural disaster and economic recovery

- Country- or region-level data: Skidmore & Toya (2002) and many...
- Firm-level data: Leiter et al. (2009), De Mel et al. (2010)

Household and financial constraint: Sawada & Shimizutani (2008)

4. The Kobe Earthquake (1): Area

- <u>Earthquake-affected (treatment) area</u> = the targeted areas of "the Act concerning Special Financial Support to Deal with the Designated Disaster of Extreme Severity by the Government of Japan"
- <u>Control area</u> (the others in Hyogo and Osaka)

Various treatments for recovery become available

Osaka and Hyogo Prefectures

4. <u>The Kobe Earthquake (2): Summary</u>

- Occurred on January 17, 1995
- Estimated loss: 9.9 trillion yen, including 630 billion yen in business sector losses

		No. of deaths	No. of housing units completely destroyed	No. of housing units partly destroyed	Death rate	Rate of housing units completely destroyed	Rate of housing units partly destroyed	Rate of housing units completely or partly destroved
Regions in designated disaster area		6,405	104,455	140,681	0.17%	16.50%	22.23%	38.73%
Kobe City	Higashinada-ku	1,470	12,832	5,085	0.77%	50.50%	20.01%	70.51%
	Nada-ku	931	11,795	5,325	0.72%	54.13%	24.44%	78.57%
	Hyogo-ku	553	8,148	7,317	0.45%	35.55%	31.92%	67.47%
	Nagata-ku	917	14,662	7,770	0.67%	60.21%	31.91%	92.12%
	Suma-ku	401	7,466	5,344	0.21%	27.68%	19.81%	47.50%
	Tarumi-ku	25	1,087	8,575	0.01%	2.78%	21.95%	24.73%
	Kita-ku	13	251	3,029	0.01%	0.63%	7.67%	8.31%
	Chuo-ku	243	5,156	5,533	0.21%	33.39%	35.84%	69.23%
	Nishi-ku	9	403	3,147	0.01%	1.19%	9.28%	10.46%
Amagasaki C	City	49	5,688	36,002	0.01%	7.60%	48.07%	55.67%
Nishinomiya	City	1,126	20,667	14,597	0.26%	31.30%	22.11%	53.41%
Ashiya City		443	3,915	3,571	0.51%	31.67%	28.89%	60.57%
Itami City		22	1,395	7,499	0.01%	4.39%	23.57%	27.96%
Takarazuka (City	117	3,559	9,313	0.06%	9.12%	23.86%	32.98%
Kawanishi C	ity	4	554	2,728	0.00%	1.56%	7.70%	9.26%
Akashi City		11	2,941	6,673	0.00%	5.51%	12.51%	18.02%
Sumoto City		4	203	932	0.01%	1.71%	7.83%	9.54%
Awaji City		58	3,076	3,976	0.11%	NA	NA	NA
Toyonaka Cit	ty	9	657	4,265	0.00%	1.12%	7.27%	8.39%
Regions outside designated area		22	445	3,427	0.00%	0.04%	0.30%	0.33%

4. <u>The Kobe Earthquake (3): Branch damages</u>

• A quarter of bank branches in Hyogo Prefecture could not operate immediately after the earthquake.

Type of banks#(banks)#(branches)OperatedOperatedNot OperatedCity bank11227125Long-term2202	Type of banks	
City bank 11 227 125 102 Long-term 2 2 0 2		
Long-term 2 2 0 2	City bank	
	Long-term	
Trust 6 17 10 7	Frust	
Regional 13 122 72 50	Regional	
Regional2 12 254 106 148	Regional2	
Shinkin bank 15 422 325 97	Shinkin bank	
Credit Cooperatives 15 111 77 34	Credit Cooperatives	
Total sum 74 1155 715 440	Fotal sum	

(Source: BOJ)

4. The Kobe Earthquake (4): Headquarter damages

• 18 bank headquarters were affected by the disaster.

Table 3. Banks headquartered in the earhtquake-affected area

Prefecture	Name and type	of financial institution	Loans outstanding (100 million yen)	No. of branches
Osaka	Suito Shinkin	Shinkin bank	1,720	19
	Howa Shinso	Credit cooperative	377	8
Hyogo	Hyogo Bank	Regional bank 2	27,443	147
	Hanshin Bank	Regional bank 2	8,772	80
	6 shinkin banks (to	otal)	19,752	192
	8 credit cooperativ	ves (total)	4,381	66

5. Data (1): Sources

- Basic Survey of Business Structure and Activities (BSBSA: Kigyo Katsudou Kihon Chosa)
 - \Rightarrow Ministry of Economy, Trade, and Industry in Japan
 - ⇒ Covers the universe of enterprises in Japan with 50 or more employees whose paid-up capital or investment fund is greater than 30 million yen
 - ⇒ "Firm-level" data storing capital investment and other basic financial statement info
- Database provided by Teikoku Databank, Ltd (TDB).
 - \Rightarrow List of banks that each firm transacts with
 - \Rightarrow Rank the banks in the order of the importance to the firm (\Rightarrow identify main bank)
- **<u>Nikkei NEEDS Financial Quest</u>** ⇒ Banks' financial information

<u>Two more sources</u>

⇒ "Financial Statements of Shinkin Banks in Japan" and "Financial Statement of Credit Cooperatives in Japan" for the financial info of shinkin banks and credit cooperatives

• Sample periods: 1995FY~1997FY (i.e., mainly start from April and end in March)

5. Data (2): Sample selection

• <u>BSBSA</u>:

- Number of sample firms 3897. Earthquake-hit area 641, non-hit area 3,256

Merge BSBSA & TDB:

- Number of sample firms 3,212, Earthquake-hit area 591, non-hit area 2621

- Construct <u>balanced panel data</u> over 1995FY to 1999FY by restricting our sample to firms that survived and whose main bank also survived over the three years.
 - Number of sample firms 2,086, Earthquake-hit area 390, non-hit area 1,696

- Drop the outlier (0.5% samples in each tail)
 - Number of sample firms 1,995, Earthquake-hit area 351, non-hit area 1,604

5. Data (3): Selection bias?

- One may worry that we observe only healthy firms inside the affected area by restricting our sample to survivors.
- However, the drop-out rate was smaller for firms located inside the affected area than that for firms located outside the affected area in FY1996 and FY1996.

	No. of firms observed in FY1994	No. of firms dropped out of the sample				
	FY1994	FY1995	FY1996	FY1997		
Full sample	3,212	430	612	895		
(Percentage)	100.0%	13.4%	19.1%	27.9%		
$F_DAMAGED = 0$	2,621	364	513	727		
(Percentage)	100.0%	13.9%	19.6%	27.7%		
$F_DAMAGED = 1$	591	66	99	168		
(Percentage)	100.0%	11.2%	16.8%	28.4%		
$B_DAMAGED = 0$	3,157	421	597	876		
(Percentage)	100.0%	13.3%	18.9%	27.7%		
$B_DAMAGED = 1$	55	9	15	19		
(Percentage)	100.0%	16.4%	27.3%	34.5%		

6. Empirical Analysis (1): Model

- Year-by-year cross-section OLS
- All independent variables are one-period lagged

$$\frac{I_{ii}}{K_{ii-1}} = \beta_0 + \beta_1 F_SALEGROWTH_{ii-1} + \beta_2 F_DAMAGED_i + \beta_3 B_DAMAGED_{ii-1} + \beta_4 F_DAMAGED_i * B_DAMAGED_{i,i-1} + \beta_5 F_CONSTRAINTS_{i,i-1} + \beta_6 B_CAPACITY_{ii-1} + \varepsilon_{ii}$$
 for $t = 1995, 1996, 1997$. (1)
Bank Size, ROA, and Equity Ratio

6. Empirical Analysis (2): Firm & Bank Damage Variables

- Firm:
 - "F_DAMAGED": Dummy variable

⇔ Taking the value of 1 if the firm is located in the earthquake-affected area

- Bank:
 - "B_HQDAMAGED": Dummy variable
 - ⇔ Taking the value of 1 if the bank <u>HQ</u> is located in the earthquake-affected area
 - Deteriorated managerial capacity
 - Ability to process loan applications at the back office
 - "B_BRDAMAGED": Continuously measured variable
 - ⇔ Ratio of <u>#(branches)</u> located in the earthquake-affected area to #(all branches)
 □ Deteriorated financial health and risk-taking capacity

6. Empirical Analysis (3): Summary Statistics (Firm)

• Capital investment ratio (= I(t)/K(t-1)) of Fi (inside) > Fo (outside)

Financial friction

• What about Fi-Bo, Fo-Bi, and Fi-Bi compared to Fo-Bo?

FY1996											
	Whol	e sample	<i>F_</i> 1	DAMA	GED=1	<i>F</i> _	DAMA	GED=0		t-test (F_DAMAG (F_DAMAG	for ED =1) = GED =0)
Variable	Obs.	Mean	Std. dev.	Obs.	Mean S	Std. dev.	Obs.	Mean	Std. dev.	difference	p-value
F_INVESTMENTRATIO	1,990	0.140	0.228	362	0.156	0.229	1,628	0.136	0.228	0.0202	
F_SALESGROWTH	1,990	0.020	0.111	362	0.022	0.141	1,628	0.020	0.103		
F_LNASSETS	1,990	8.679	1.266	362	8.532	1.285	1,628	8.712	1.260		
F_LEV	1,990	6.761	12.626	362	6.151	11.375	1,628	6.897	12.887		
F_ROA	1,990	0.029	0.041	362	0.026	0.045	1,628	0.029	0.040		
F_CASH	1,990	0.635	0.168	362	0.623	0.173	1,628	0.638	0.167		
F_DAMAGED	1,990	0.182	0.386	362	1.000	0.000	1,628	0.000	0.000		
B_LNASSETS	1,990	24.175	1.100	362	24.216	1.097	1,628	24.166	1.100	0.0499	
B_CAP	1,990	0.031	0.005	362	0.031	0.006	1,628	0.032	0.005	-0.0007	**
B_ROA	1,990	0.007	0.008	362	0.009	0.010	1,628	0.007	0.008	0.0018	***

6. Empirical Analysis (4): Baseline estimation

Dependent variable:	(1) B_DAMAGED =	(2) B_DAMAGED	(1) B_DAMAGED =	(2) B_DAMAGED	(1) B_DAMAGED =	(2) B_DAMAGED
<i>F_INVESTMENTRATIO</i> (t)	B_HQDAMAGE D	= B_BRDAMAGED	B_HQDAMAGE D	B_BRDAMAGED	B_HQDAMAGE D	= B_BRDAMAGED
	FY1	995	FY1	.996	FY1	997
F_DAMAGED B DAMAGED [†]	0.0244 * (0.0134) -0.0815 ***	-0.0042 (0.0205) -0.0396	0.0233 * (0.0128) -0.0290	0.0182 (0.0171) -0.1273 **	0.0281 ** (0.0127) 0.1713 ***	0.0327 ** (0.0144) 0.0061
F_DAMAGED	(0.0230) 0.3578 **	(0.0558) 0.3473 *	(0.0297) 0.0721	(0.0593) 0.1037 (0.1001)	(0.0666) -0.2114 ***	(0.0611) -0.0578
×B_DAMAGED	(0.1678)	(0.1893)	(0.0706)	(0.1001)	(0.0778)	(0.0866)
Sum of coefficients on <i>B_HQDAMAGED</i> and	0.2764 *		0.0431		-0.0401	
F_DAMAGED *B_HQDAMAG ED	(0.1678)		(0.0668)		(0.0420)	
Obs	1,955	1,955	1,990	1,990	1,997	1,997
F-value	9.46	8.62	7.05	7.21	8.97	8.47
p-value	**	**			**	
R-squared	0.0811	0.0792	0.0462	0.0472	0.0581	0.0567
Root MSE	0.2223	0.2225	0.2239	0.2238	0.1996	0.1998
Industry dummies	yes	yes	yes	yes	yes	yes

Firms' financial condition variables have coefficients with expected signs with different significance levels, while banks' financial condition variables are not significant.

6. Empirical Analysis (5): Economic significance

- For specification (1), with headquarter damage, I/K for undamaged firms with damaged main banks is smaller by 8.1 percentage points than I/K for undamaged firms with undamaged main banks in 1995. This is significant given that the average I/K for undamaged firms in 1995 was 13.1%.
- For specification (2), with branch network damage, I/K for undamaged firms with damaged main banks with average damages was lower by 1.0 percentage points than undamaged firms with undamaged main banks in 1996.

6. Empirical Analysis (6): Small Banks

Feature more vulnerable banks

Dependent variable:	(1) B_DAMAGED =	(2) B_DAMAGED	(1) B_DAMAGED =	(2) B_DAMAGED	(1) $B_DAMAGED$ $=$	(2) B_DAMAGED
F_INVESTMENTRATIO (t)	B_HQDAMAGE D	B_BRDAMAGED	B_HQDAMAGE	_ B_BRDAMAGED	B_HQDAMAGE D	_ B_BRDAMAGED
	FY1	995	FY1	1996	FY1	997
F_DAMAGED B_DAMAGED †×SMALL	0.0276 ** (0.0137) -0.1000 ***	0.0069 (0.0221) -0.0429	0.0257 ** (0.0128) -0.0579 ***	0.0306 * (0.0168) -0.1425 **	0.0280 ** (0.0127) 0.1165 *	0.0316 ** (0.0142) -0.0281
<i>F_DAMAGED</i> × <i>B_DAMAGED</i> †× <i>SMALL</i>	(0.0212) 0.3351 (0.2055)	(0.0580) 0.2627 (0.2126)	(0.0212) -0.0025 (0.0348)	(0.0609) -0.0116 (0.0860)	(0.0618) -0.1764 ** (0.0711)	(0.0585) -0.0387 (0.0872)
Sum of coefficients on B_HQDAMAGED *SMALL and	0.2352		-0.0605 *		-0.0599	
F_DAMAGED *B_HQDAMA GED *SMALL	(0.2060)		(0.0334)		(0.0367)	
Obs	1,955	1,955	1,990	1,990	1,997	1,997
F-value (1)	10.99	8.38	8.40	7.50	8.97	8.54
R-squared	0.0777	0.0759	0.0464	0.0485	0.0573	0.0568
Root MSE	0.2227	0.2229	0.2239	0.2237	0.1997	0.1998
Industry dummies	yes	yes	yes	yes	yes	yes

8. Conclusion

• Use the Kobe Earthquake as a natural experiment, and find

- The investment ratio of firms located outside the earthquake-hit but having a main bank inside the area was smaller than that of firms whose main bank was outside the affected area.
- This is robust (with *the difference in timing*) for the *two alternative measures* of bank damage: damage to headquarters or to its branch network.
- Damage to banks affected client firms through the impairment of banks' *managerial* capacity to originate loans and through the impairment of *risk-taking capacity*.
- The effect of bank damage was *short-lived*. It dissipated by three years after the earthquake.

<Contact Information> Member of SEEDs: Study group for Earthquake and Enterprise Dynamics* <u>https://sites.google.com/site/earthquakeandenterprise/</u> *Our research interests are in the effects of great earthquakes on firms' investments, exports, location choices, entry & exit

Kaoru Hosono: Professor, Gakushuin University, E-mail: kaoru.hosono@gakushuin.ac.jp

Daisuke Miyakawa: Associate Senior Economist, Development Bank of Japan Research Institute of Capital Formation, E-mail: <u>damiyak@gmail.com</u>

Taisuke Uchino: Assistant Professor, Daito Bunka University, E-mail: taisukeuchino@gmail.com

Makoto Hazama: Ph.D. Candidate, Hitotshubashi University, E-mail: ed104005@g.hit-u.ac.jp

Arito Ono: Senior Economist, Mizuho Research Institute, E-mail: arito.ono@mizuho-ri.co.jp

Hirofumi Uchida: Professor, Kobe University, E-mail: uchida@b.kobe-u.ac.jp

lichiro Uesugi: Associate Professor, Hitotsubashi University, E-mail: <u>iuesugi@ier.hit-u.ac.jp</u>