Nominal Rigidities, News-Driven Business Cycles, and Monetary Policy

Keiichiro Kobayashi[†] Kengo Nutahara[‡]

† Research Institute of Economy, Trade and Industry (RIETI)

‡ University of Tokyo

DECEMBER 19TH, 2008 @ CEPR-RIETI WORKSHOP

News-Driven Business Cycle

- Pigou (1927): If agents receive positive news (or have optimistic expectations) about the future, booms occur at current period.
- News-Driven Business Cycles (NDBC)
 - Definition: Positive comovements in output, consumption, investment, and labor when positive news about the future arrives.
- Why do we care?
 - Japan's late 1980s, US's late 1990s (Internet bubble), and the Subprime housing boom
 - Standard RBC models cannot generate NDBCs!

What is news?

Evolution of technology:

$$\log(A_t) = \rho_A \log(A_{t-1}) + u_t^A.$$

Technology shock u^A_t consists of two components:

$$u_t^A = \underbrace{\varepsilon_t^A}_{\text{observed at } t} + \underbrace{v_{t-p}^A}_{\text{observed at } t-p}$$

• v_{t-p}^A : news shock.

٠

Why Do RBCs Fail? (1/2)

Standard RBC with

Utility:

$$u(c_t, n_t) = \log(c_t) - \gamma \frac{n_t^{1+\sigma_n}}{1+\sigma_n}.$$

Production technology:

$$y_t = A_t \cdot k_{t-1}^{\alpha} \cdot \left[\zeta_t n_t\right]^{1-\alpha},$$

and

$$\log(A_t) = \rho_A \log(A_{t-1}) + \varepsilon_t^A + v_{t-p}^A,$$

$$\log(g_t) = \rho_g \log(g_{t-1}) + \varepsilon_t^g + v_{t-p}^g,$$

where
$$g_t \equiv \frac{\zeta_t}{\zeta_{t-1}}$$
.

Why Do RBCs Fail? (2/2)

- Effects of the news about positive future productivity shocks $(v_t^A \text{ or } v_t^g)$:
 - Consumption ↑ (wealth effect & consumption smoothing)
 - Labor, output, and investment ↓

$$\gamma c_t n_t^{\sigma_n} = (1 - \alpha) \left[\frac{k_{t-1}}{n_t} \right]^{\alpha} A_t \zeta_t^{1 - \alpha},$$
$$c_t + i_t = A_t k_{t-1}^{\alpha} \left[\zeta_t n_t \right]^{1 - \alpha}.$$

• To generate NDBC, we have to violate the intratemporal condition!

Related Literature (1/2)

Strategy (1): **NDBC w/o market failure**: Change production technology or preference

- Beaudry and Portier (2004, 2007)
 - Multi-sector production technology (change of technology)
 - Complementarity btw consumption and investment goods
- Jaimovich and Rebelo (2006, 2008)
 - Preferences without income effect on labor supply
 - Capital utilization
 - Adjustment costs of investment (flow specification)
- Christiano, Ilut, Motto, and Rostagno (2007, 2008) (CIMR)
 - Habit persistence
 - Adjustment costs of investment (flow specification)
 - (+ sticky price-wage, and Taylor rule)

Related Literature (2/2)

Strategy (2): NDBC w/ market failure: Labor wedge (≡ MRS/MPL)

- Den Haan and Kaltenbrunner (2006)
 - Matching friction in the labor market
 - Complementarity btw consumption and investment goods
- Kobayashi, Nakajima and Inaba (2007) / Kobayashi and Nutahara (2007)
 - Collateral constraints on working capital
 - Adjustment costs of investment (level specification)

What We Do

- New mechanism of NDBC: Nominal rigidities (sticky prices) + (adjustment costs of investment)
- Our models can generate
 - NDBCs due to news about both technology growth and level
 - Procyclical movements of Tobin's q
 - Recessions if the news turns out to be false (growth)
- Mechanism:

$$\gamma c_t n_t^{\sigma_n} = \frac{1-\alpha}{x_t} \cdot \left[\frac{k_{t-1}}{n_t}\right]^{\alpha} A_t \zeta_t^{1-\alpha},$$
$$c_t + i_t = A_t k_{t-1}^{\alpha} [\zeta_t n_t]^{1-\alpha}.$$

Decrease of markup x_t causes comovements of consumption, labor, investment, and output.

Kobayashi and Nutahara (2008)

News-Driven Business Cycles

Our Model (1/3)

Standard New Keynesian sticky-price model

1. Household:

- Utility: $u(c_t, n_t) = \log(c_t) \gamma \frac{1}{1+\sigma_n} n_t^{1+\sigma_n}$.
- Adjustment costs of investment (level: i_t/k_{t-1})

$$k_t = (1 - \delta)k_{t-1} + \Phi\left(\frac{i_t}{k_{t-1}}\right)k_{t-1},$$

where
$$\Phi(0) = 0$$
, $\Phi'(\cdot) > 0$ and $\Phi''(\cdot) < 0$.

2. Final goods firms: Competitive

$$y_t = \left[\int_0^1 Y_t(z)^{\theta/(\theta-1)} dz\right]^{(\theta-1)/\theta}$$

Our Model (2/3)

- 3. Intermediate goods firms: Monopolistically competitive
 - Production technology:

$$Y_t(z) = A_t \bigg[K_t(z) \bigg]^{\alpha} \bigg[\zeta_t N_t(z) \bigg]^{1-\alpha},$$

and

$$\log(A_t) = \rho_A \log(A_{t-1}) + \varepsilon_t^A + v_{t-p}^A,$$

$$\log(g_t) = \rho_g \log(g_{t-1}) + \varepsilon_t^g + v_{t-p}^g,$$

where $g_t \equiv \zeta_t / \zeta_{t-1}$.

- Calvo-pricing with price indexation:
 - * Probability of price re-optimization: 1κ
 - Backward-pricing firms: η

$$\hat{\pi}_t = \frac{\beta}{1+\eta\beta} E_t \hat{\pi}_{t+1} + \frac{\eta}{1+\eta\beta} \hat{\pi}_{t-1} - \frac{(1-\kappa\beta)(1-\kappa)}{\kappa(1+\eta\beta)} \hat{x}_t.$$

Our Model (3/3)

4. Monetary Authority: Forward-looking Taylor rule

$$\hat{R}_{t} = \rho_{R}\hat{R}_{t-1} + (1 - \rho_{R})\left[\rho_{\pi}E_{t}\hat{\pi}_{t+1} + \rho_{y}\hat{y}_{t}\right].$$

5. Specification of adjustment costs of investment:

$$\Phi\left(\frac{i_t}{k_{t-1}}\right) \equiv \frac{\delta\sigma_{\Phi}}{q} \log\left(\frac{i_t}{k_{t-1}} + \bar{a}\right) + \bar{b},$$

where $\Phi(0) = 0$, $\Phi(\delta) = \delta$, and σ_{Φ} is the elasticity of investment w.r.t. Tobin's *q*:

$$\hat{i}_t = \sigma_\Phi \hat{q}_t + \hat{k}_{t-1} + \hat{g}_t.$$

News-Shock Experiments

- We try Christiano, Ilut, Motto, and Rostagno (2007) type experiment:
 - At t < 0, the economy is at the steady state.
 - At t = 0, news arrives; positive technology growth or level shock, $v_0^j = .01$ for j = A or g.
 - At t = 4, agents know that the news turns out to be false: $\varepsilon_4^j + v_0^j = 0.$

• Parameters;

β	σ_n	γ	α	δ	$ ho_g$	$ ho_A$			
1.01358 ²⁵	1	109.82	.4	.025	.83	.83			
1 – к	η	σ_{Φ}	θ	ρ_R	$ ho_{\pi}$	ρ_y			
.37	.84	1.01	6	.81	1.95	.18			
(same as CIMR except for σ_{Φ} & $ ho_{g}$)									

NDBC (1): Growth

Mechanism of NDBC: Growth

- Why do booms occur?
 - Positive news arrives...
 - \implies Future $c_t \uparrow$ and future $n_t \downarrow$ (future wealth effect)
 - \implies For $n_t\uparrow$, future $w_t\uparrow$ and future markup \downarrow (competitivness \uparrow)
 - \implies Future price \uparrow (NKPC)
 - \implies Current optimal price \uparrow
 - \implies Markup \downarrow (sticky-price)
 - \implies Aggregate demand, output, labor input \uparrow
 - \implies Investment, consumption \uparrow (loosened household's budget)
- Why do recessions occur?
 - If news turns out to be false
 - \implies Markup \uparrow (more than level of s.s.) (sticky-price)
 - \Longrightarrow Aggregate demand, output, and labor input \downarrow
 - \implies Investment, consumption \downarrow (similar to that of boom)

NDBC (2): Level

Mechanism of NDBC: Level

- Differences from the case of growth shock:
 - Delay of responses
 - 2 No recessions even if the news turns out to be false
- Key: Adjustment costs of investment

 \implies investment \uparrow (want to smooth by adjustment costs) & consumption \uparrow (wealth effects)

 \implies **Increase in aggregate demand** causes both increase in labor input and decrease in markup.

$$\gamma \frac{c_t}{1-n_t} = \frac{1-\alpha}{x_t} \left[\frac{k_{t-1}}{n_t} \right]^{\alpha} A_t \zeta_t^{1-\alpha},$$
$$c_t + i_t = A_t k_{t-1}^{\alpha} \left[\zeta_t n_t \right]^{1-\alpha}.$$

NDBC (3): Level ($\rho_{\pi} = 1.5$ **)**

Comparison with CIMR (1/2)

- CIMR employ sticky prices!
- Difference btw our model and CIMR:
 - Remove (i) habit persistence and (ii) sticky wage from CIMR and
 - Change (iii) the adjustment costs of investment (flow \Rightarrow level).
- CIMR:
 - Find the role of (i) habit persistence and (ii) flow adjustment costs of investment for NDBC.
 - Add (i) sticky price-wage and (ii) inflation targeting rule for procyclical movements of Tobin's q.
 - Show the interaction btw sticky wage and monetary policy amplify NDBC. (CIMR, 2008)

Comparison with CIMR (2/2)

 They do not check whether nominal rigidities alone (w/o habit) can generate NDBC.

- We find that nominal rigidities alone can generate NDBC.
 - Nominal rigidities vs. Habit: Frictions to violate the intratemporal condition
 - Sticky wage is also mechanism of NDBCs. (see Appendix)

Summary

- New Mechanism of NDBCs: nominal rigidities
- Standard New Keynesian model
 - sticky price
 - 2 adjustment costs of investment

⇒ Key: Countercyclical markup

- Our model generates
 - NDBCs due to news about both technology growth and level
 - 2 Procyclical movements of Tobin's q
 - Recessions if the news turns out to be false (growth)

References (1/2)

- Beaudry, P., and F. Portier. (2004) "An Exploration into Pigou's Theory of Cycles," *Jounal of Monetary Economics* 51, 1183-1216.
- Fujiwara, I. (2008) "Growth Expectations," Bank of Japan IMES Discussion Paper 2008–E–21.
- Christiano, L.M., C. Ilut, R. Motto, and M. Rostagno. (2007) "Monetary Policy and Stock Market Boom-Bust Cycles," European Central Bank Working Paper Series 955.
- Christiano, L.M., C. Ilut, R. Motto, and M. Rostagno. (2008) "Signals: Implications for Business Cycles and Monetary Policy," Northwestern University.
- Den Haan, W.J., and G. Kaltenbrunner. (2007). "Anticipated Growth and Business Cycle in Matching Models." Centre for Economic Policy Research Discussion Paper 6063.

References (2/2)

- Jaimovich, N., and S. Rebelo. (2006) "Can News about the Future Drive the Business Cycle?" forthcoming in *American Economic Review*.
- Jaimovich, N., and S. Rebelo. (2008) "News and Business Cycles in Open Economies." *Journal of Money, Credit and Banking* 40, 1699–1711.
- Kobayashi, K., T. Nakajima, and M. Inaba. (2007) "Collateral Constraint and News-Driven Cycles." Research Institute of Economy, Trade and Industry Discussion Paper 07–E–013.
- Kobayashi, K., and K. Nutahara. (2007) "Collateralized Capital and News-Driven Cycles." *Economics Bulletin* 5, 1–9.
- Pigou, A. (1927) Industrial Fluctuations MacMillan: London.

Appendix: Frictions and NDBCs

		Frictions					Results on NDBCs				
		habit	AC	SP	SW	_	Level	q(L)	Growth	q(G)	
CIMR(a)	(1)	\checkmark	flow				\checkmark				
	(2)	\checkmark	level								
CIMR(b)	(3)	\checkmark	flow	\checkmark	\checkmark		\checkmark	\checkmark	$\sqrt{*}$		
	(4)		flow						$\sqrt{*}$		
	(5)		flow	\checkmark			\checkmark		$\sqrt{*}$		
	(6)	\checkmark	flow		\checkmark		\checkmark	\checkmark	$\sqrt{*}$		
	(7)		flow		\checkmark		\checkmark	\checkmark	$\sqrt{*}$		
	(8)		flow	\checkmark	\checkmark		\checkmark	\checkmark	$\sqrt{*}$		
KN	(9)		level	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
	(10)		level		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
	(11)		level	\checkmark	\checkmark		\checkmark	\checkmark			

Note: AC: adjustment costs, SP: sticky prices, SW: sticky wages, Results: NDBC due to news about growth and level, q: procyclical Tobin's q

Appendix: Impulse Responses to Current Growth Shocks

Kobayashi and Nutahara (2008)